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1 Introduction
In this tutorial we shall review Brownian motion as emerging from the collective
effect of random independent forces. This point of view explains the ubiquity of
Brownian-like (and diffusion like) motions in many different scenarios. We start
by reviewing the general central limit theorem (CLT) for a sum of independent
random variables and then apply the CLT for the case of a pollen in a fluid,
much like was done in class.

Just as a historical remark, the importance of Brownian motion in physics
comes from its role in proving the atomic picture of matter (by Einstein and
Smoluchowski (1905-6) from the theoretical perspective and by Chaudesaigues
and Perrin (1908-9) from the experimental perspective). It is also a prototypical
example for stochastic process which has great usage in many areas of science
from physics through chemistry and biology to economics and social sciences.

2 Central Limit Theorem (CLT)

Consider a set of N independent variables {Xi} with finite variance σ2
i =

〈
X2
i

〉
.

Let’s start by assuming 〈Xi〉 = 0. Define another random variable

Y =
1√
N

N∑
j=1

Xj (1)

To find the distribution of Y , ρ(y)dy = P (y < Y < y+ dy), in the limit of large
N . Define the generating function of Y to be

GY (k) =
〈
eikY

〉
=

ˆ
eikyρ(y)dy (2)
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As this is simply proportional to the Fourier transform of its distribution func-
tion, one can obtain ρ(y) from GY (k) by the inverse transform. Now

GY (k) =

〈
exp

 ik√
N

N∑
j=1

Xj

〉

=

〈
N∏
j=1

exp

[
ik√
N
Xj

]〉

From independence of Xj we get

GY (k) =

N∏
j=1

〈
exp

[
ik√
N
Xj

]〉
≡ exp

 N∑
j=1

Aj

(
k√
N

) (3)

Aj

(
k√
N

)
≡ ln

〈
exp

(
ik√
N
Xj

)〉
(4)

As we want to probe the large N behavior, we assume k/
√
N � 1 and expand

Aj

(
k√
N

)
= ln

〈
1 +

ik√
N
Xj −

k2

2N
X2
j +O

(
N−3/2

)〉
= ln

(
1 + 〈Xj〉

ik√
N
−
〈
X2
j

〉 k2
2N

+O
(
N−3/2

))
Using 〈Xj〉 = 0,

〈
X2
j

〉
= σ2

j , and expanding the ln function yields

Aj

(
k√
N

)
= −σ2

j

k2

2N
+O

(
N−3/2

)
Hence to leading order in N−1 we find

GY (k) = exp

[
−1

2
σ2k2

]
(5)

σ2 ≡ 1

N

N∑
j=1

σ2
j (6)

The inverse Fourier transform yields

ρ(y) =
1

2π

ˆ ∞
−∞

eiky exp

[
−1

2
σ2k2

]
dk

=
1

2πσ
exp

[
− y2

2σ2

]ˆ ∞
−∞

exp

[
−1

2
(k − iy)

2

]
dk

=
1√
2πσ

exp

[
− y2

2σ2

]
(7)
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where in the second line we changed the variable σk → k and in the third
k − iy → k and used

´∞
−∞ exp

[
− 1

2x
2
]
dx=
√

2π. Hence we find that Y is a
Gaussian variable.

Hence we finally got that to leading order in N−1, Y is a Gaussian variable.
If 〈Xi〉 6= 0 we can define

Ỹ =
1√
N

N∑
j=1

(Xj − 〈Xj〉)

which will be a Gaussian variable (to leading order in N−1) and Y = Ỹ +
1√
N

∑N
j=1 〈Xj〉.

3 Brownian Motion
Brownian motion is the motion of a small macroscopic object in a liquid medium.
It is named after Robert Brown, who observed the movement of pollen grains
under the microscope and identified their irregular motion. It is now known that
Brownian motion is caused by the thermal (equilibrium) movement of atoms
which pass momentum to the macroscopic object upon collision, but at the
beginning of the 20th century, this understanding actually helped proving that
atoms actually exist.

A possible starting point for analyzing Brownian motion is the following
Langevin equation

dp

dt
= −λp + f (8)

where f is a random force with 〈f〉 = 0. This equation has a simple physical
interpretation: The force acting on a body moving in a fluid is on average in
opposite direction to the direction of motion (as, for instance, more particles
hit the front of the body than its back). The average of the force should vanish
when p = 0 (equilibrium, symmetry) and hence for small p it can be assumed
to be linear, which yields the resistance term −λp. Subtracting the average,
what is left is a noisy term with zero average, which we denote by f .

3.1 Momentum
The solution of Eq.(8) is

p =

ˆ t

−∞
f(t′)eλ(t

′−t)dt′ (9)

=

ˆ ∞
0

f(t− t′)e−λt
′
dt′ (10)
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as can be verified by taking a derivative of (9) with respect to t. The correlation
function of the random force is defined as

C(t) ≡ 1

3
〈f(t′)f(t′ + t)〉

=
1

3W

ˆ W

0

f(t′)f(t′ + t)dt′

where W is a large enough window of time. Here we defined the average as
a time average, but from ergodicity it is the same as ensemble average, hence
the distinction between the two is irrelevant in this case. The correlations are
assumed to decay with a characteristic time scale τ - the correlation time -
which means that for t � τ the correlation C(t) is essentially zero. We also
assume that λτ � 1 and hence the integration in (9) can be regarded as sum of
many independent random variables. Formally this can be done by dividing the
integral to segments of length τ � t′′ � λ−1 and noting that the correlation
between every two segments is bounded by τ

t′′ � 1. Hence, from the CLT we
find that the momentum is a Gaussian variable

ρ(p) =
1

(2πσ2)
3/2

exp

[
− p2

2σ2

]
From symmetry

〈
p2x
〉

=
〈
p2y
〉

=
〈
p2z
〉

= σ2 and hence

σ2 =
1

3

〈(ˆ t

−∞
f(t1)eλ(t1−t)dt1

)2
〉

=
1

3

〈(
−
ˆ ∞
0

f(t− t1)e−λt1dt1

)2
〉

=
1

3

〈ˆ ∞
0

dt1

ˆ ∞
0

dt2f(t− t1)f(t− t2)e−λ(t1+t2)
〉

=

ˆ ∞
0

dt1

ˆ 0

∞
dt2e

−λ(t1+t2)C(t1 − t2)

The change of variables s = t1 + t2, t′ = t1 − t2 has Jacobian 1
2 , hence

σ2 =
1

2

ˆ ∞
0

dse−λs
ˆ s

−s
dt′C(t′)

=
1

2λ

ˆ ∞
−∞

dt′C(t′)

where we used the fact that the correlation time is much shorter than λ−1.
From equipartition theorem

〈
p2x/2m

〉
= T/2, hence

〈
p2x
〉

= mT . From this
we find the relation

λ =
1

2mT

ˆ ∞
−∞

dt′C(t′)

which is a relation between the friction coefficient (non-equilibrium quantity)
and the fluctuations of the force (an equilibrium quantity). This is a particular
example of the fluctuation dissipation theorem.
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3.2 Displacement
The displacement is give by

∆r ≡ r(t+ t′)− r(t) =

ˆ t′

0

v(t′′)dt′′

where v = ṙ = p/m . We found that the momentum is a random variable,
and we shall see below that its correlation time is of order λ−1 which is quite
intuitive. Hence, the same reasoning used above implies that for t� λ−1, ∆r(t)
is also a Gaussian random variable (actually as the momentum is a Gaussian
random variable, even for times t < λ−1 their sum is Gaussian).

To find the correlation time of the velocity - or the momentum - it is more
convenient to write the solution of (8) at t+ t′ with an initial condition v(t) at
t

v(t+ t′) = v(t)e−λt
′
+

1

m

ˆ t′

0

f(t+ t′ − t′′)e−λt
′′
dt′

Then

〈vx(t+ t′)vx(t)〉 =

〈
v2xe
−λt′ +

vx(t)

m

ˆ t′

0

f(t+ t′ − t′′)e−λt
′′
dt′

〉
≈
〈
v2x
〉
e−λt

′

where we assumed that v(t) is uncorrelated with f(t + t′) for t′ > 0 (there is
actually a small correlation, but it is negligible). According to the equipartition
theorem

〈
v2x
〉

= T
m , hence

〈v(t+ t′)v(t)〉 =
3T

m
e−λt

′

Hence we find that the correlation time of the velocity is λ−1 as stated above,
much longer than τ . For times t � λ−1 we thus find that ∆r(t) is a Gaussian
random variable. The second moment of ∆r is given by〈

(∆r(t))
2
〉

=

ˆ t

0

dt1

ˆ t

0

dt2 〈v(t1)v(t2)〉

=

ˆ t

0

dt1

ˆ t

0

dt2
3T

m
e−λ|t1−t2|

=
3T

2m

ˆ 2t

0

ds

ˆ s

−s
dt′e−λ|t

′|

=
3T

2m

ˆ 2t

0

ds
2

λ

(
1− e−λs

)
=

3T

mλ

ˆ 2t

0

ds
(
1− e−λs

)
=

3T

mλ2
(
2λt+ e−2λt − 1

)
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which has a ballistic behavior for t� λ−1 and diffusive behavior for t� λ−1,

〈
(∆rx(t))

2
〉

=
1

3

〈
(∆r(t))

2
〉
≈

{
2T
m t2 t� λ−1

2T
mλ t t� λ−1

where we implicitly assumed isotropy so
〈

(∆ry(t))
2
〉

=
〈

(∆ry(t))
2
〉

=
〈

(∆ry(t))
2
〉
.

Defining the diffusion coefficient by〈
(∆rx(t))

2
〉
≡ 2Dt

we find that in d = 3

D =
T

mλ

which is known as the Einstein relation. So finally we get

ρ(∆r, t) =
1

(4πDt)
3/2

exp

[
− (∆r)

2

4Dt

]
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