
The lobster demands to be cut while alive.
—Brillat-Savarin

5.1  Liquid–Gas Coexistence and Critical Point

I borrow from M. E. Fisher this vivid description of carbon dioxide’s critical point [Fish83, 
p. 6]: 

The first critical point to be discovered was in carbon dioxide. Suppose one examines a sealed 

tube containing CO2 at an overall density of about 0.5 gm/cc, and hence a pressure of about 

72 atm. At a temperature of about 29° C one sees a sharp meniscus separating liquid (below) 

from vapor (above). One can follow the behavior of the liquid and vapor densities if one has a 

few spheres of slightly different densities close to 0.48 gm/cc floating in the system. When the 

tube is heated up to about 30°C one finds a large change in the two densities since the lighter 

sphere floats up to the very top of the tube, i.e. up into the vapor, while the heaviest one sinks 

down to the bottom of the liquid. However, a sphere of about “neutral” density (in fact “critical 

density”) remains floating “on” the meniscus. There is, indeed, still a sharp interface between 

the two fluids, but they have approached one another closely to density. Further slight heating 

to about 31°C brings on the striking phenomenon of critical opalescence. If the carbon dioxide, 

which is quite transparent in the visible region of the spectrum, is illuminated from the side, 

one observes a strong intensity of scattered light. This has a bluish tinge when viewed normal 

to the direction of illumination, but has a brownish-orange streaky appearance, like a sunset 

on a smoggy day, when viewed from the forward direction (i.e., with the opalescent fluid il-

luminated from behind). Finally, when the temperature is raised a further few tenths of a de-

gree, the opalescence disappears and the fluid becomes completely clear again. Moreover, the 

meniscus separating “liquid” from “vapor” has completely vanished: no trace of it remains! All 

differences between the two phases have gone: indeed only one, quite homogeneous, “fluid” 

phase remains above the critical temperature (Tc = 31.04°C).

5 Phase Transitions
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	 We can describe this behavior in a pressure–volume diagram like the one shown in 
figure 5.1. This diagram is based on the (approximate) van der Waals equation of state, 
which we will discuss in the next section. Above a characteristic temperature value Tc, 
called the critical temperature, the pressure p is a monotonically decreasing function of 
the specific volume per particle v = V/N. For large values of v, p is inversely proportional 
to v and therefore follows the equation of state for perfect gases. When p becomes very 
large, v cannot decrease beyond a certain limit, which is the molecule’s intrinsic volume. 
As temperature diminishes, the isotherm tends to become flatter in the intermediate re-
gion, until for T = Tc, it shows a horizontal inflection point corresponding to the value 
v = vc = 1/tc. This value of density is called the critical density. The value pc for pressure 
corresponds to this value of specific volume. Below the critical temperature, the isotherm 
displays a flat region, between v = vliq = 1/tliq and v = vvap = 1/tvap, where vliq,vap are the den-
sities of the liquid and vapor, respectively. Only one pressure value corresponds to each 
value of density included between these two values; it is called the transition pressure (or 
vapor pressure), and we will denote it by p1(T ). If, as mentioned earlier, we consider a 
sample of critical density and we place it at a temperature below Tc, we observe the coex-
istence of two phases at different densities. By increasing the temperature, the difference 
in density decreases until it disappears at Tc.
	 By plotting this behavior in a pressure–temperature diagram, we obtain the phase dia-
gram shown in figure 5.2. Let us note that in this case, the diagram’s axes both correspond 
to intensive quantities. The curve p = pt(T ) in the plane (p, T ) defines the line in which there 
is a coexistence of the two phases: vapor on the left and liquid on the right. This curve ter-
minates in correspondence with the point (pc, Tc ), without exhibiting any singularities.
	 Other curves in the same plane describe the coexistence of fluid and solid phases—
they meet in the triple point (ptr, Ttr), where all three phases coexist. One should note that 

v

p

pc

pt

vcv liq vvap

T = 1.2Tc
T = Tc
T = 0.9Tc

Figure 5.1. Pressure-volume isotherm of a fluid according to the van der Waals equa-
tion. The dashed line represents the nonphysical part of the isotherm in the coexis-
tence region.
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neither the solid–liquid nor the solid–vapor coexistence exhibit a critical point, unlike the 
liquid–vapor coexistence.

5.2  Van der Waals Equation

A first interpretation of this curious thermodynamic behavior can be found in van der 
Waals’ doctoral thesis [Waal73]. James C. Maxwell was so enthusiastic about this work 
(to which he made a substantial contribution [Maxw74] as we will see) that he said it was 
worthwhile to learn Dutch even just to be able to read it. (It has since been translated.) 
Van der Waals’ idea is to start from the equation of state for ideal gases (we denote by v the 
volume per particle V/N): 

pv = kBT.	 (5.1)

	 We will take two effects into account:

1. � The intrinsic volume effect of the gas particles: the volume actually available to each particle 

is not equal to v, but is smaller, and equal to (v - b), where b (the covolume) is a parameter 

related to the particles’ intrinsic volume.

2. � The effect of the particles’ reciprocal attraction: the pressure exerted by the particles on the 

walls is lower than the actual pressure acting on them within the sample, because they tend 

to be attracted to the other particles. In order to evaluate this effect, let us denote by u the 

potential of a particle within the fluid, due to the attraction by the other particles, and by uw 

Figure 5.2. Phase diagram (schematic, not to scale) of a fluid on the plane (p, 
T). Note the liquid–gas coexistence curve, which terminates at the critical point, 
and the fusion (solid–liquid coexistence) and sublimation (solid–gas coexistence) 
curves, which meet the preceding curve at the triple point.

T

p
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Liquid

Critical point

Gas

Triple point
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the corresponding value of the potential for a particle close to the wall. One then expects 

uw = u/2, since only the particles within a half-space attract a particle close to the wall:

,u
u

V
N

u
2 2 0w = = − 	 (5.2)

where u0 is the integral of the pair potential u(r):

( ).ru u rd0
3= # 	 (5.3)

This allows us to evaluate the local density near the wall:
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Supposing that the pressure exerted by the molecules near the wall is given at least ap-
proximately by the ideal gas law, we obtain
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One thus obtains the well-known van der Waals equation:

( ) ,p
v
a

v b k T2 B+ − =d n 	 (5.6)

where a = u0/2 and b are two parameters characteristic of the material.
	 Maxwell realized that the isotherms’ behavior, below a temperature Tc = 8a/27b, was 
no longer monotonically decreasing, and that this contradicted thermodynamic stability, 
according to which the isothermal compressibility:

K
p
v

T
T

2
2

= − o 	 (5.7)

must be a positive quantity. He therefore suggested that below Tc, a portion of the isotherm 
should be replaced with a horizontal segment, which represented phase coexistence. One 
could determine the position of this straight line by making use of the construction (which 
was later given his name) whereby the total work performed by first going along the horizon-
tal line and then along the isothermal curve would vanish. This construction is equivalent to 
imposing the equality of Helmholtz free energy per molecule for the two coexisting phases:

.liq vapn n= 	 (5.8)

	 The van der Waals equation of state is just a clever interpolation formula, which does 
however possess a significant heuristic value. It is, in effect, possible to estimate the two 
parameters, a and b that appear in the equation, from measures on gases at low densities, 
and then substitute the results in the expression of the critical parameters:
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, 3 , .k T
b
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27 2B c c c= = = 	 (5.9)

	 The results one obtains are reasonable. Moreover, one can choose to measure the tem-
perature, pressure, and volume in terms of the corresponding critical values, introducing 
the ratios:

T , , .P V
T
T

p
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v
v

c c c

/ / / 	 (5.10)

One thus obtains a “universal” equation, independent of the nature of the fluid being 
considered:

P
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.V T
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3
8

2+ − =d dn n 	 (5.11)

This equation is called the law of corresponding states. It yields good results if one is not 
too close to the critical temperature.
	 More particularly, it follows from the van der Waals equation that for T close enough to 
Tc, the difference between the gas’s and the liquid’s specific volume vanishes as a power 
of |T - Tc |:

| | .v v T Tvap liq c?- - b 	 (5.12)

	 It follows from the van der Waals equation (as one can easily see) that b = 1/2. Experi-
mentally, one can observe that this quantity actually behaves as a power of |T - Tc |, but 
with an exponent b closer to 1/3 than to 1/2. It is also interesting to remark that the value 
of this exponent is apparently the same (within the errors) for several different liquids, but 
also that the equation of state has an apparently universal form, as can be seen in figure 5.3.

5.3  Other Singularities

As a consequence of the van der Waals equation, one can show that isothermal compress-
ibility exhibits a singularity at the critical point, which can be verified experimentally:

| | .
p
v

T T
T

c2
2

+| = − − c−o 	 (5.13)

The van der Waals equation, however, implies that c = 1, while experimentally, c is closer 
to 1.25.
	 As the system approaches the critical temperature, also the specific heat C exhibits a 
singularity that is well described by a power law of the form

| | ,C T Tc+ - a- 	 (5.14)

where the exponent a has a value included between 1/8 and 1/9 and is the same (within 
the errors) for all fluids. As we will see, this behavior contrasts with the simpler theories 
of phase transitions.
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5.4  Binary Mixtures

Another system that exhibits an analogous behavior is a fluid mixture composed of two 
chemical species. One usually uses organic compounds whose names are difficult to pro-
nounce—one of the most convenient (also from a phonetic point of view) is aniline–
cyclohexane, because its critical point is close to ambient temperature at atmospheric 
pressure. We will refer to one of the components as A and to the other as B. By fixing the 
pressure, it is possible to observe the coexistence of three phases within a certain tempera-
ture interval, and they are arrayed from the bottom up in a decreasing order of density: an 
a phase rich in A, a b phase rich in B, and a vapor phase. As the temperature varies, the 
composition (and therefore also the density) of the a and b phases move closer to each 
other until, for a particular temperature value Tc (as long as we have selected the correct 
composition of the sample) the two liquid phases are replaced by a homogeneous phase. 
The point at which this occurs is called the consolution point.
	 The behavior of this system is fairly similar to that of the liquid–gas system. More par-
ticularly, it also exhibits critical opalescence in proximity of the consolution point. Let us 
note some differences:
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Figure 5.3. Coexistence curve t/tc as a function of T/Tc for eight fluids in the prox-
imity of the critical temperature. The continuous curve corresponds to tliq,vap - tc   
|T - Tc|

b, with b = 1/3. From [Gugg45], with permission.
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1. � The quantity that distinguishes the two phases is the relative concentration of one of the 

components—A, for example. We refer to A’s molar fraction as xA and its value in phase a 

as xA
a—then, 0x xA A "-a b  when T - Tc along the coexistence curve.

2. � Fairly frequently, the consolution point corresponds to a temperature lower than the coex-

istence temperature. In other words, a homogeneous phase is replaced by a phase coexis-

tence when the sample is heated. This does not occur with simple fluids.

3. � One can observe, however, that the exponent b that describes the behavior of this system is 

also close to 1/3 and indistinguishable from the value it assumes in simple fluids.

5.5  Lattice Gas 

In order to obtain a more microscopic description of phase coexistence, let us build a 
simple statistical model of a “fluid.” We consider a system of N particles, described by the 
Hamiltonian:

H = K + U,	 (5.15)

where K is the kinetic energy

,K
m

p
21

N 2

= a

a=

/ 	 (5.16)

and U is the potential energy, which depends only on the particles’ positions. When we 
calculate the partition function:
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H1 d dN
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e o%# 	 (5.17)

the integral over momenta pa factorizes and results in m–3N, where m is the thermal de 
Broglie wavelength:
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= 	 (5.18)

	 In the two previous equations, h is Planck’s constant, which appears to account for 
the volume of phase space occupied by the quantum states. In this fashion, we ob-
tain the partition function expressed as a function of an integral over the system’s  
configurations:

r
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.expZ
N k T

U
d

N N3

1 B

m
= −a

a

−

=

e o%# 	 (5.19)

The interaction between particles is usually described by a potential that exhibits a hard 
core—it becomes large and positive when the particles get closer than a certain distance 
a0, where a0/2 is the particle radius—and an attractive tail, i.e., it becomes negative at in-
termediate distances, eventually vanishing when the particles are far apart.
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	 We can provide a drastically simplified description of this state of affairs with the fol-
lowing hypotheses:

1.  The particles can occupy only the sites on a simple cubic lattice whose lattice constant is a0.

2.  At every site, there can be one particle at most.

3. � For each pair of particles that occupy nearest-neighbor sites, the system’s potential energy 

decreases by a quantity e.

Let us denote the state of occupation of site i by a variable xi, which is equal to 0 if the 
position is empty and 1 if it is occupied. Then the partition function assumes the form

.expZ
k T,

{ }
N

N

ij
i jN

3

B
i i

i

m d
e

x x= x
x

− f p/ // 	 (5.20)

In this equation, the Kronecker delta expresses the condition that the total number of 
particles in the system is exactly N:

.Ni
i

x =/ 	 (5.21)

	 The expression ij indicates that the sum runs over all pairs of nearest-neighbor sites 
on the lattice. The combinatorial factor N! has disappeared because this expression is 
invariant with respect to the permutation of particle labels. The model defined in this 
manner is called the lattice gas.
	 In order to make this expression more manageable, it is useful to eliminate the Kro-
necker delta—one can do this by shifting to the grand canonical ensemble. In this fash-
ion, we define the grand partition function ZGC:

.expZ
k T

N
ZN

N 0
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B

n
=

3

=

e o/ 	 (5.22)

	 The grand partition function ZGC is related to the pressure p by the equation

/ ,ln Z pV k TGC B= 	 (5.23)

where V is the system’s volume. It is easy to see that ZGC can be expressed as follows:

,expZ
k T
H
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= −
x

e o/ 	 (5.24)

where the Hamiltonian H is defined by

.
ij

i j
i

iex x nx- - u/ / 	 (5.25)

	 In this equation, we have introduced the expression

3 .ln
k T k TB B

n n
m= −

u
	 (5.26)

	 The particle density per site is given by the quantity
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.x
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i
i

x x= = / 	 (5.27)

	 Along the coexistence curve *( )Tn n=u u , for T < Tc, this quantity exhibits a discontinuity:

( , ) ( , ).lim limx x T x x x T>
*( ) * ( )T T

n n= = =
" "n n n n

+ − +

+ −
u u

u u u u
	 (5.28)

The discontinuity tends to zero when the temperature gets close to the critical tempera-
ture. If the model correctly describes the experimental data, we can expect the discontinu-
ity to tend to zero as a power of |T < Tc|:

| | .x x T Tc?− − b+ − 	 (5.29)

5.6  Symmetry

The model we just described cannot be solved exactly. It is possible, however, to manipu-
late it to highlight certain properties. In place of the variable xi, which assumes the values 
0 and 1, let us consider the variable vi, defined by

2 1.i iv x= − 	 (5.30)

This variable assumes the values -1 (when xi = 0) and +1 (when xi = 1). Expressing the 
xi as a function of the vi, and substituting in the Hamiltonian (5.25), we obtain the expres-
sion (up to an irrelevant additive constant):

,H J hi j i
iij

v v v= − −// 	 (5.31)

	 We have defined

/4,J e= 	 (5.32)

( )/ ,h 2n eg= +u 	 (5.33)

where g is the lattice’s coordination number—in other words, the number of each site’s 
nearest neighbors. In the case of the simple cubic lattice, g = 6 (and it is equal to 2d in 
the case of a cubic lattice in d dimensions). This Hamiltonian can also describe binary 
mixtures, if one stipulates that vi = +1 corresponds to the presence of a molecule of type 
A in i, vi = -1 to a molecule of type B, and 2h = nB - nA.
	 This expression makes explicit the fact that if h = 0, the value that H assumes for a 
certain configuration v = {vi} remains invariant with respect to the transformation I, 
where

I , .ii i 6v v= − 	 (5.34)

	 We can express this fact by saying that when h = 0, the Hamiltonian H is symmetrical 
with respect to the transformation group G composed by I and the identity E. Since I2 = E, 
it is not necessary in this case to consider other transformations.
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	 The model we obtained is the most famous model of statistical mechanics. It was in-
vented by Lenz, who proposed it as a thesis to one of his students, and for this reason, 
it is given the student’s name, Ising. It was actually proposed to describe the behavior of 
ferromagnetic systems. In this case, vi is interpreted as the component z of the magnetic 
moment of an electron (apart from a factor), and h is proportional to the applied magnetic 
field. The factor J represents the tendency of electrons belonging to contiguous atoms to 
align themselves parallel because of the exchange interaction—it is therefore known as 
the exchange integral. In spite of the quantum origin of this interaction the Ising model 
is a classical model (in the sense that all the quantities commute).

5.7  Symmetry Breaking

We can now look at phase coexistence from another point of view. In the case of the fer-
romagnet, the two coexisting phases are equivalent from a physical standpoint and differ 
only because of the prevailing direction of their spin alignment. In other words, although 
the Hamiltonian is invariant with respect to the transformation group G, the thermo-
dynamic state is not. This situation is called spontaneous symmetry breaking. It can be 
made manifest by identifying some thermodynamic quantities that should vanish in a 
thermodynamic state that is symmetrical with respect to the transformation group G and 
that instead do not vanish.
	 Let us consider, for instance, the magnetization M in the Ising model:

( )
,expM

Z k T
H1

i
i

i
i B

v v
v

= = −
v

= G/ // 	 (5.35)

where the first sum runs over all of the system’s 2N configurations v = (vi ), and H(vi ) is 
Ising’s Hamiltonian (5.31).
	 Let us assume that h = 0, and let us consider the contributions to iv . For each con-
figuration v in which vi = +1, there will be a configuration Ivi = (-vi ) in which vi = -1. 
Since H(Iv) = H(v), this configuration will, in principle, have the same Boltzmann 
weight as the preceding one. We can therefore expect iv  to always vanish. But then how 
can phase coexistence occur? The point is that in certain circumstances, a small nonsym-
metrical perturbation is sufficient to cause a macroscopic violation of symmetry. It is clear 
that states in which the spin is prevalently oriented up or down have a much lower energy 
than those in which the spins are arranged in a disordered fashion. The latter are much 
more numerous, and therefore prevail at high temperatures. But at low temperatures, 
they are not accessible (they cost too much energy). The system therefore prefers that the 
spins be aligned prevalently in one direction. Which direction is indifferent from an ener-
getic point of view—a small perturbation (due to boundary conditions that slightly favor 
the up direction, or to a weak magnetic field, for instance) is therefore sufficient to make 
the system prefer one direction over another.
	 It is possible in this manner to obtain a thermodynamic state in which magnetization 
is not equal to zero, even though the external macroscopic field h vanishes:
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0.M Nmi
i

!v= =/ 	 (5.36)

The Hamiltonian’s symmetry implies that if 0M M0 !=  defines a state of thermody-
namic equilibrium, there exists another state of thermodynamic equilibrium (which cor-
responds to the same values of the intensive variables, but perhaps to different boundary 
conditions) in which the magnetization is equal to -M0. Therefore, if M 0!  for h = 0, 
several states characterized by different values of the magnetization can coexist.
	 The magnetization’s value can be fixed by means of an artifice called quasi-average. One 
applies an external field h—a positive one, for example—which explicitly breaks symme-
try, and one evaluates the magnetization in the limit in which this field goes to zero:

( ) .limNm T M
h

0
0

=
"

+
	 (5.37)

Because of the symmetry, one has

( ).lim M Nm T
h 0

0= −
"

−
	 (5.38)

Therefore, m0(T ) is a measure of the degree of spontaneous symmetry breaking. This quan-
tity is known as the spontaneous magnetization per particle and vanishes at the critical 
point.
	 Let us note that the formal equivalence between the Ising model and the lattice gas al-
lows us to identify the coexistence curve for the latter in the plane (n,T ):

( ) .Tcn eg= −u 	 (5.39)

5.8  The Order Parameter

Let us now consider the same problem from a slightly more abstract point of view. Let us 
suppose that we have a system described by the Hamiltonian H, which is invariant with 
respect to a transformation group G applied to the microscopic states v:

( ) ( ), .g gH H G6 !v v= 	 (5.40)

If the thermodynamic state is not invariant with respect to all the group’s transformations, 
one says that spontaneous symmetry breaking is present. In order to define the degree of 
symmetry breaking, one considers an observable M that has the following characteristics:

1. � M is extensive: M’s value for a system composed of several subsystems in contact is equal 

to the sum of each subsystem’s values.

2.  M is transformed according to a nontrivial representation of the group G:

T( ) ( ) ( ), ,g g gM M G6 !v v= 	 (5.41)

	 where T(g) is a linear operator belonging to some representation of G. 

The symmetry breaking then manifests itself by a means of a nonvanishing value of M . 
With the quasi-average method, it is possible to obtain various values of M  that correspond 
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to the same value of temperature (and of other possible intensive parameters). Because of 
symmetry, they can be obtained from one another by applying a T(g) transformation.
	 A quantity endowed with these characteristics is called an order parameter. The intro-
duction of this concept into phase transition theory is due to Lev D. Landau (see [Land80], 
ch. XIV).
	 Let us now consider a certain number of systems, the transitions that characterize 
them, and the corresponding order parameters:

1. � Ising antiferromagnet: Let us assume that the exchange integral J in the Ising Hamiltonian 

is negative. In the lowest energy states, the neighboring spins tend to be aligned in anti

parallel fashion. In this case, reflection symmetry (vi " -vi) and translational symmetry 

vi " vi + d are broken at the same time. 

	 One can then use the staggered magnetization as the order parameter. In a simple cubic 

lattice in d dimensions, one can identify two intertwined sublattices, such that each point of 

each sublattice is surrounded by nearest-neighbor points belonging to the other sublattice. 

Let us now assign a factor ei, whose value is +1 in one sublattice and -1 in the other, to each 

point i. The staggered magnetization is then defined by

.N i i
i

/ e v/ 	 (5.42)

The symmetry group G is still the group with two elements (E, I) that correspond to spin 

identity and spin inversion.

2. � Vector order parameter: The Ising model describes a ferromagnet in which the spins are 

constrained to align in parallel or antiparallel fashion in a fixed direction. One often finds 

situations in which the spins have more degrees of freedom and can point in arbitrary 

directions in a plane or in space. We will disregard here the quantum nature of the spins. 

If we denote the spin’s components by iva(a = 1, 2, 3), we can define the order parameter 

M as follows:

e ,M i
i

v=a a a/ 	 (5.43)

where ea is the versor of the a axis. More generally, one can consider vectorial order parame-

ters with n components, which are transformed by the rotational symmetry in n dimensions, 

represented by the group O(n). The generalization of Ising’s model for n = 2 is often called 

the XY model, while that for n = 3 is called the Heisenberg model.

3. � Einstein condensation: Sometimes the order parameter is not directly accessible to the 

experiment. In the Einstein condensation, for example, the order parameter is the conden-

sate’s wave function, and the broken symmetry is the gauge symmetry of the first kind, 

which expresses the invariance with respect to the multiplication of the wave functions by 

a phase:

.e i
"W Wa 	 (5.44)

Since the order parameter is a complex number, and the gauge transformation is isomor-

phic to a rotation in the plane, it can be assimilated to a vector order parameter with n = 2.
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There are more complex situations (for example, in liquid crystals) that require the in-
troduction of less intuitive order parameters. What needs to be emphasized is that the 
identification of the order parameter can be a fairly difficult problem by itself, because 
there is no method that allows one to identify it a priori. One needs to be guided by physi-
cal intuition.

5.9  Peierls Argument

The existence of spontaneous symmetry breaking in the two-dimensional Ising model 
can be proven by means of an argument made by Peierls [Peie34]. This argument can eas-
ily be generalized to more than two dimensions.
	 I will try to describe this argument without dwelling excessively on rigor—the argu-
ment expounded in this fashion can, however, easily be made rigorous. This section will 
therefore also serve as an introduction to the problems and methods of a rigorous statisti-
cal mechanics.
	 Let us then consider an Ising model defined over a square lattice with L  L spin. A spin 
variable vi = ±1 is associated with each lattice site i. The system’s microstate v is defined 
by the collection of the values (vi) of these variables for each site i. The system’s Hamilto-
nian is the usual Ising Hamiltonian:

H ,J i j
ij

v v= −/ 	 (5.45)

where the sum over ij  runs over all the pairs of nearest-neighbor sites. This Hamiltonian 
is invariant with respect to spin inversions defined by

I , , .ii i 6v v v v= = −l l 	 (5.46)

Spontaneous symmetry breaking occurs when, in the thermodynamic limit, one can have 
different states of equilibrium in correspondence with the same temperature value T.
	 In order to clarify our ideas, let us assume that we impose on the system the boundary 
conditions +, in which the spins external to the system are directed up. In this situation, 
we expect that there will be a slight prevalence of up spins in the entire system at any 
temperature. On the other hand, if we impose the boundary conditions -, in which the 
spins external to the system are directed down, we will have a prevalence of down spins. 
The problem is whether this prevalence due to the boundary conditions will remain in the 
thermodynamic limit.
	 Let us consider the spin placed at the origin, and let us denote by p the probability that 
it is equal to +1, with the boundary conditions +. Symmetry breaking occurs if p remains 
strictly larger than 1/2 in the thermodynamic limit. The symmetry of the Hamiltonian 
guarantees in fact that p is also equal to the probability that the spin at the origin is equal 
to -1 with the boundary conditions -. Therefore, if p > 1/2, there will be two differ-
ent equilibrium states at the same temperature T, which are selected by the boundary 
conditions.
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	 Let us now evaluate p with the boundary conditions + and show that, if the temperature 
is low enough, one has p > 1/2. Let us consider an arbitrary configuration v of the spins 
of the system. We can associate a configuration C of boundaries between up and down 
spins with each such configuration. When the boundary conditions are fixed, this corre-
spondence is such that to each s corresponds one C and vice versa.
	 Let us focus our attention on the spin at the origin (denoted by a black dot in figure 5.4), 
and distinguish the configurations into two sets: the set + contains all v configurations 
in which this spin is equal to +1, and the set - contains all the others in which the spin 
at the origin is equal to -1. It is possible to associate a precise configuration v+ d + with 
each configuration v- d -, thus flipping the direction of all the spins inside the smallest 
boundary that also contains the origin within it. In the case shown in figure 5.4, it is the 
discontinuous boundary. The same configuration v+ can obviously be obtained starting 
from several configurations v- d -.
	 One obviously has

,p
Z
1

e H( )/k TB=
!

v

v R

−

+

/ 	 (5.47)

where Z is the partition function, and the sum runs over all the configurations belonging 
to +. Analogously,

1 .q p
Z
1

e H( )/k TB= − =
!

v

v R

−

−

/ 	 (5.48)

Figure 5.4. Configuration of boundaries associated with a spin configuration. The 
spin at the origin is marked by a black dot.

Copyrighted Material



Phase Transitions  |  139

	 It is clear that the energy of a configuration v is equal to the energy E0 of the ground 
state (vi = +1, 6i ) plus the contribution of the boundaries. Since each pair of antiparallel 
nearest-neighbor spins contributes +2 J to energy, one has

( ) 2 | | ,H E J0v C= + 	 (5.49)

where |C| is the total length of the boundaries that appear in v. We will denote the set 
of all configurations v d - that are applied in v, by removing the smallest boundary 
that contains the origin, with W(v), where v d +, as shown earlier. We will denote this 
boundary with c0(v) and its length with |c0(v)|. We will then have

1 .p q
Z
1

e eH( )/ ( ) /

( )

k T J k T2 0B B− = −
! !

v

v

c v

v vR W

− −

+

l

l
< F/ / 	 (5.50)

	 We now want to show that the sum  over v that appears in the right-hand side is 
certainly smaller than 1 in the thermodynamic limit, if the temperature is low enough. We 
collect the configurations v according to the length , = |c0(v)| of the smallest boundary 
that contains the origin. Obviously, ,  4. Let us now evaluate the number g(,) of configu-
rations v that correspond to a certain value of ,. Let us assume that the boundary starts 
from a point i—the first segment can go in four directions, because the boundary cannot 
retrace its steps. If we neglect the constraint that the path closes, the total number of paths 
of , length that leave from and return to i is certainly smaller than 4  3, - 1 = 4/3 3,. The 
starting point i, however, can be arbitrarily chosen among the , boundary points, and the 
boundary itself can be traveled in two directions. The number of boundaries is therefore 
certainly smaller than (4/3)(1/2, )3, = 2/(3, )3,. Since the origin could be in any point in-
side the boundary, one needs to multiply by the area included in the boundary, which is 
certainly smaller than or equal to the area of a square whose side is ,/4. We thus obtain

( ) 3 3 .g
3
4

4 24
<

2

,
,

, ,
=, ,c m 	 (5.51)

One should note that in following this line of reasoning, we omitted the constraints im-
posed by the presence of other boundaries determined by the v d + configuration, over 
which v is applied—we are therefore (significantly) overestimating the number of con-
figurations v.
	 To conclude,

,w
24

e <( ) /

( )

J k T2

4

0 B
,

= ,

,

3

!

c v

v vW

−

=

l

l

/ // 	 (5.52)

where

.w 3e /J k T2 B= − 	 (5.53)

	 Therefore,

( )
12(1 )

(2 )
.n w

w

w w
24
1

2< n

n

2

2
2 2

4 2

=
−
−3

=

// 	 (5.54)
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	 When w < w0 = 0.869756 f , the expression in the right-hand side is certainly smaller 
than 1. This occurs for temperatures below

/[ ( / )] . / .lnT J k w J k2 3 1 615310 0B B-= 	 (5.55)

We therefore see that p - q > 0 for temperatures below T0, and that therefore spontaneous 
symmetry breaking occurs, and the corresponding critical temperature is higher than T0. 
It is obviously possible to obtain a better bound on Tc with little effort. The exact result, for 
the two-dimensional Ising model, is Tc = 2.269 J/kB.

Exercise 5.1  Generalize the preceding result to d = 3 dimensions.

5.10  The One-Dimensional Ising Model

The preceding argument cannot be applied in one dimension. It is possible in effect to 
show that the Ising model in one dimension does not exhibit spontaneous symmetry break-
ing. The most convincing line of reasoning entails the exact solution of the model, but it 
is possible to show, by means of an argument due to Landau, that there cannot be discrete 
symmetry breaking in a one-dimensional system with short-range interactions. This also 
holds for continuous symmetry. In this section, we arrive at the exact solution of the one-
dimensional Ising model, and we describe a (nonrigorous) version of Landau’s argument.

5.10.1  Solution of the One-Dimensional Ising Model

The model is defined by the Hamiltonian:

H ,J i
i

N

i
1

1v v= −
=

+/ 	 (5.56)

where we have imposed periodic boundary conditions:

, .ii N i 6v v=+ 	 (5.57)

	 The partition function is expressed by

,Z e eH( )/ ,

{ , ,

k T K

i

N

1

i i

N

1

1

B= =
f

v

v

v v

v v

−

=

+%/ / 	 (5.58)

where K = J/kBT. By introducing the transfer matrix T = (Tvv), defined by

,T eK=vv
vv

l
l 	 (5.59)

we see that the preceding expression assumes the form of a product of the matrices T, 
which, taking into account the boundary conditions that impose vn+1 = v1, can be written

T .Z Tr N= 	 (5.60)

The transfer matrix T has two eigenvalues, t+ = 2 cosh K and t- = 2 sinh K, with t+ > t-. 
Therefore for N & 1,
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T .t t tTr N N N N-= ++ − + 	 (5.61)

	 In the thermodynamic limit, therefore,

2 .lim
ln

ln coshf
N

Z
K

N
= =

"3
	 (5.62)

This expression does not exhibit singularities for 0  K < , and the model therefore does 
not exhibit phase transitions at finite temperature.

Exercise 5.2  Consider the spin correlation function

,C jij i j iv v v v= −

in the one-dimensional Ising model with a vanishing field. Show that one has

( ) .lim tanhC K | |

N
ij

i j=
"3

−

This expression decays as e | | /r rj i - - , where p is called the coherence length and is equal to

/| | ,ln tanha K0p =

where a0 is the lattice step.

Exercise 5.3  Show that, in the presence of a nonvanishing magnetic field h, in the one-
dimensional Ising model, one has

,lim
ln

ln cosh sinhf
N

Z
e e e

N

K K K2 2 2m m= = + +
"3

−8 B

where /h k TBm= .

Exercise 5.4  Obtain the same result with the following method, introduced by Lifson 
[Lifs64]. Let us consider the system with v0 = +1, and with vN free. Then (analogously 
with what was done with the Peierls argument), the spin configurations v are univo-
cally defined by the configurations C of the boundaries—in other words, of the pairs of 
nearest-neighbor spins with opposite values. The system is subdivided into n intervals, 
of length ,i  1, such that sites belonging to the same interval have the same value as vi 
of the spin.

1.  Write the canonical partition function as a function of the ,i’s.

2. � Move to the corresponding grand canonical partition function by introducing the spin fu-

gacity z.

3.  Evaluate the grand canonical partition function as a function of z.

4. � Evaluate N  and prove that, in order to obtain the thermodynamic limit N " , it is nec-

essary that z " z*, where z* is the value of z closest to the origin for which Z admits a 

singularity. Evaluate z*.
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5. � Show that / *lim ln lnf Z N zN= =−
"3 , and compare the result with what was already 

obtained.

5.10.2  The Landau Argument

At the temperature T = 0, a one-dimensional Ising system will be in one of the two states 
of minimal energy—for example, in the one in which all spins are aligned in the + direc-
tion. The problem is whether this state can persist in the presence of thermal fluctuations 
at T > 0. Let us assume that we switch the direction of a certain number of consecutive 
spins—we will obtain an excited state, with an energy that is 2 J above the minimum. The 
number of states that have this energy is proportional to ln N, because we can arrange 
each boundary between + and - spins in N different fashions. Therefore, as soon as kBT 

ln N > 2 J, reversing a macroscopic number of spins leads to an advantage in free energy. 
But for N " , this will be true for any positive value of T. This argument can immediately 
be generalized to all cases of short-range interaction.

Exercise 5.5  Let us suppose that the interaction is long range, so that the coupling con-
stant Ji j between the i spin and the j spin decays as |i - j|–a, where a is a positive constant. 
Show that Landau’s argument is not valid if a < 2.

5.11  Duality

The critical temperature of the two-dimensional Ising model was found in 1941 by Kra-
miers and Wannier [Kram41] before the exact solution to the model, which is due to 
Onsager [Onsa44]. Kramers and Wannier’s argument introduces a transformation—
called duality—which transforms a high-temperature Ising model into an analogous low-
temperature model. This transformation is of great importance, and it can be generalized 
to other statistical models, even though, in the large majority of cases, the transformed 
model is not identical to the initial one. We will deal with it only in the case of the Ising 
model in d = 2, by means of an argument that is simpler than the one initially formulated 
by Kramers and Wannier. This argument will also allow us to introduce the high- and 
low-temperature expansions, which allow us to obtain information about the behavior of 
models that cannot be solved exactly.
	 Let us therefore consider the expression of the partition function of a two-dimensional 
Ising model at temperature T in a vanishing external field:

( ) ,expZ K K i j
ij

v v=
v

( 2// 	 (5.63)

where the sum over v runs over all the 2N spin configurations and that over ij  runs over 
the 2N pairs of nearest-neighbor sites. Since

(1 ),cosh sinh cosh tanhK K K KeK vv vv= + = +vv l ll 	 (5.64)

Z can also be written
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( ) ( ) ( ).cosh tanhZ K K K1N
i j

ij

2 v v= +
v

%/ 	 (5.65)

	 We can now expand the expression on the right-hand-side into a power series of t = 
tanh K. The terms of this expansion can be represented by diagrams—we associate a fac-
tor tvivj to each segment of the diagram that connects site i with site j (where i and j are 
nearest neighbors). For each pair ij  of nearest-neighbor sites, there can be at most one 
tvivj factor. We thus obtain

( ) ( ) .coshZ K K t G

G

| |N
i
n

i

2 iv=
v

%// 	 (5.66)

where the sum runs over all the G diagrams that can be drawn on the lattice, |G| is the 
number of bonds that appear in diagram G, and for each site i, ni is the number of bonds 
that contain the i site in diagram G. When we sum all the spins’ configurations, all the 
diagrams G in which ni is odd for one or more i sites will result in a zero contribution; all 
the other diagrams will result in a contribution equal to ( )coshK t | |GN2 . Therefore,

( ) ( ) .coshZ K K t2
G

G| |N N2= l/ 	 (5.67)

where the sum runs over all the diagrams in which the number of bonds that contain each 
i site is even (in other words, ni = 0, 2, 4, f , 6i).
	 These diagrams can be interpreted as the configuration C of boundaries between oppo-
site spins in an Ising model defined on a dual lattice that results from the original one, and 
in which a spin variable is associated with each four-spin plaquette in the original lattice.
	 In figure 5.5, the original model is defined in the vertices of the lattice identified by 
dashed lines. A diagram G that appears in the expansion of the partition function of this 
model is drawn with a continuous line. This diagram can be interpreted as a configura-
tion C of boundaries in a spin model defined over the dual lattice—the corresponding 
spin configuration associates an Ising variable with each plaquette.
	 We thus obtain

,t | |

G

= C

C

l/ / 	 (5.68)

where |C| is the total length of the boundaries that appear in C.
	 We now consider the expression of the partition function of the Ising model over the dual 
lattice, and we denote its temperature with T. We impose boundary conditions +. One has

Figure 5.5. Diagram G in the high-temperature expansion of the 
Ising model interpreted as a configuration C of boundaries in an Ising 
model defined over the dual lattice.
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( ) ,Z K e e | |NK K2 2= C

C

−l l l/ 	 (5.69)

where K = J/kBT. By comparing this with the expression of Z(K ), we obtain the relation

.tanht K e K2= = − l 	 (5.70)

This is the duality relation for temperatures. It is a duality relation in the sense that if we 
define K(K) so that it is satisfied, one gets K(K(K)) = K—in other words, the K $ K 
transformation is equal to its inverse. Let us note that if K " 0, one has K " , and that 
duality therefore maps high-temperature systems in low-temperature systems, and vice 
versa. By making use of the relation (5.70), we obtain

( )
( )

( )
( )

( ).Z K
K

Z K
K

Z K
2
1 1

2
1

e
cosh sinh

NK
N N N

2= =l l 	 (5.71)

	 If the Ising model admits a single transition at h = 0, it must occur at a point in which 
K = K. We thus obtain the critical value Kc:

,tanhK e 2K
c

c= − 	 (5.72)

from which one obtains

0.44069 ,lnK
2
1

1 2c f= + =_ i 	 (5.73)

which corresponds to kBTc ; 2.2692J.

Exercise 5.6 (Duality in the Three-Dimensional Ising Model)  By considering the 
expansion of the partition function of the three-dimensional Ising model as a function of the 
C distribution of boundaries, show that the dual of this model is defined by the Hamiltonian

H ,J
PP

i
i

v= −
!

%/

where the sum runs over all the plaquettes P composed of the dual lattice’s four nearest-
neighbor pairs of spin. Find the relation between the temperatures of the Ising model and 
the corresponding dual model.
	 Note that, since the dual of the Ising model is not identical to the initial model, this 
argument does not provide us with information about the critical temperature for d = 3.

5.12  Mean-Field Theory

In order to qualitatively calculate the phase diagram for these systems, one resorts to the 
mean-field theory. This approximated theory is extremely useful, and it is the first instru-
ment one resorts to when exploring new models. Obviously, we will present it in the sim-
plest case—in other words, in the Ising model.
	 Let us suppose that we mentally isolate a spin (which we will denote by a 0) from its 
environment, in the Ising model. If the spin’s state changes, passing for instance from 
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v0 = +1 to 0vl = -1, while all the rest of the environment remains constant, the system’s 
energy varies by

2 2 ,H h J h J
(0)) ( )

i
i

i
i 0

0
p.v. p.v.

v v vD D= + = − +
! !

c m/ / 	 (5.74)

where Dv0 =  0vl - v0, and the sum is extended to the nearest-neighbor sites of 0.
	 This is the same variation that one would obtain for a paramagnet immersed in a field 
whose value is equal to

.h h J
( )

i
i 0

eff
p.v.

v= +
!

/ 	 (5.75)

The spins close to the one being considered fluctuate, however. As a first approximation, 
we can assume to describe their action on the spin 0 by this field’s mean value—hence, 
the name mean-field theory. We thus obtain

.h h J
( )

i
i 0

eff
p.v.

G Hv= +
!

/ 	 (5.76)

	 Let us calculate the mean value of v for an isolated spin, subjected to an arbitrary exter-
nal field h. One has

, .
z

z
1

e e/ /h k T h k T

0
0

B Bv v= =
v

v v

v

− −/ / 	 (5.77)

A simple calculation shows that

.tanh
k T
h

B

v = e o 	 (5.78)

By exploiting this result, and substituting h with heff, we obtain

.tanh tanh
k T
h

k T
h J

1
0

( )
i

i 0B

eff

B p.v.

v v= = +
!

e co m> H/ 	 (5.79)

	 We can now observe that in the ordered phase, we expect that the mean value of iv  be 
the same for all spins. This observation is not as trivial as it seems—if in fact we were to 
change J’s sign, all the observations we made so far would be just as valid, except for this 
one, because we would instead expect that iv  assume opposite signs on each of the inter-
twined sublattices. More generally, the most difficult point of the mean-field theory is that 
one needs to make a good guess about the type of order one expects. In our case, we posit

, ,m ii 6v = 	 (5.80)

from which we obtain an equation for m:

,tanhm
k T

h zJm

B

=
+e o 	 (5.81)

where g is the lattice’s coordination number—in other words, the number of nearest-
neighbors of a given site.
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	 It is easier to discuss this equation in the form

.tanh m
k T

h zJm1

B

=
+− 	 (5.82)

This equation can be solved graphically. Let us consider figure 5.6, in which the curves 
defined by

,tanhy x1= − 	 (5.83)

.y
k T
h

k T
zJ

x
B B

= +e eo o 	 (5.84)

have been traced.
	 The solution corresponds to the intersection of these two curves. The derivative of 
tanh–1 m assumes its minimum value in the origin, where it is equal to 1. Therefore, if 
kBT > gJ, the curve and the straight line have only one intersection, and there cannot be 
finite magnetization (in other words, coexistence). Instead, if kBT < gJ, and the external 
field h is small enough, there will be three solutions.

x

y

1.5

1.0

0.5

− 0.5

− 1.0

− 0.5 0.5 1

a

b

c

Figure 5.6. Graphical solution of the mean-field equation. Continuous line: equa-
tion y = tanh–1 x. Dashed lines: y = gJ/kBT. (a) T > Tc = gJ/kB; (b) T = Tc ; and (c ) 
T < Tc.
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	 Which one is the “physical” solution? Thermodynamics tells us that we must choose the 
one in which the free energy E - TS - hM is minimal. In our case, we are consistent if we 
estimate the entropy S from the corresponding valid expression for independent spins:

.ln lnS Nk
m m m m

2
1

2
1

2
1

2
1

B= −
− −

+
+ +c c c cm m m m= G 	 (5.85)

By making use of this expression, it is easy to see that the “physical” solution is the one 
in which m assumes the maximum value (in modulus) of the same sign as the external 
magnetic field h. We thus obtain the spontaneous magnetization as a function of T, rep-
resented by the curve shown in figure 5.7.
	 In this curve, we have reproduced m as a function of T/Tc, where kBT = gJ. We can also 
calculate the specific heat with a vanishing external field:

( / ) [1/ (1 ) / ] , ,

, .

C T
T
S

T
m
S

T
m

Nk zJm k T m zJ k T T T

T T0

d
d

for

for

<

>

h h

2 2 1
B B B c

c

2
2

2
2

= = =

=
− − −

n n

*
	 (5.86)

	 One should note the specific heat’s discontinuity at the critical temperature—in our 
approximation, the specific heat vanishes above the critical temperature. The phase dia-
gram is particularly simple in the (h, T) plane. The coexistence curve is simply the seg-
ment (0, 0) - (0, Tc ). The magnetization m is subject to a discontinuity along this segment, 
going from positive h’s to negative h’s.

5.13  Variational Principle

The reasoning we reproduced in the preceding section someow lacks consistency. Once we 
had introduced the concept of mean field, we saw that there can be several thermodynamic 

m0

1.0

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1.0 1.2 T
Tc

Figure 5.7. Spontaneous magnetization 
for spin m0 in an Ising model, as a func-
tion of T/Tc = kBT/gJ, in the mean-field 
approximation.
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states (defined by different values of magnetization by spin m) that are solutions of the 
corresponding equations. To resolve this ambiguity, we recalled the variational principle 
of free energy, approximating entropy with its expression as obtained for the paramagnet.
	 In this section, we prove that mean-field theory can be obtained from a variational prin-
ciple, which allows us to derive both the self-consistency equations we described and the 
variational principle of free energy in the form we utilized it. This method also allows us 
to clarify the hypotheses that provide the foundation of the method we used.
	 The starting point is an inequality valid for each real function f(x) and for each prob-
ability distribution:

( ) ( ) .exp expf x f x$ 	 (5.87)

This inequality is a consequence of the concavity of the exponential function. One can 
prove this relation by setting 

,e e ef f f f= −

and using the well-known inequality [equivalent to x  ln(1 + x)]

1 .xe x $ +

One thus obtains

.f f1e e ef f f$ + − =

	 Let us consider, for instance, a variable x that can assume only two values: x1 with prob-
ability p and x2 with probability (1 - p). As p varies between 0 and 1, x can assume any 
value between x1 and x2, and e(x) will be the value of the corresponding ordinate in the plot 
of exp (x) (see figure 5.8). On the other hand, the value of ex will be the value of the corre-
sponding ordinate in the plot of the linear function pex1 + (1 - p)ex2. Since this exponential 
function is concave, the plot of this function always remains above the plot of exp (x) in 
the interval (x1, x2).
	 This inequality suggests that we can use a variational principle when calculating the 
free energy. Let us introduce a “trial Hamiltonian” H0 (arbitrary for the time being). We 
can then write

( )

( ) ( )

( ) ( )
,

exp

exp

exp

Z
k T

H

Z
k T

H H

Z
k T

H H

0
0

0

0
0

0

B

B

B

$

v

v v

v v

= −

= −
−

−
−

v

<

=

=

F

G

G

/

	 (5.88)

where we have defined

( ) ( )
,exp expZ

k T
H

k T
H TS

0
0 00

B B

v
= − = −

−

v

= =G G/ 	 (5.89)

( ) ( )
( )

.expA
Z

A
k T

H1
0

0

0

B

v v
v

= −
v

= G/ 	 (5.90)
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	 The idea is therefore to look for the maximum of the expression

,expZ Z
k T

H H0

B
0

0

= −
−= G 	 (5.91)

with respect to the possible choices of the trial Hamiltonian H0. The easiest choice is that 
of a Hamiltonian with independent spins:

.H i
i

0 mv= −/ 	 (5.92)

Let us now shift to the logarithms, introducing the true free energy F = -kBT ln Z and the 
trial free energy F = -kBT ln Z. The variational principle then takes the form

F ( , ; ) ,F T h H TS0 0# /m - 	 (5.93)

where the internal energy H0 and the entropy S0 are evaluated by means of the trial 
Hamiltonian. Since there is a one-to-one correspondence between the parameter m and 
the magnetization (in this simple case!), we can choose m rather than m as variational 
parameter. We thus obtain

;H
NzJ

m Nhm
20

2= − − 	 (5.94)
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exp(x1)
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exp(x2)
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)

x

Figure 5.8. Concavity of the exponential function. The dashed line represents exp x and lies 
always above the continous curve representing expx, when x can take one of two values.
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	 The variational equations are

,tanhzJm h k T m1
B+ = − 	 (5.96)

which is what we had obtained in the preceding section. This time, however, we addition-
ally obtain the criterion by which to choose this equation’s solutions and, even more im-
portantly, the way to generalize it—it will be sufficient to choose some trial Hamiltonians 
H0 that are always obtained as sums of Hamiltonians with a few variables independent 
from the others (so as to allow the calculation of the Z0’s and of the averages A0’s), but 
that contain a part of the spin interactions. These generalizations of mean-field theory are 
called cluster approximations.

5.14  Correlation Functions

In the Ising model, the spin variables vi relative to different sites are not independent. A 
measure of their dependence is given by the correlation function:

.Cij i j i j i jc
/ /v v v v v v- 	 (5.97)

This quantity vanishes if vi and vj are independent.
	 In this section, we will calculate the Cij in the context of mean-field theory, using a 
method due to Ornstein and Zernike [Orns14]. In order to do so, let us suppose that we 
rewrite the partition function, expressing it as a function of an interaction matrix Kij, 
which is a priori arbitrary (but symmetrical), and of an external field mi, which can vary 
from point to point:

.expZ K
ij

ij i j i i
i

v v m v= +< F/ / 	 (5.98)

	 The physical case corresponds to

/ ,

0,
K

k T i jJ if and are nearest neighbors,

otherwiseij
B= * 	 (5.99)

and /h k Ti Bm = .
	 We observe that

,
lnZ

m
i

i i
phys2

2

m
v= = 	 (5.100)

.
lnZ

i j
i j

2

phys
c2 2

2

m m
v v= 	 (5.101)

The phys notation indicates that the derivatives must be calculated with the physical val-
ues of K and m reproduced in equation (5.99) and the line following it. Let us now try to 
calculate these quantities, using the mean-field expression of the partition function that 
we derived earlier. We have
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/ ,lnZ S k K m m miB ij
ij

i j i
i

0 m= − + +/ / 	 (5.102)

where

.ln lnS k
m m m m

2
1

2
1

2
1

2
1

B
i i i i

i
0 = −

− −
+

+ +d d d dn n n n= G/ 	 (5.103)

	 Taking the derivative of this expression with respect to mi, we obtain

,
ln lnZ

m
Z m

m
i jj i

j
i

phys
2

2
2
2

2

2

m m
= +/ 	 (5.104)

where the local magnetization mi is given by the mean-field equation:

0 .
ln

tanh
m

Z
m K m

( )i
i ij j i

j i

1

phys
phys

p.v.2
2

m= = − + +
!

− / 	 (5.105)

	 By taking the derivative of this equation with respect to mj, we obtain an equation for the 
correlation function /C mij i j2 2m= :

.
m

C K C
1

1

i
ij i j ij2 d

−
= +, ,

,

/ 	 (5.106)

In order to solve this equation, it is useful to transform it according to Fourier, taking 
into account the fact that both Kij and Cij depend only on the vector rij = rj - ri, the distance 
between sites i and j.
	 We define the Fourier transform according to

k k( ) ( )exp rC Ci
j

ij ij$=/ 	 (5.107)

and analogously for K. Equation (5.106) becomes

k k k( ) (1 ) [ ( ) ( ) 1],C m K C2= − + 	 (5.108)

and one therefore has

k
k

( )
1 (1 ) ( )

.C
m K
m1

2

2

=
− −

−
	 (5.109)

	 We can make this expression explicit by keeping in mind that for a simple cubic lattice 
in d dimensions, one has

k k r( ) ( ) 2 ( ),exp cosK
k T

J
k T

J
aki

( ) 1
ij

d

j i
0

Bp.v. B

$= =
! a

a
=

/ / 	 (5.110)

where a0 is the lattice step. For small values of |k|, one has

k( ) ,K
k T

J
k a2

0
2

B

- g-_ i 	 (5.111)

where g = 2d is the lattice’s coordination number. We thus obtain
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k( ) (1 ) 1 (1 ) ( / ) 2 ( )

(1 ) 1 (1 ) ,
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2 2 2
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= − − −

− − − −

a
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/
	 (5.112)

in which we have accounted for the fact that the transition temperature is given by Tc = gJ/
kB.
	 Let us remark that the Fourier transform of the correlation function, evaluated at k = 0, 
is proportional to the magnetic susceptibility per spin. In fact, one has

k( 0) .C k T
h

k T
j

i

j

i
B B2

2

2

2

m

v v
|= = = =/ 	 (5.113)

	 Calculating this expression for T > Tc (and therefore for m = 0), we obtain

( )
,

k T T
1

B c

| =
−

	 (5.114)

which diverges when T " Tc. This law is called the Curie-Weiss law. On the other hand, it 
is possible to introduce a length p that measures the range of the correlations. Let us set

k( )
.

d C
r C

2
1

0
1

ij ij
j

2 2p =
=

/ 	 (5.115)

where the 1/2d factor has been introduced for convenience’s sake. The quantity p is called 
the coherence or correlation length. It is easy to see that

k( )
2( )

( ) .
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C
T T
Ta

T T
k 0

2
2

0
2

1

c
c

2

2
?p = =

−
−

aa =

−/ 	 (5.116)

We thus obtain the important result that the correlations’ range diverges when T " Tc. This 
result is not unexpected, given that the divergence of the per spin susceptibility implies 
that the number of terms different from zero in the expression of the k( 0)C Cij= =/  
must diverge, since each term is limited.
	 It is useful to give an approximate expression of the correlation function in the r space 
that corresponds to the expressions we derived in the k space. Let us therefore assume 
that the correlation function in k space is given by the Ornstein-Zernike formula:

k( ) .C
k

1
2 2?

p+ − 	 (5.117)

	 The Fourier antitransform of this expression is given by

k( ) .rC
k

d
e k r

d
2 2

i

?
p+

$

−

−

# 	 (5.118)

In order to evaluate this expression, let us introduce the identity

, 0.
x

u x
1

d e >ux

0
=

3 −# 	 (5.119)

We obtain
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r k( ) .C ud d e k( ) rd u k

0

i2 2

? $3 p− + −−# # 	 (5.120)

	 We can now evaluate the Gaussian integral over the k’s and obtain

r( ) .C u ud e/ /( )d u r u

0

2 42 2

?
3 p- - --# 	 (5.121)

Let us change integration variable, setting

.w ur 2= − 	 (5.122)

We obtain

r( ) .expC r w w w
r

w4
1

d /d d2

0

2
2

?
p

- -
3- - e o> H# 	 (5.123)

If r % p, we can disregard r’s dependence in this integral (at least if d > 2; otherwise, the 
integral diverges for large w’s). In this manner, we obtain C(r ) ~ r 2 - d. If instead r & p, we 
can evaluate the integral with the saddle-point method, which one has for /2w w rc p= = . 
We thus obtain

r( ) .C e /r+ p- 	 (5.124)

	 These two behaviors can be summed up by the approximate formula

r( ) ,C
r
e /

d

r

2+
p

- 	 (5.125)

which is exact for d = 3.

5.15  The Landau Theory

The mean-field theory allows us to obtain an approximate expression for the phase dia-
gram of the system being considered. If, however, we want to aim for the more limited 
goal of describing the system’s behavior in proximity to the critical point, we can resort to 
a theory that is formally simpler and more easily generalizable—Landau theory.
	 The mean-field theory requires that we look for the minimum of an effective free en-
ergy, defined by

( , ; ) [ ( ; ) ] ,F h T m N f T m hm= − 	 (5.126)

expressed as a function of the magnetization per spin m. The trial free energy per spin, 
expressed as a function of m, has the form
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	 (5.127)
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	 In proximity of the critical point, the equilibrium value of the order parameter m is 
small, and we can therefore expand this function into a power series:

( ; ) ( ; 0) ( )
!

( )f T m f T a T m b T m
2
1

4
12 4 f= = + + 	 (5.128)

Only the even powers of m appear in this expansion, because the Hamiltonian is sym-
metrical with respect to the transformation m " -m. It is obviously possible to calculate 
the coefficients a(T ), b(T ), and so on explicitly. We have

( ; 0) 2,lnf T k TB= 	 (5.129)

( ) ( ),a T k T zJ T TB c?= − − 	 (5.130)

( ) .b T k T10 B= 	 (5.131)

	 We see that the coefficient a changes sign at the critical temperature, while the coef-
ficient b remains positive. In effect, when we look for F ’s minimum with respect to m, 
we expect to find a vanishing solution for T > Tc and two opposite minima, different from 
zero, for T < Tc. The behavior of f (T; m) for small values of m, and for temperatures close 
to Tc, is shown in figure 5.9.
	 Therefore, continuing to follow our goal of studying Tc’s neighborhood, we can set:

( ) ( ), 0,a T a T T a >c- −l l 	 (5.132)

( ) ( ) 0.T b T bb >c- = 	 (5.133)

The equations for F ’s minimum take the form

( )
!

. a T T m
b

m h
3

3
c− + =l 	 (5.134)

For T > Tc we have a real solution:

( )
,m

a T T
h h

1

c

- |
−

=
l

	 (5.135)

which confirms the result we had already arrived at:

Figure 5.9. Landau free energy f = f (T; m) as a 
function of magnetization m near the critical tem-
perature. (a) T > Tc; (b) T = Tc ; and (c) T < Tc .

m

f

a b c
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( ) .T T 1
c?| - - 	 (5.136)

	 On the other hand, for T < Tc, we have three solutions—

( )
,m

a T T
h

1

c

-
-l

	 (5.137)

but there is one which corresponds to a maximum of F (as is also obvious from figure 
5.9). The other two solutions correspond to minima and are given approximately by

!
,

b
m a T T

3 c
2 = −l 	 (5.138)

with additional contributions that vanish for h " 0. We thus obtain the behavior for the 
spontaneous magnetization close to Tc:

( ) ( , )
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.limm T m T h
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a T T
T T
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c
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1 2

1 2?= =
−

−
"

+

ld n 	 (5.139)

	 It is also interesting to calculate m’s behavior as a function of h exactly at the critical 
temperature—we have

!
,

b
m h

3
3 = 	 (5.140)

and as result, the magnetization is proportional to h1/3.
	 One can also calculate the specific heat. In fact, since

,S
T
F

2
2

= − 	 (5.141)

one obtains
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F T T

a T T
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2

2

4
3 2

c

c2

2
= − =

l_ i* 	 (5.142)

The specific heat is therefore discontinuous at the transition.
	 All the results for the critical behavior of thermodynamic quantities derive from the hy-
pothesis that the thermodynamic value of the order parameter can be obtained by means 
of a variational principle, in which a function f (T; m) appears that is (1) analytic and (2) 
symmetrical with respect to a certain transformation group of m. In our case, this group 
is composed of the identity and the inversion m " -m. 
	 One can consider more general cases, in which the symmetry group is more compli-
cated. In this case, in the expansion of f(T; m), only the invariants that can be built starting 
from m can appear. Let us suppose for example that the order parameter is a vector m = 
(ma) in n dimensions and that it transforms according to the rotation group in n dimen-
sions, O(n). The only invariant we can construct is m m2 2= aa

/ . Therefore, f (T; m) is in 
fact only a function of m2, and its expansion into a Taylor series has the same form as in 
the Ising model. The results we obtained are therefore still essentially valid.1

1 There are, however, some effects related to the vectorial nature of the order parameter, such as the existence 
of a transverse susceptibility, that diverges for h " 0 below Tc.
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	 On the other hand, in more complicated situations, there can be cubic invariants, or 
invariants proportional to higher odd powers of m. When this happens, the Landau the-
ory predicts that the transition becomes discontinuous. In effect, exactly at the critical 
temperature, the f has to admit a minimum in m = 0, but this is impossible if the term 
proportional to m3 does not vanish. Cubic invariants of this type are always present at the 
fluid–solid transition—therefore, the order parameter of the fluid–solid transition cannot 
vanish continuously (at least within the context of mean-field theory).
	 The analyticity of f is due to the very nature of mean-field approximation—the effect of 
the rest of the sample on a degree of freedom (or on a small number of degrees of free-
dom) is represented by effective interaction parameters, such as the “effective” magnetic 
field m. The trial free energy is then obtained by calculating the partition sum over these 
few degrees of freedom—it is obvious that this procedure cannot produce nonanalytic 
dependencies in the order parameter.
	 It is possible, in principle, to improve the mean-field approximation by considering a 
larger, but finite, number of degrees of freedom—this improvement, however, cannot 
modify those results of the mean-field theory that depend only on the analyticity of the 
trial free energy.

5.16  Critical Exponents

We have thus obtained the behaviors of the various thermodynamic quantities in Tc’s 
neighborhood. These behaviors are described by power-laws, whose exponents are called 
critical exponents. The results we obtained are summarized in table 5.1. These values of 
the critical exponents follow from the analyticity hypothesis and are called the classical 
values. Given the generality of the hypotheses underlying Landau theory, it was a surprise 
to see that the experimentally observed values of the critical exponents are not the same 
as the classical ones—physical systems can be grouped into broad classes, called univer-
sality classes, within which the exponents’ values are constant, and it is actually possible 
to map the critical behavior of one system into that of another by means of some simple 
transformations.

Table 5.1  Classical Critical Exponents

Quantity	 Behavior	 Region	 Exponent

Ch	 |T - Tc|
–a	 h = 0	 a = 0 (discont.)

|T	 |T - Tc|
–c	 h = 0	 c = 1

M	 |T - Tc|
–b	 h = 0	 b = 1/2 

	 h 1/d	 T = Tc	 d = 3

p	 |T - Tc|
–o	 h = 0	 o = 1/2
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	 Two challenges remain:

1.  Identify the reason for the Landau theory’s lack of success.

2. � Identify the reason for the existence of the universality classes, and if possible, provide a 

method for calculating the critical behavior within each class.

Let us observe that the hypothesis that the order parameter has a well-specified value, 
obtained from free energy’s minimum condition, corresponds to the hypothesis that it is 
possible to disregard its fluctuations. We will see further on that this allows us to define 
a criterion (called the Ginzburg criterion) to evaluate the region of validity for mean-field 
theory. In order to make this criterion explicit, however, it is necessary to describe the 
behavior of the critical fluctuations.

5.17  The Einstein Theory of Fluctuations

In order to understand the critical behavior, it is necessary to treat the fluctuations of ther-
modynamic quantities in small, but macroscopic, systems. This theory of fluctuations is 
essentially due to Einstein.
	 In order to clarify our ideas, let us consider a system described by the Ising model, at a 
given value of the temperature T and magnetic field h. Within this system, let us focus our 
attention on a small but macroscopic region S. We want to evaluate the probability that 
the energy and the magnetizations of the spins contained in this region have respectively 
the values ES and MS. 
	 To evaluate this probability, let us consider those microstates oS of the subsystem S such 
that the internal energy of the subsystem is equal to ES and its magnetization is equal to 
MS. The probability that the subsystem is in any microstate of this kind is proportional to 
the Boltzmann factor exp[-(ES - hMS)/kBT ], with the given values of T and h. Thus, the 
probability that the subsystem S has these values of internal energy and magnetization is 
obtained by summing this probability over all the microstates satisfying the condition just 
mentioned:

( , ) ( ) ( )

.exp

p E M
Z

E E M M

k T
E hM

1
S S S S S S

S S

B

S

#

d o d o= − −

−
−

o

e o

7 7A A/
	 (5.143)

	 In this expression, Z is the partition function, which imposes the normalization condi-
tion on the probability distribution of the microstates of S, and the delta functions impose 
the condition on the values of ES and MS.
	 The sum over all microscopic states gives the exponential of the entropy, expressed as a 
function of the internal energy and the magnetization:

( ) ( )
( , )

.expE E M M
k

S E M
S S S S

S S S

BS

d o d o− − =
o

<7 7 FA A/ 	 (5.144)
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Therefore,

F

( , )
( , )

( , ; , )
,

exp

exp

p E M
Z k T

E TS E M hM

k T
E M T h

1
S S

S S S S S

S S

B

B

D

=
− −

= −

=

=

G

G
	 (5.145)

where

F ( , ; , ) ( , ) ( , ),E M T h E TS E M hM F T hS S S S S S SD = − − − 	 (5.146)

is the availability. A normalization constant is understood in this expression, and F(T, h) = 
kBT ln Z is the Helmholtz free energy, expressed as a function of the temperature and 
magnetic field. Note that the availability vanishes for the equilibrium values of energy and 
magnetization by virtue of the variational principle of the Legendre transform. Availabil-
ity is often called free energy difference—let us remember, however, that unlike actual free 
energy, it is a function both of intensive variables (in our case, the magnetic field and the 
temperature) and of fluctuating extensive variables.
	 Let us observe that we have obtained an apparently nonnormalized probability distribu-
tion. Indeed, the quantities that appear explicitly in equation (5.146) are extensive, and are 
defined up to subextensive corrections. One can easily check that, since the normalization 
factor behaves like a power of the subsystem’s size, imposing the normalization also leads 
to subextensive corrections, which are therefore negligible.
	 If, as usually occurs, entropy is a regular function of its arguments around the equilib-
rium values, then it is possible to deduce a certain number of important relations for the 
fluctuations.
	 Let us first consider a system enclosed by nonadiabatic walls, in which the internal 
energy can fluctuate. We obtain

( / )

.

E k
E
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k
E
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k T
T
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k T C

1
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2
2

2 1 1

2 2

B B

B B

2

2
2

2

2
2

D = − = −

= =

− −

	 (5.147)

This result obviously coincides with the one obtained for the fluctuations in the canonical 
ensemble.
	 Let us now focus our attention on a certain collection (X i), i = 1, 2, f , r of extensive 
quantities. Let us denote the relative equilibrium values with X i

0. The first nonvanishing 
term of the Taylor expansion of availability will be the second one:

F
,

k T k X X
S

X X
2
1

i j
i j

ij

2

B B 2 2
2

-
D

D D/ 	 (5.148)

where DX i = X i - X i
0. The linear terms of the expansion vanish due to the variational prin-

ciple of the Legendre transform. Because of entropy’s convexity, this quadratic form must 
be positive-semidefinite. More particularly, if it is positive-definite, and if it is possible to 
disregard the further terms of the Taylor expansion, we deduce from equation (5.148) that 
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the distribution of fluctuations of the (X i)’s is a Gaussian. The correlation matrix is the 
inverse of the one that appears in this formula:

( / )
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k X X
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k X

f T1 1
ij

i j

j

Xi

1
0

2

0
B B2 2

2

2

2
= − =− p 	 (5.149)

	 We have made explicit the fact that the derivative is taken by keeping the average values 
of the other extensive variables constant. This result coincides with what can be obtained 
by considering the corresponding generalized ensemble:
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In this case, the derivative is taken by keeping the values of the ratios f /T constant. Let me 
remind you that the force conjugated with internal energy is 1/T. These expressions are 
equivalent, since in effect one has
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This approach to the statistics of fluctuations is not limited to just the usual thermody-
namic quantities. More specifically, it can be generalized to the study of the spatial distri-
bution of magnetization density.
	 We can, for instance, evaluate the probability that a certain Fourier component of mag-
netization density has a given value zk. The component of the magnetization density is an 
observable, because it is expressed by

.ek
k r

j
j

i iz v= $−/ 	 (5.152)

This probability is proportional to ( ( )/ )exp F k Tk BzD- , where, for small fluctuations, one 
has
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In this expression, C(k) is the Fourier transform of the correlation function:

k( ) .C
N
1
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k r

j
j j c

2 i ijz v v= = $/ 	 (5.154)

	 For small values of |k|, one can approximate C(k) by means of its Ornstein-Zernike 
expression:

k( )
1

,C
k

k T
2 2

B

p

|
=

+
	 (5.155)

where p is the coherence length, and | the susceptibility per spin. The expressions of 
|and p are not necessarily given correctly by mean-field theory. In order for this expres-
sion to be valid, it is sufficient that C –1(k) can be expanded into a Taylor series as a function 
of k2—in other words, basically that the correlations be of finite range.
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	 We have so far considered the fluctuations of extensive quantities in a finite region of 
the system, which are in contact with a much larger system, and therefore characterized 
by well-defined values of the corresponding intensive quantities (generalized forces and 
temperature). If we consider an isolated system, we can ask ourselves whether it is pos-
sible to observe analogous fluctuations in the intensive quantities. This problem is still 
the subject of discussion. One can formally associate corresponding fluctuations of the 
intensive variables with the fluctuations of the extensive variables by means of the equa-
tions of state. This procedure is fairly arbitrary however and, above all, does not allow one 
to obtain further physical insights.

5.18  Ginzburg Criterion

Let us now suppose that we are considering the fluctuations of the magnetization as we 
approach the critical temperature. We can estimate the availability by using the results of 
mean-field theory (or, equivalently, of the Landau theory):

F ( )
!

.
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a T T m
Nb

m
2 4

2 4
c-D − +l 	 (5.156)

As long as T > Tc, the first term dominates the second one when N " . The magne-
tization fluctuations are therefore Gaussian and O(N-1/2). The variance diverges as we 
get closer to the critical temperature, and exactly at Tc, the fluctuations are no longer 
Gaussian:

( )
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.expp m
k T
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m 4

B c

? -e o 	 (5.157)

	 Close to the critical temperature, the fluctuations become very intense and are spa-
tially correlated over very large distances—we have in fact seen that the coherence length 
diverges for T " Tc. It is therefore essential to understand under which conditions it is 
possible to neglect the consequences of the fluctuations, and therefore the mean-field’s 
theory’s predictions can be considered valid, and when they become unreliable.
	 In order to estimate the fluctuations’ relative importance, we employ a criterion that is 
due to Ginzburg [Ginz60]. The idea is to compare the mean value of the order parameter 
as predicted by mean-field theory with the fluctuations predicted by Ornstein-Zernicke’s 
theory.
	 Let us consider the expression (5.155) of the Fourier transform of the correlation func-
tion, which we will rewrite (up to a constant factor) in the form

k( ) ,C
k t

1
2=
+

	 (5.158)

where t ? |T - Tc|.
	 By evaluating the Fourier antitransform of this expression, we obtain an estimate of the 
local spin fluctuations:

k k( )C td regular terms.2 ( )/
i i i

d d2 2 2 2? ?v v vD = − +−# 	 (5.159)
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The “regular” terms come from larger values of |k|, for which the expression (5.155) is no 
longer applicable. They do not have consequences for the critical behavior (at least if d > 
2), and we can forget them as far as our argument is concerned.
	 The order of magnitude of the spin’s critical fluctuations is therefore given by

.t ( )/
i

d2 2 4? ?v vD D - 	 (5.160)

We want to compare this fluctuation with the mean value of the order parameter, and we 
therefore have 

.t /1 2?v 	 (5.161)

As long as Dv % v the mean-field theory’s predictions remain valid. This also occurs for 
t " 0, as long as d > 4. We can therefore expect some deviations from mean-field behavior 
when d  4.
	 This argument can be made more quantitative by reinstating the coefficients we gave 
as understood, and by evaluating them sufficiently far from the critical point. It can also 
be formulated in a more rigorous manner, by introducing an approximation scheme 
that reproduces mean-field theory at the lowest order and provides corrections to it as a 
systematic power series expansion of a fictitious parameter. The Ginzburg criterion then 
follows from the comparison of the second and first terms of this expansion [Amit84, 
p. 105].
	 In conclusion, we can expect that in two and three dimensions, the asymptotic behavior 
in proximity of the critical point will not be well described by mean-field theory.

5.19  Universality and Scaling

The values of the critical exponents we calculated on the rare occasions in which it is pos-
sible to do so exactly, or that were obtained from real or numerical experiments, are in 
effect not the same as those of the classical exponents. In table 5.2, we report the values 
of the critical exponents for a certain number of physical systems. The exponent h char-
acterizes the behavior of the correlation function exactly at the critical temperature—in 
Fourier space, one has

k k( , ) .C T T 2
c ?= h− + 	 (5.162)

	 These values are obviously not equal to the classical values. One can notice, however, 
that the exponents of the first three systems are mutually compatible, and so are the ex-
ponents of the last two—the exponents seem to depend only on the dimensionality of the 
order parameter. This conjecture is corroborated by considering the exponents obtained 
numerically (with different methods) for some statistical mechanics models on a lattice, 
which are shown in table 5.3. Analogously, the measurable exponents of the m transition 
of helium correspond to those of the planar model, while the ferromagnetic or antifer-
romagnetic transitions characterized by a vectorial order parameter in three dimensions 
are described by the same exponents. These observations have led to the formulation 
of the universality hypothesis—phase transitions can be sorted into a small number of 
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universality classes, characterized by the dimensions of the system and of the order pa-
rameter, and the critical exponents are equal each class.
	 In fact, one can observe a stronger relation. Let us consider the equation of state for the 
order parameter, expressed as a function of h and of

t
T

T T

c

c/
-

	 (5.163)

for two different systems:

Table 5.3  Critical Exponents for Different Models as a Function of the Dimensionality n of the 

Order Parameter and the Dimensionality d of Space.

	 Mean-field	 Ising d = 2	 Ising d = 3	 Heisenberg	 Spherical

(n, d)		  (1,2)	 (1.3)	 (3,3)	 (, 3)

a	 0 (disc.)	 0 (log)	 0.119 ! .006	 -0.08 ! .04	 -1

b	 1/2	 1/8	 0.326 ! .004	 0.38 ! .03	 1/2

c	 1	 7/4	 1.239 ! .003	 1.38 ! .02	 2

d	 3	 (15)	 4.80 ! .05	 4.65 ! .29	 5

h	 0	 1/4	 0.024 ! .007	 0.07 ! .06	 0

o	 1/2	 1	 0.627 ! .002	 0.715 ! .02	 1

Note: The exponent d of the two-dimensional Ising model is conjectured; the others are obtained from the 
exact solution. Exponents obtained from an exact solution of the spherical model, which corresponds to n " , 
are also shown.

Table 5.2  Critical Exponents of Different Physical Systems

	 Xe	 Bin. mixt.	 b-brass	 4He	 Fe	 Ni

n	 1	 1	 1	 2	 3	 3

a	 < 0.2	 0.113 ! .005	 0.05 ! .06	 -0.014 ! 0.16	 -0.03 ! .12	 0.04 ! .12

b 	 0.35 ! .15	 0.322 ! .002	 0.305 ! .005		  0.37 ! .01	 0.358 ! .003

c	 1.3 ! .2
.1

	 1.239 ! .002	 1.25 ! .02		  1.33 ! .015	 1.33 ! .02

d	 4.2 ! .
.
3
6

	 			   4.3 ! 1	 4.29 ! .05

h	 0.1 ! .1	 .0017 ! .015	 0.08 ! .07		  0.07 ! .04	 0.041 ! .01

o	 c 0.57	 0.615 ! .006	 0.65 ! .02	 0.672 ! .001	 0.69 ! .02	 0.64 ! .1

Note: The first three columns are systems with a scalar order parameter (n = 1): Xe at its critical point, differ-
ent binary mixtures at their consolution point, and b-brass, a form of copper and tin alloy. The transition m(HeI-
HeII) corresponds to a planar order parameter (n = 2), while Fe and Ni are Heisenberg ferromagnets (n = 3) with 
weak anisotropy. I have included only exponents that have been actually measured. More specifically, in the case 
of the m transition of helium, the order parameter is not accessible, and therefore the exponents b, c, d, and h 
cannot be measured.
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( , ),m m t h( ) ( )1 1= 	 (5.164)

( , ) .m m t h( ) ( )2 2= 	 (5.165)

It is then possible to map the two equations of state onto each other by rescaling m, h, and 
t by an appropriate positive factor:

( , ) ( , ) .m t h m t h( ) ( )
m t h

1 2m m m= 	 (5.166)

	 A relation of this kind, on the other hand, must also be valid if one is discussing the 
same system—by arbitrarily choosing one of the scale factors, we can choose the other two 
so that

( , ) ( , ) .m t h m t hm t hm m m= 	 (5.167)

	 Let us consider what occurs at h = 0, t < 0. On the one hand, we obtain

,m t? b 	 (5.168)

and on the other,

( , 0) ( , 0) .m t h m t hm tm m= = = 	 (5.169)

	 By choosing mt = |t|–1, we obtain

.m tm m= b− 	 (5.170)

	 Following the same reasoning at t = 0, we obtain

./
m h

1m m= d− 	 (5.171)

	 The magnetization is therefore a general homogeneous function of its arguments:

( , ) ( , ) .m t h m t hm m m=bd b 	 (5.172)

Since the magnetization is the derivative of the free energy with respect to h, an analogous 
relation also exists for free energy density (or, more exactly, for its singular part):

( , ) ( , ) .f t h f t ham m m=bd 	 (5.173)

	 We can determine the exponent a from the behavior of specific heat. We know that

C
t

f
h 2

2

2

2
? 	 (5.174)

One therefore has

( , 0) ( , 0),C t C th
a

h
2m m= − 	 (5.175)

from which we obtain

2 .a a− = − 	 (5.176)

	 The free energy density therefore satisfies the general homogeneity relation:

( , ) ( , ) .f t h f t h2m m m=bd a− 	 (5.177)

Copyrighted Material



164  |  Chapter 5

This expression vanishes at the critical point—obviously, this does not mean that all the 
free energy vanishes at the critical point, but only its singular part.
	 By taking the derivative of this relation, one can express the exponents of the thermo-
dynamic quantities as a function of only two exponents, a and bd, which appear in the 
expression of the free energy. By taking its derivative with respect to h, for example, one 
obtains the expression of the magnetization:

( , ) ( , ) .m t h m t h2m m m m=bd bd a− 	 (5.178)

One therefore has

2 .b a bd= − − 	 (5.179)

By taking once more the derivative, one obtains the relation for susceptibility:

( , ) ( , ),t h t h2 2m | m m m |=bd bd a− 	 (5.180)

from which we obtain the exponent c:

2 .c a bd− = − − 	 (5.181)

	 These two expressions imply a relation between the first three exponents:

2 2.a b c+ + = 	 (5.182)

Relations of this type (known as scaling laws) can be written between any three exponents, 
and follow from the homogeneity of the free energy and from the fact that only two inde-
pendent exponents appear in it. They are well satisfied by the experimentally measured ex-
ponents, and currently there are few doubts that they are valid for the asymptotic exponents.
	 Another relation of this type connects b, c, and d:

( 1) .c b d= − 	 (5.183)

It is enlightening to consider the implication of these relations for the coherence length 
and for the correlation function. The lines of reasoning we have followed show that the 
coherence length must itself also satisfy a general homogeneity relation:

( , ) ( , ) .t h t hvp m m m p=bd − 	 (5.184)

	 An analogous relation must also hold for the correlation function, where one will, how-
ever, also have to rescale the wave vector:

( , , ) ( , , ) .C k t h C k t hb cm m m m=bd 	 (5.185)

In order to determine the exponents b and c, let us observe that for k = 0, the correlation 
function is proportional to the susceptibility. We thus obtain

.c c= − 	 (5.186)

On the other hand, at t = h = 0, we must have

( ) .C k k 2? h− + 	 (5.187)
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Therefore,

2 .
b
c

h= − 	 (5.188)

	 Then, recalling that the coherence length is defined by 

( )
( )

,
C k

C k
0

1
k

2
2

02

2
?p

=
	 (5.189)

and comparing with the relation for the p, we obtain

.b v= 	 (5.190)

We have thus obtained another scaling law:

.
v

2
c

h= − 	 (5.191)

	 And last, we want to connect the exponent v to the other thermodynamic variables. To 
do this, we observe that due to Einstein’s theory of fluctuations, we expect that the free 
energy of a fluctuation (which, as we know, is correlated over distances on the order of 
the coherence length) should be of the order of magnitude of kBTc—in other words, a 
constant. When the coherence length is multiplied by a factor , = m–v, the contribution of 
the fluctuations to the free energy density is multiplied by a factor , –d = mdv, where d is the 
system’s dimensionality. We thus obtain the scaling law:

.dv2 a− = 	 (5.192)

5.20  Partition Function of the Two-Dimensional Ising Model

In this section, I report the solution of the two-dimensional Ising model in zero magnetic 
field, as reported by Vdovichenko [Vdov64 and Vdov65]. The model was first solved by Lars 
Onsager in 1944 [Onsa44] by a mathematical tour de force. Simpler derivations were found 
later by Kac and Ward [Kac52]; Schulz, Mattis, and Lieb [Schu64]; and others. The present 
solution was inspired by Kac and Ward’s solution, but is simpler. It became widely known 
due to Landau and Lifshitz’s treatise on theoretical physics [Land80, p. 4798ff ] .
	 We consider a system of N = L2 Ising spins placed on a square lattice. Thus the spin 
placed at the (k, ,) lattice point is denoted by vk,, and one has vk,, = !1, k, , d {1, f , L}. The 
Hamiltonian H({v}) is given by

({ }) ( ) ,H J h, ,k k k k k
k

1 1v v v v v v= − + +, , , , ,
,

+ +7 A/ 	 (5.193)

where we have assumed periodic boundary conditions:

, , .k, ,k L k L k 6 ,v v v= =, , ,+ + 	 (5.194)

We set h = 0 from now on. Then, we have seen in section 5.11 that the partition function 
can we written
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( ) ,Z K
t

t
1

2

G

N
G

2=
−

ld n / 	 (5.195) 

where 

,tanht
k T

J

B

= 	 (5.196)

and the sum runs over all diagrams G that can be drawn on the lattice, such that (1) each 
bond appears at most once, and (2) at each vertex, only an even number of bonds (zero, 
two, or four) can meet. In this expression, |G| is the number of bonds that appear in the 
diagram G. Then, this expression can be written in the form

,S t t g
G

G r
r

r

= =l/ / 	 (5.197)

where gr is the total number of diagrams satisfying the two preceding rules and containing 
exactly r bonds.
	 We will now evaluate this expression by transforming it into a sum over loops. The 
resulting expression will then be evaluated by reducing it to a random-walk problem.
	 A generic diagram G can be considered as a collection of loops. A loop is the trajectory 
of a walk that starts and ends on the same site. However, the decomposition of a diagram 
into loops is ambiguous if there are self-intersections, that is, if there are vertices where 
four bonds meet. Let us consider, for example, the diagram in figure 5.10. It can be con-
sidered as the collection of two loops that meet at one vertex (a), or as a single loop whose 
path does intersect itself (c) or does not (b). In order to obtain a nonambiguous sum, 
we assign to each diagram a factor (–1)n, where n is the number of intersections. In this 
situation, the contribution of case (c) will be opposite to that of case (b), and they cancel 
out, leaving only the contribution of case (a). One can easily realize, then, that with this 
convention, the contribution of diagrams in which three bonds meet at a vertex identically 
vanishes, as can be seen in figure 5.11. In this way, the sum over all diagrams G is reduced 
to a sum over all loops, in which each loop appears with a weight proportional to (–1)n, 
where n is the number of self-intersections. Notice that we do not allow vertices connected 
to only one bond and, therefore, the possibility that a walker gets back in its steps.

=

(a) (b) (c)

+ −

Figure 5.10. A diagram with self-intersections can be decomposed in several different ways into loops.
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	 Now, we can express the number of self-intersections of a loop by means of the fol-
lowing trick. It is well known that the total angle through which the tangent angle to the 
trajectory of a walker performing a loop turns around is given by 2r(, + 1), where the par-
ity of , is equal to the parity of the number of intersections n. Thus, if we assign a factor 
eiz/2 to each lattice point with turning angle z, then we will have at the end of the loop a 
factor (–1),+1 = (–1)n+1, where n is the number of intersections. With this counting, each 
diagram made up of s loops will give a contribution proportional to (–1)s+n. Thus we have 
to multiply this contribution by (–1)s in order to have the required sign in equation (5.197).
	 In order to evaluate the angle z, it is convenient to deal with directed loops. Let us de-
note by fr the sum over all undirected loops consisting of r bonds (taking into account the 
factors t r and eizn/2). Then, the sum over all double loops of , bonds will be given by

,f f
2
1

r r
r ri

1 2

2

,+ =

/

taking into account the possible permutations of the loops. Thus we have in general

( 1)
!

.expS
s

f f f f
1

1 , , ,

s

s
r r r

r r r
r

r 11
i s

s

2

1 2

g= − = −
3

f

3

= = =

* 4/ / / 	 (5.198)

In going from undirected to directed loops, each loop is encountered twice, and thus if we 
denote by vr the sum of the contributions of directed loops with r bonds, we have

.expS v
2
1

r
r 1

= −
3

=

* 4/ 	 (5.199)

	 We will now evaluate vr. Given a lattice point (k, , ), let denote the possible directions as 
follows:

: ( , ) ( , 1),

: ( , ) ( 1, ),

: ( , ) ( , 1),

: ( , ) ( 1, ) .

N k k

k k

k k

k k

E

S

W

$

$

$

$

, ,

, ,

, ,

, ,

+

+

−

−

	 Let us denote by ( )W k k vr 0 0 0, ,o  the sum of all contributions of r-bond diagrams starting 
from lattice point k0 ,0 in the direction o0 d {N, E, S, W} and ending in lattice point (k, , ) in 

Figure 5.11. A diagram with a three-bond vertex can be obtained as the sum of two diagrams with numbers of 
intersections that differ by one. Their contributions cancel out.

= −

(a) (b)
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the direction o. Each bond occurs with a factor teiz/2, where z is the change of direction in 
going to the next bond.
	 Then, it is possible to write a linear recursion relation for Wr :

( ) ( ).W k k T W k k,r k k
k

1 0 0 0 0 0 0, , , ,o o o o= , ,
,

o o
o

+ l l ll l l
l l l

/ 	 (5.200)

The transition matrix T = (Tk,o,k,o) has the expression

,T tA, , ( ) , ( )k k k kd d=, , , ,o o oo a o b o+ +l l l l l l l l 	 (5.201)

where

( ) 0, ( ) 1,N Na b= =−

( ) 1, ( ) ,0EEa b=− =

( ) 0, ( ) 1,S Sa b= =+

( ) 1, ( ) 0.W Na b= =+

The matrix ( )A A= ool  (where , N, E, S, Wo o =l ) is given by

, , , *

*, , ,

, * , ,

, , * ,

,A

1 0

1 0

0 1

0 1

~ ~

~ ~

~ ~

~ ~

=

J

L

K
K
K
K
K

N

P

O
O
O
O
O

	 (5.202)

where

,e i /4~ = r 	 (5.203)

and ~* is the complex conjugate of ~.
	 The connection between the weights W and the loop contributions vr is given by

,v
r
b

r
r= 	 (5.204)

where

( ).Wb W k kTrr r
k

, ,o o= =
,o

/ 	 (5.205)

The factor 1/r comes from the fact that a single diagram with r bonds can be obtained from 
r different walks, with different the starting points. Now, from equation (5.200), we have

W T ,Tr Tr r
r i

r

i

m= =/ 	 (5.206)

where mi are the eigenvalues of the matrix T. From this equation, taking into account 
equations (5.199) and (5.204), we obtain

( ) .exp exp lnS
r2

1 1
2
1

1 1
,r i

i
r

i
i i

i

m m m= − = − = −) )3 3 %/ / 	 (5.207)
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Thus the problem boils down to the diagonalization of the matrix T. One can see from 
equation (5.201) that T depends only on the differences in the indices k, ,. It can thus be 
diagonalized by a Fourier transformation. We set

( , ) .T m n Te 2 ( )
,

mk n

k
k 00

i= ,

,
,oo

r
o o

− +
l l/ 	 (5.208)

We then find that

( , )

*( ),

* *( ),

,

*( ),

*( ),

*( ),

* *( ),

,

,

( ),

( ),

* ( ),

* ( )

( )

( )

,T m n t

n

n

n

m

m

n

n

n

m

m

m

m

0

0

0

0

c

~ c

~c

~c

c

~ c

~c

c

~ c

~ c

~c

c

=ool

J

L

K
K
K
K
K

N

P

O
O
O
O
O

	 (5.209)

where

( ) .m e / )m L2 ic = r 	 (5.210)

Thus, for given values of (m, n), we have

T{ ( , )} [ ( , )]

( ) ( ) .

det

cos cos

Im n m n

t t t
L
m

L
n

1

1 2 1
2 2

i
i 1

4

2 2 2

m

r r

− = −

= + − − +

=

c m

%
	 (5.211)

Thus we obtain

( ) ( ) ( ) ,cos cosZ t t t t
L
m

L
n

2 1 1 2 1
2 2

/
N N

mn

2 2 2 2
1 2

r r
= − + − − +− c m= G% 	 (5.212)

where the product runs over L consecutive values of m and of n.
	 Setting p = 2rm/L and q = 2rn/L, the Helmholtz free energy is given by

( ) ( )

( )
( ) ( ) ( ) .

ln ln

ln cos cos

F T Nk T t

p q
t t t p q

2 1

2
1

2
1 2 1

d d

2

2
2 2 2

B

r

= − − −

+ + − − +
r

r

−

+
7 A

$

4# 	 (5.213)

	 Let us consider the contribution of the integral. The minimum value of the integrand 
is reached for p = q = 0 and is given by

( ) ( ) [ 2 1] .ln lnt t t t t1 4 12 2 2 2 2+ − − = + −8 B

The argument of the logarithm vanishes for

1,t t 2c= = −

which corresponds to the transition temperature Tc given by equation (5.72):

.ln
k T

J
2
1

1 2
B c

= +_ i

In order to understand the behavior of F in the neighborhood of this temperature, let us 
introduce x = t - tc and expand the integrand for small values of x and of p, q. One has
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( )
( )

( ) ,lnF T
p q

c c p q
2
1

2
d d

regular terms2 1
2

2
2 2

r
x= + + +

r

r

−

+
7 A#

where c1 and c2 are constants. Integrating, one obtains

( ) ,lnF T a regular terms2x x= − +

where a > 0 is a constant. The specific heat C is proportional to -d2F/dx 2. Thus we have

,lnaC regular terms- x + 	 (5.214)

indicating that the specific heat exhibits a logarithmic divergence at the critical temperature.
	 The evaluation of the spontaneous magnetization m0 = ávñ proceeds in a similar way 
[Vdov65], starting, e.g., from the relation

.limm 1 1, k
k

0
2 v v=

"
, ,

3
+

One obtains m0 = 0 for t < tc given earlier, and

m
t t

1
2

/

0

1 4 1 8

= −
−−

d n* 4 	 (5.215)

for t > tc, i.e., below the transition temperature. Thus for small positive values of x = t - tc, 
one has

,m0 ? xb 	 (5.216)

where the exponent b is given by

.
8
1

b = 	 (5.217)

	 The connection between the Ising model and the statistics of loops can be interpreted 
more deeply as the equivalence between the model and a system of noninteracting fermi-
ons. This correspondence is exploited by Schulz, Mattis and Lieb [Schu64] in their solu-
tion of the Ising model.

Recommended Reading

The phenomenology of phase transitions is explained in H. E. Stanley, Introduction to 

Phase Transitions and Critical Phenomena, Oxford, UK: Oxford University Press, 1971. The 
books devoted to phase transitions are now legion: it is sufficient to quote the series of 
volumes edited by C. Domb and M. Green (and later by C. Domb and J. L. Lebowitz), 
Phase Transitions and Critical Phenomena, London: Academic Press, 1971–present. The 
mean-field and Landau theories are discussed in detail in L. D. Landau and E. M. Lifshitz, 
Statistical Physics, 3rd ed., part 1, Oxford, UK: Pergamon Press, 1980. A simple presenta-
tion of the different ordered phases in condensed matter can be found in the excellent 
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