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1.1 Paramagnetic cooling (25 points)
Consider N noninteracting spins 1/2, each having a magnetic moment ±µ. Derive the magnetization
M and the entropy S as functions of the magnetic field H and the temperature T . Obtain S also in the
microcanonical ensemble by counting states and confirm that S is a unique function of M .

(b) Plot schematically the equilibrium S(T ) for two different magnetic fields H1 and H2, where H1 <
H2. (Look also at the curves for M(T ) at these two fields and make sure you understand why one
lies above the other).

(c) Imagine that the system is started at H1 and at some temperature T1, and H is increased isother-
mally to H2. Has the entropy of the system has decreased? Are the spins less or more ordered as a
result of this process?

(d) Now, the magnetic field is reduced adiabatically back to H1. Note that the system is now again on
the curve S(T ) of H1, but at a lower temperature. This is the principle of ”Nuclear Paramagnetic
Cooling”. Plot a sketch of this cooling process on top of your S(T ) curve.

(e) We first want to check whether the model described above is a good approximation of the physical
setting. Suppose the system is first cooled by other means to below 1K. Estimate the nuclear
magneton times a field of a few Tesla compared to kBT at T = 1K. What does it imply about
the average magnetization of the nuclear magnetic moments? Consider a metal at T = 0.1K and
compare the entropy of the electrons, phonons and nuclear spins at H ≃ 1T , where T here denotes
Tesla. Assume that the electron are not affected by the magnetic field. Which one is the largest?
Explain why you had to check these details.

(f) Estimate how much cooling can be obtained using 1022 nuclear spins, starting at 0.1K and 1/2
Tesla and going to 5 Tesla.

1.2 Model for electrons in a metal (30 points)
Consider a simple model for electrons in a metal, in which the metal is characterized as a three-dimensional
potential well of depth U and linear size L. We denote the electron density in this well as n = N/L3.
The minimum energy needed to remove an electron from the metal, ϕ, is thus given by ϕ = eU − ϵF ,
where ϵF is the Fermi energy of the electrons. ϕ is called the work function of the metal (see Figure 1).
Throughout the problem all Coulomb interactions will be neglected. We consider here the limit where
eU ≫ ϵF in which the energy levels of the electrons in the metal can be approximated by those of a
particle in an infinite potential well.

(a) Obtain an expression for ϵF as a function of n, and evaluate it for n = 1022 cm−3.

(b) Consider an electron gas outside the metal in thermal equilibrium with the electrons in the metal
at temperature T . Since typically at room temperature kBT ≪ ϕ, the electron density outside the
metal can be assumed to be small. By equating chemical potentials, find the mean electron density
outside the metal, ng. Evaluate ng for n of (a) and ϕ = 2 eV at room temperature, and verify that
in these conditions the free electron gas can safely be approximated as a classical gas.
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Figure 1: Terminology and notation for problem 1.2

(c) Calculate the pressure of the electron gas outside the metal and that of the electrons in the metal.

(d) Discuss what happens when L is decreased at constant N . Does ng increase or decrease? why?
can you identify a value of L beyond which your results from the previous paragraphs are no longer
valid? which assumptions will no longer be valid close to this value of L?

1.3 Idea Bose gas in two dimensions (25 points)
(a) Consider the relation that determines the chemical potential: the number of atoms equal to the sum

of the Bose distributions over all momenta - see first paragraph in section 3.2.4 in the lecture notes.
Is there a condensation at finite temperature in two dimensions ?

(b) Now consider the example of N Bosons in a harmonic anisotropic potential which you saw in class,
for an arbitrary dimension d:

V =
1

2
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Generalize the results from class for the transition temperature and the occupation number of the
condensate as a function of temperature for this case. Is there a condensation for d = 2 ? Does this
conform with the result in the previous section? Explain why.

1.4 Intermediate statistics (20 points)
Consider a hypothetical system where each quantum state can be occupied by no more than p particles.
Find the mean occupation number of the state with the energy ϵ when the chemical potential of the system
is µ (system is considered within the grand-canonical ensemble). Check how the resulting formula goes
into the Fermi or Bose distributions within the proper limits.
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