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1 Introduction
In this tutorial we will discuss an effective picture for vortices statistics in the
XY model in 2D. Recall that in this model (2D XY model) a unique kind
of phase transition takes place, named Berezinskii-Kosterlitz-Thouless (BKT)
phase transition. Both above and below the phase transition there is no long
range order in the usual sense, but instead there is a change in the decay of
correlations from exponential decay above the transition to power law decay
below it. Now we shall briefly describe the context of the 2D XY model and
then look at an effective picture of gas of vortices which illustrates the BKT
transition.

2 Context
The XY model in 2D is a special case of the O(n) model in d dimensions, for
n = 2 and d = 2. One route to motivate the interest in this case is the following
cascade

• Start with the Landau theory, with the Landau Free Energy (LFE)

F [η] = α(T − Tc) |η|2 + b
(
|η|2
)2

which predicts a symmetry breaking phase transition at Tc.

• The LFE is a mean field approximation and the Ginzburg criterion sets its
limits of applicability. For d > 4 (upper critical dimension) it gives good
predictions but for d < 4 we pass to the Ginzburg-Landau FE (GLFE)

F [η(x)] =

ˆ
dx

[
|∇η|2 + α(T − Tc) |η|2 + b

(
|η|2
)2]
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• The GLFE predicts Goldstone modes, or spin waves, below the critical
temperature. These modes destroy order for d ≤ 2 (lower critical dimen-
sion):

〈
(∆η)

2
〉
∼ a2−d−L2−d

d−2 (Eq.(165) in notes).

• This implies Tc ∼ d− 2 → low temperature expansion, for ε = d− 2� 1

• Critical temperature (from RG approach): 2π(d−2)
n−2 + O

(
ε2
)
- self consis-

tent! (for n > 2).

• What happens in d = 2, n = 2???

3 Mapping to 2D Coulomb Gas
Start with the XY Hamiltonian

H = −J
∑
〈i,j〉

cos (θi − θj)

In the spin wave (low temperature) approximation

H ≈ J

2

ˆ
|∇θ(r)|2 d2r + const. (1)

Our aim is to study the BKT transition using an effective picture of spin waves
and vortices (the basic excitations of the theory). The way to do this is to work
in the continuous approximation - which is appropriate at low temperatures and
far from any vortex core (we will then have a correction due to the vortex core).
Denoting u(r) ≡ ∇θ(r), we can always (for any vector) split u to longitudinal
and transversal parts

u(r) = ul(r) + ut(r) (2)
∇ · ut = 0 (3)
∇× ul = 0 (4)

where ∇× ut = (∂xut,y − ∂yut,x) ẑ. The motivation is that ul will account for
spin waves and ut for the distortion due to vortices. Eq. (4) implies that

ul = ∇φ (5)

for some potential (analytic function)φ(r). Notice that ∇ × ut = ∇ × u, and
hence using Stock’s theorem, for any area A

ˆ
A

(∇× ut) ·
(
ẑd2r

)
=

ˆ
A

(∇× u) ·
(
ẑd2r

)
=

˛
∂A

u · ds

=

˛
∂A

∇θ · ds = 2πn
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where n is an integer. The last equality is a manifestation of the fact that θ is
defined up to 2πn. Hence we can view the integrand in the LHS as

∇× ut = 2πẑ
∑

niδ (r− ri)

This can be solved by setting

ut = −∇× (Ψẑ) (6)

and remebering that∇×∇×(Ψẑ) = ∇×(∂yΨ,−∂xΨ, 0) = −∂2xΨ−∂2yΨ = −∆Ψ,
hence

∆Ψ = 2πẑ
∑

niδ (r− ri)

which is the potential formed by a set of charges ni at locations ri. The solution
(in 2D) is

Ψ(r) =
∑
i

ni ln (|r− ri|) (7)

Rearranging we got
u(r) = ∇φ−∇× (Ψẑ) (8)

with Ψ given by Eq.(7). The field degrees of freedome are φ(r) (spin waves) and
{ni, ri} (charges and locations of vortices). Plugging (8) into the Hamiltonian
(1) yields (ommitting the constant term)

H =
J

2

ˆ (
|∇φ(r)|2 − 2 (∇φ(r)) · ∇ × (Ψẑ) + |∇ × (Ψẑ)|2

)
d2r

The second term vanish as using integration by parts
ˆ
∇φ(r) · ∇ × (Ψẑ) d2r = −

ˆ
φ(r)∇ ·

[
∇× (Ψẑ) d2

]
r = 0

Hence we see that we can write the Hamiltonian as

H (φ(r), {ni, ri}) = H0 (φ (r)) +H1 ({ni, ri})

H0 =
J

2

ˆ
|∇φ(r)|2 d2r

H1 =
J

2

ˆ
|∇ × (Ψẑ)|2 d2r

and the partition function as

Z =

ˆ
Dφ

ˆ ∏
i

d2ri
∑
{ni}

Exp [−βH0 (φ (r)) + βH1 ({ni, ri})]

=

[ˆ
Dφe−βH0

]∑
{ni}

ˆ ∏
i

d2rie
−βH1

 ≡ ZswZv
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Now H1 can be simplified using the fact that |∇ × (Ψẑ)|2 = |∇Ψ|2 and then
using integration by parts

H1 ≡ J

2

ˆ
|∇ × (Ψẑ)|2 d2r

=
J

2

ˆ
∇Ψ · ∇Ψd2r

=

˛
γ

Ψ∇Ψ · ds− J

2

ˆ
Ψ∇2Ψd2r

= −Jπ
ˆ ∑

i

ni ln (|r− ri|)
∑
j

njδ (r− rj) d
2r

= −Jπ
∑
i,j

ninj ln (|ri − rj |)

which is a Hamiltonian of a gas (without kinetic energy) of charged particles in
2D interacting through Coloumb interactions. Notice that in order to neglect
the term

¸
γ

Ψ∇Ψ · ds we assumed that the gas is neutral as a whole (
∑
ni = 0)

- other configurations are suppressed (as each charge’s contribution goes like
nilog(L)). This picture breaks down at i = j where the approximation of
continuous phase change is not adequate and the lattice structure is important.
For this we have to add the energy of the vortices core, which depends on how
exactly we took the continuous limit (which also affects the value of J) but
formally we can write

H1 = −
∑
i

ε (ni)− Jπ
∑
i6=j

ninj ln (|ri − rj |)

4 Analysis of the Coulomb gas picture
The spin waves free energy Fsw = −T logZsw is analytic and hence a phase
transition can come only from the vortex part. The energy ε (ni) is nonlinear
in ni and it is customary to assume that due to this the probable excitations
are ni = ±1. The energy of the vortex core is independent of the sign of the
charge and we can thus denote y0 = e−βε(±1). The parition function is then
approximated as

Zv ≈
∞∑
N=0

yN0

ˆ N∏
i

d2rie
K
∑

i<j
ninj ln(|ri−rj |)

with K = 2βJπ, ni = ±1 and
∑
i ni = 0. This is a grand-canonical partition

function with fugacity y0. The general picture is as follows: at low temperature
y0 → 0 there are no vortices, only spin waves (which have linear excitation spec-
trum in low temperatures). As temperature increases vortices start to appear in
pairs of vortex and anti-vortex, but due to the logarithmic energy cost they are
confined together. At the BKT critical temperature a deconfinement transition
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occurs and the gas becomes a plasma of vortices which screen the interactions
of the “charges” (vortices) and cut-off the correlation between the original spins.

To do the analysis more rigourosly, one can work in the grand canonical
ensemble and follow a Renormalization Group flow as done in Kardar, section
8.3. Alternatively, we can work in other ensembles and make more heuristic
arguments as we shall do now:

4.1 Canonical Ensemble
In the canonical ensemble N is fixed and we need to calculate

Z ∼
ˆ N∏

i

d2rie
−K
∑

i<j
ninj ln(|ri−rj |) =

ˆ N∏
i

d2ri
∏
j>i

|ri − rj |−Kninj (9)

We define a center of mass coordinate R = 1
N

∑
ri and change variables r̃i =

ri −R yielding

Z ∼ V
ˆ N−1∏

i

d2ri
∏
j>i

|ri − rj |−Kninj (10)

where the V factor arises due to integration over R. To probe the transition,
we calculate the contribution of configurations for which r̃i → ε → 0. The
contribution scales with ε as

Zε ∼ ε2(N−1)−K
∑

ninj

Now ∑
i,j

ninj = N++ +N−− −N+− (11)

where Ns,t is the number of vortex pairs out of the N(N − 1)/2 pairs with
signs s and t. Simply counting we get N++ = N−− = 1

2
N
2

(
N
2 − 1

)
and N+− =(

N
2

)2
N+− =

(
N
2

)2. Hence ∑
i,j

ninj =
N

2
(12)

and
Zε ∼ ε2(N−1)−KN/2

We see that there is a critical coupling if Kc = 4(N−1)
N which in the thermody-

namic limit (N → ∞) is Kc = 4. For K < Kc (high temperature phase) the
exponent of ε is positive and hence Zε → 0 as ε → 0, while if K > Kc (low
temperature phase) these configurations dominate, which means that all of the
vortices are confined together (yielding a power low decay of correltions).
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4.2 Micro-Canonical Ensemble
Here we shall derive the equation of state of the gas of vortices:

In the micro-canonical ensemble we should calculate the density of states
g (E,A) =

´
δ (E −H [{ri}])

∏
i d

2ri. We can rescale ri = Lxi with A = L2

βH1 ({ri}) = −K
∑
i,j

ninj ln (|ri − rj |)

= −K
∑
i,j

ninj ln (|xi − xj |)−K
∑
i,j

ninj ln (L)

= βH1 ({xi})−
1

2
K ln (A)

∑
i,j

ninj

and hence

g (E,A) = AN
ˆ
δ

E −H [{xi}] +
1

2
KT ln (A)

∑
i,j

ninj

∏
i

d2xi

= ANg(E′, 1) ≡ AN g̃(E′)

E′ = E +
1

2
KT ln (A)

∑
i,j

ninj

Using Eq.(12) we find

E′ = E − N

4
KT ln (A)

The equation of state can be found in the following way

S(E,A) = ln (g(E,A)) = N lnA+ ln g̃(E′)

T =

(
∂S

∂E

)−1
A

=
g̃(E′)

∂E g̃(E′)

P = T

(
∂S

∂A

)
E

= T

(
N

A
− NKT

4A

∂E g̃(E′)

g̃(E′)

)
=

NT

A

(
1− K

4

)
For K → 0 (T → ∞) the system becomes an ideal gas of vortices. As K → 4
the pressure vanishes due to confinement of vortices.
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