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1.1 Ising anti-ferromagnet (26 points)
Consider the nearest-neighbor anti-ferromagnet with the Hamiltonian

H = J
∑
⟨i,j⟩

SiSj −H
∑
i

Si , (1)

where J > 0, and Si = ±1. Here at a zero field spins prefer to be anti-parallel.

(a) Develop the mean field theory of this system, by dividing it into two sub-lattices of nonzero net
magnetization in the ground state. What is the order parameter here?

(b) What is the transition temperature as a function of magnetic field for small H ?

(c) How does the zero field magnetic susceptibility behave as one approaches Tc(H = 0) ?

1.2 XY model in one dimension (27 points)
In this problem we will demonstrate that the transfer matrix method can be applied to problems with
continuous variables. To this end we will consider two component unit spins S⃗i = (cos θi, sin θi) in one
dimension with periodic boundary conditions. The energy is given by the nearest neighbor interactions
described by H = −J

∑N
i=1 S⃗i · S⃗i+1.

(a) Write down the (infinite dimensional) transfer matrix Tθ,θ′ . Show that it can be diagonalized with
eigenvectors fm(θ) ∝ eimθ for integer m, and find the corresponding eigenvalues.

(b) Now consider an open linear chain with free boundary conditions (i.e., there is no boundary energy
for the first and last spins). Show that in the thermodynamic limit, the free energy of the open chain
is the same as that of the periodic chain. This conclusion is true for any one-dimensional model
with short-range interactions.

(c) In the limit T → 0, calculate the free energy per site and the heat capacity. Use the leading
order behaviour of the eigenvalues in small T . Compare with the heat capacity of that of the one-
dimensional Ising model, using the expression for its free energy obtained in class. Explain shortly
explain the differences in terms the number of available states each system exhibits in the limit
T → 0.

1.3 Correlations in the spin 1 Ising model (27 points)
Consider the zero-field spin 1 Ising model with periodic boundary conditions given by the Hamiltonian

H = −J

N∑
i=1

SiSi+1, (2)

where Si = 0,±1.
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(a) Compute the eigenvalues of the transfer matrix, λi. You can do that by guessing one of the eigen-
vectors from symmetry considerations.

(b) Use the transfer matrix method to calculate the correlation length associated with the correlation
function C(j) = ⟨SiSi+j⟩−⟨Si⟩⟨Si+j⟩. You can do that by demonstrating that this model exhibits
the same scaling behaviour that we saw in class for the Ising model, whereby the correlation length
given by

ξ =
1

ln(λ1/λ2)
, (3)

where λ1 and λ2 are the largest and next-to-largest eigenvalues, respectively. In order to obtain
this, express the C(j) as a trace over a symmetric matrix and the diagonal matrix,

D =

 λ1 0 0
0 λ2 0
0 0 λ3

 . (4)

Use a general form of a symmetric matrix to obtain the two leading order terms in C(j). This will
tell you which entries you need to compute in this matrix. Demonstrate that the leading order term
vanishes and you are left with the term that yields eq. (3). This equation can in fact be proven to
be true in general for any one dimensional model with short-range interactions.

(c) How does the correlation function behave at large distances j ?

(d) How does the correlation function in the limit of zero temperature T → 0 ? What is the physical
interpretation of this behaviour ?

1.4 Monte Carlo study of the 2D Ising model (20 points)
In this question you will use your Monte Carlo simulation of the 2D Ising model, written for exercise 1,
to observe the phase transition in the 2D Ising model.

(a) Simulate the system for several temperatures above and below Tc. After the systems has equili-
brated, collect sufficient statistics and calculate the mean magnitude of the magnetization per site,

m(T ) =
1

L2

L2∑
i=1

|⟨Si⟩| , (5)

as a function of the temperature. Repeat the measure- ment for several different system sizes (e.g.,
L = 25, 50, 100, 200), and plot the results in a single figure. Note that the equilibration time eq
increases sharply close to Tc. This phenomenon, known as critical slowing down, is very common
in numerical simulations of systems close the critical point.

(b) For your largest system size, plot a representative equilibrium configuration of the lattice for a few
different temperatures around the critical temperature, (e.g., T = 2.1, 2.2, 2.3, 2.4, 2.5). Observe
that close to Tc there are correlations nearly at all length scales (no need to do any calculations).

1.5 Anisotropic 2D Ising model (6 bonus points)
Consider the anisotropic Ising model on a square lattice with periodic boundary conditions defined by the
following Hamiltonian

H = −
∑
k,l

(Jxσk,lσk+1,l + Jyσk,lσk,l+1) . (6)
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(a) By following the derivation presented in class calculate the free energy of the model. You do
not have to write down every step in the derivation. Simply sketch how the different steps in the
derivation are modified due to the anisotropy.

(b) Find the critical boundary in the (Jx, Jy) plane. Show the critical point coincides with the expres-
sion we obtained in class in the Isotropic case.
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