
Renormalization Group analysis of 2D Ising

model

Amir Bar

January 7, 2013

1 Introduction

In this tutorial we will see explicitly how RG can be used to probe the phase
diagram of d > 1 systems, focusing as usual on the Ising model in d = 2.
Remember that the �bare� Ising model partition function reads

Z (K1) =
∑
{σ}

exp

K1

∑
〈(i,j),(k,l)〉

sijskl

 (1)

We shall �rst try to follow the same decimation procedure as done for the d = 1
case, and after we will understand why it is not working as well as in the d = 1
case, we shall introduce a couple of approximation schemes to overcome the
di�culties.

2 Straight forward decimation

As illustrated in Fig.1, we split the lattice to two sublattices A and B so that
spins of type A (which we'll denote by Aij) have neighbors of type B (which we
will denote accordingly). We shall decimate now, summing over the B spins

Figure 1: The b =
√
2 renormalization scheme: (a) The original lattice with the

A and B spin types marked, and (b) The renormalized lattice with the emergent
next nearest neighbors (nnn) links appear as dashed lines
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Z =
∑
{A}

∑
{B}

exp

K1

∑
〈(i,j),(k,l)〉

AijBkl


= 2

∑
{A}

∏
{ij}

cosh
[
K1Ãij

]
(2)

Ãij ≡ Ai+1,j +Ai−1,j +Ai,j+1 +Ai,j−1

where the ij indices are in the B sub-lattice. From the symmetry of the expres-
sion it is clear that on top of the nearest-neighbor interactions Ai+1,jAi,j+1+ ...
interactions that will be formed, there will be also diagonal interactions of the
form Ai+1,jAi−1,j and Ai,j+1Ai,j−1. In addition, a fourth order term will be
generated Ai+1,jAi−1,jAi,j+1Ai,j−1 (the third order will not appear due to sym-
metry). As we shall proceed in the RG �ow (with these new terms) higher order
terms will be generated as well, and hence we cannot write a closed set of equa-
tions in terms of only a small number of coupling constants. So how can we
proceed?

We know (from the exact solution) that in the Ising model, for H = 0, we
need to tune only one parameter (the temperature for instance) to get critical-
ity. This implies that in the exact RG �ow (with all of the possible coupling
constants) the unstable �xed point (corresponding to the critical point) has
only a single unstable direction and all other are irrelevant parameters. Hence,
it can be hoped that we still get the qualitative behavior of the model even
if we truncate the order of the coupling in some way. Below we present two
(approximate!) methods to do so:

3 K expansion

We can assume that K1 is small and expand (2) in orders of K1 to second order
(as the �rst order will vanish due to symmetry)

Z ≈ 2
∑
{A}

∏
{ij}

(
1 +

1

2
K2

1 Ã
2
ij

)
(3)

≈ 2
∑
{A}

exp

1

2
K2

1

∑
{ij}

Ã2
ij

 (4)

Ã2
ij = 4 + 2(Ai+1,jAi,j+1 + ...)

nearest neighbours

+ 2 (Ai+1,jAi−1,j + ...)
next nearest neighbours

(5)

We see that even in this crude approximation next nearest neighbors (nnn)
interactions appear. The consistent thing to do is to acount for these from the
beginning in order to see their e�ect on the nearest neighbors (nn) interactions,
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i.e. start with

Z (K1,K2) =
∑
{σ}

exp

K1

∑
〈(i,j),(k,l)〉

sijskl +K2

∑
〈〈(i,j),(k,l)〉〉

sijskl

 (6)

where 〈〈(i, j), (k, l)〉〉 stands for nnn. Noting that the nnn of A spins are A spins
and similarly for B we �nd

Z =
∑
{A}

exp

K2

∑
〈〈(i,j),(k,l)〉〉A

AijAkl

ZB (7)

ZB =
∑
{B}

exp

K1

∑
〈(i,j),(k,l)〉

AijBkl +K2

∑
〈〈(i,j),(k,l)〉〉B

BijBkl

 (8)

Expanding in K1,K2 to leading order yields

ZB =
∑
{B}

1 + 1

2
K2

1

 ∑
〈(i,j),(k,l)〉

AijBkl

2

+K2

∑
〈〈(i,j),(k,l)〉〉B

BijBkl


=

[
1 + g (K2) +

1

2
K2

1

∑
kl

(
Ãkl

)2]

≈ exp

[
g (K2) +

1

2
K2

1

∑
kl

(
Ãkl

)2]
(9)

The term g (K2) comes from the sum over the only-B's term, while the K1

expansion follows as before (and similarly the linear term vanish due to sym-
metry). Now we rescale the lattice by b =

√
2 and relabel vertices, use the

previous calculation of Ã2
kl (5), and �nally note that each A′s nn interaction in

(5) appears twice in the sum of (9) so that

Z (K ′1,K
′
2) =

∑
{A}

exp

g (K1,K2) +
(
2K2

1 +K2

) ∑
〈(i,j),(k,l)〉

AijAkl +K2
1

∑
〈〈(i,j),(k,l)〉〉

AijAkl


(10)

Again g (K1,K2) absorb any A-independent terms. Comparing (10) with (6)
we �nd the RG equations

K ′1 = 2K2
1 +K2

K ′2 = K2
1

The �xed points are

(K1,K2) = (0, 0) , (∞,∞) ,

(
1

3
,
1

9

)
The �rst two are the high temperature and low temperature �xed points, while
the third one is the critical point. Analyzing stability:
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Figure 2: The Migdal Kadano� (b = 2) rescaling scheme: (a) The original
lattice; (b) The lattice after the bonds moving step; (c) the renormalized lattice,
with only nearest neighbors bonds.

• Near (0, 0): If K2 � K1 � 1 then obviously K ′1 � K1 ⇒ stable �xed
point

• Near (∞,∞): If K1,K2 � 1 then obviously K ′1 � K1 ⇒ stable �xed
point

• Near
(
1
3 ,

1
9

)
: linearizing K1 = 1

3 + α, K2 = 1
9 + β:

α′ =
4

3
α+ β

β′ =
2

3
α

The eigenvalues are given by

(
λ− 4

3

)
λ− 2

3
= 0 ⇒ λ± =

1

2

4

3
±

√(
4

3

)2

+
8

3

 =
1

3

(
2±
√
10
)

So we see that there is one positive (relevant) eigenvalue and one negative
(irrelevant) eigenvalue⇒ unstable �xed point, with one control parameter
(as we wished!)

Summarizing, we got indeed a phase transition for �nite (K1,K2) with a single
unstable direction (temperature). However, K1 at the critical �xed point is
not really small, hence there is no obvious reason why the truncation of the
expansion at second order in K1 is legitimate (and obviously no a priori reason
to believe the K1 = ∞ �xed point). Indeed the critical point found in this
method is not accurate and also critical exponents that are derived from it
are not the correct ones. In principle, by including higher powers of K - and
respectively higher order terms in coupling - we can become more accurate.

4 Migdal-Kadano� approximation

A di�erent approximation that was used by Kadano� is driven by a somewhat
more physical motivation, though it is less controlled than the previous one.
The starting point is the nn Ising model (1), and the rescaling factor is b = 2
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instead of the previous b =
√
2. This is done by keeping in each iteration only

the 4 corner spins of a 3 × 3 block of spins, as illustrated in Fig.2. In order to
avoid generating new interactions when summing over the middle spin, it is just
removed and the bonds attached to it are �moved� to the sides so as to double
the bonds between the other spins of the block. This move, besides having a
somewhat physical excuse of keeping the energetics of the model, is mandatory
as without it the procedure would be identical to the 1D procedure, and hence
no transition would be expected.

The RG equation in 1D and H = 0 is K ′ = 1
2 ln (cosh (2K)), so in our case

due to the bond doubling the recursion relation is

K ′ =
1

2
ln (cosh (4K))

Again we �ndK = 0 andK =∞ �xed points, but unlike the 1D case forK � 1,
K ′ ≈ 1

2 ln
(
1
2exp(4K)

)
≈ 2K and hence the low temperature �xed point is also

stable. (for K � 1, K ′ ≈ 1
2 ln

(
1 + 16K2

)
≈ 8K2 so the high temperature �xed

point is stable as it is in 1D). Hence in between we must have another unstable
�xed point, which is given by

e2K
∗
=
e4K

∗
+ e−4K

∗

2
⇒ K∗ ≈ 0.305

Comparing to the previous approximation, the Migdal-Kadano� approximation
gives a result further away from the true answer ofKc ≈ 0.441, and in addition it
is an uncontrollable approximation in the sense that there is no small parameter
in which it was expanded. But on the other hand it is in a sense more straight-
forward as the procedure did not generate any additional interactions.
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