
Statistical Mechanics 2011–12 — Problem Set 5

due: January 19, 2012

5.1 Fluctuations and dissipation of a damped oscillator
A damped harmonic oscillator moving under the action of an external force f(t) obeys
the equation of motion

d2x

dt2
= −ω2

0x− λ
dx

dt
+ f(t) . (1)

Assume that the friction coefficient satisfies λ > 0.

(a) Find the susceptibility α̂(ω). Plot its real and imaginary parts, respectively α′

and α′′, for three cases: λ ≪ ω0, λ = 2ω0 and λ ≫ ω0.

(b) Check that α̂(ω) is causal, i.e., α(t) = 0 for t < 0. Examine the singularities of
α(ω) in the complex ω plane. At what value of λ do the poles begin to sit on the
imaginary axis. What does it mean physically?

(c) Given a periodic forcing f(t) = A cos(ωt), find x(t). Calculate the aver-
age power dissipated p(ω) by integrating your resulting formula for fdx/dt.
Compare your expressions for the power and for α′′ with the general formula
p(ω) = ω|f(ω)|2

2 α′′ which was derived in class.

(d) Using the fluctuation-dissipation theorem, find the correlation function ⟨x(0)x(t)⟩
at a given temperature T when no external force is applied. Check that ⟨x2⟩ sat-
isfies the equipartition theorem (for that you need to recall what is the potential
energy here).

5.2 Noise in phase space and Langevin equations
Consider a system with phase space coordinates p,q, having an internal potential en-
ergy Ṽ (q). The system is coupled linearly to a thermal reservoir with temperature T .
The Hamiltonian is then

H =
p2

2M
+ Ṽ (q) +Hbath(y1, y2, y3, . . .)− q · F(y1, . . .) . (2)

Here, y1, y2, . . . denote the degrees of freedom of the bath, Hbath is its Hamiltonian,
and the last term describes the coupling between the system and the bath. Assume that
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without the coupling, the bath would contribute an external noise f(t) with mean zero.
With coupling, the force develops a non-zero mean value

⟨F(t)⟩ =
∫ t

−∞
dt′α(t− t′)q(t′) . (3)

where α(t − t′) is the susceptibility of the reservoir to the motion of the system de-
scribed by q(t′). Our system then has the following equation of motion:

ṗ = M q̈ = −∂qṼ + f +

∫ t

−∞
dt′α(t− t′)q(t′) . (4)

The correlation function of the noise in the absence of the system, is defined to be
Cb(t− t′) ≡ ⟨f(t) · f(t′)⟩.

(a) Use the fluctuation-dissipation theorem to show that the equation of motion of
the system has the form

M q̈ = −∂qV + f − β

∫ t

−∞
dt′Cb(t− t′)q̇(t′) , (5)

and find V in terms of Ṽ and Cb.

(b) Assume that the time scale at which the bath de-correlates is short compared to
the time scales of the system. Show that the equation is then that of a Brownian
particle. Derive the friction coefficient λ.

(c) Following the derivation leading up to equation (188) of the lecture notes, de-
rive the Fokker-Planck equation for the probability distribution in phase space
P (p,q) of a Brownian particle in the potential V (q) (this is known as the
Kramers problem). Show that P (q,p) = 1

Z exp[−β(V (q) + p2/2m)] is a sta-
tionary solution.

5.3 Markov processes and detailed balance
Markov processes constitute convenient, and often quite accurate, models for the dy-
namics of noisy systems. A Markov process is considered to be an equilibrium process
if it obeys the detailed balance criterion, while Markov processes that do not obey it are
considered to be nonequilibrium systems. In this question we will explore the relation
between detailed balance and equilibrium.

Throughout the question we consider a system with a finite number of microstates,
labeled α = 1, . . . , N (e.g., a two-dimensional Ising model of length L, which has
N = 2L

2

states). A Markov dynamics is defined on this state space by the rates to
jump from one state to another. These rates are given by a matrix Wα→β , such that the
probability to be at state β at time t + dt given that the system was at state α ̸= β at
time t is Wα→βdt.
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(a) Write down the differential equation which describes the evolution of the proba-
bility Pα(t) to be in state α at time t (it may be convenient to begin with discrete
time-steps of duration dt, and then take the limit dt → 0). Show that this equa-
tion can be written as a continuity equation of the form Ṗα = Jin(α)− Jout(α),
where Jin/out(α) are the probability fluxes into and out of state α. This equation
is known as the master equation.

If the Markov process is ergodic (i.e., one in which every two states are connected
by a path), the probability distribution tends as t → ∞ towards a unique stationary
distribution, which will be denoted P ∗

α . The Markov process is said to obey detailed
balance if P ∗

αWα→β = P ∗
βWβ→α holds for every α and β.

(b) What is the net probability flux at time t between states α and β? What does the
detailed balance condition imply for the probability fluxes in the steady state?

(c) Since the matrix W determines the steady state P ∗, the condition of detailed
balance is in fact a condition only on W . We now show this explicitly. Show
that detailed balance is equivalent to the following condition:

Wα1→α2Wα2→α3 . . .Wαn−1→αnWαn→α1 =

= Wα1→αnWαn→αn−1 . . .Wα3→α2Wα2→α1 (6)

holds for every n and every cycle of states α1, α2, . . . , αn, α1.

Hint: If (6) is satisfied, assume that the stationary distribution has the Boltzmann
form P ∗

α = 1
Z e−E(α). Arbitrarily assign E(1) = 0, and then proceed to con-

struct the “energy” function E by assigning energies to the neighbors of state 1
in such a way that detailed balance is satisfied. Continue this process until P ∗ is
defined everywhere. Be sure to take care of loops!

(d) Explain why detailed balance is a condition of time reversal symmetry. Give
an example of a a Markov chain with three states which does not obey detailed
balance, and explain why it is not time-reversal symmetric.

Bonus: (Optional) The Kullback-Leibler divergence (also known as the relative entropy)
of the distributions P (t) and P ∗ is given by D(P (t)||P ∗) ≡

∑
α Pα(t) log

Pα(t)
P∗

α
.

This is an information-theoretic measure of how different the two distributions
are. Show that if P ∗ is given by a Boltzmann form, D(P (t)||P ∗) can be in-
terpreted as the free energy of the system. Assume that the rates W satisfy
detailed balance. Show that this free energy is a monotonically decreasing func-
tion of time, and that it tends towards its minimum value which is obtained when
P (t) = P ∗. Hint: It might be easier to work with discrete time. The convexity
of the function x log x and Jensen’s inequality might also be useful.

5.4 Monte Carlo simulation of the fluctuation-dissipation theorem
In this question you will examine in a numerical experiment the relation between fluc-
tuations and dissipation in a two-dimensional Ising model with Metropolis dynamics.
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Note that although the Metropolis dynamics is probably not a realistic model of the
dynamics of real magnets (as was stressed in class), it is nonetheless instructive from a
theoretical perspective to explore this dynamics.

Consider a two-dimensional Ising model on an L × L square lattice with periodic
boundary conditions. The Hamiltonian of the system in a time-dependent external field
is

H = −J
∑
⟨ij⟩

sisj −H(t)
∑
i

si, (7)

where si = ±1 are spins, and
∑

⟨ij⟩ denotes a sum over all nearest-neighbor pairs.
Below, an average in the equilibrium state with H = 0 is denoted by ⟨· · · ⟩0, while

an average over repeated stochastic evolutions of the system with a given protocol H(t)
is denoted by ⟨· · · ⟩H(t).

Implement the metropolis algorithm in your favorite programming language. Work
with the largest system for which you can collect enough statistics. In C, Fortran, Java
and similar languages you should be able to reach systems of size L = 200, while in
Matlab you will probably be limited to L . 10. Therefore, it is preferable that you do
not run the simulation in Matlab if possible.

(a) Begin with no magnetic field, H = 0, and measure the correlation function
for the magnetization: C(t) =

⟨
(M(0) − ⟨M⟩0)(M(t) − ⟨M⟩0)

⟩
0
, where

the magnetization is M(t) =
∑

i si(t). Work at T = 3J . This is above
the critical temperature, which is known from Onsager’s exact solution to be
Tc = 2J/ log(1 +

√
2) ≈ 2.27J . Verify that indeed ⟨M⟩0 = 0 at T = 3J .

(b) Next, consider the time-dependent magnetic field

H(t) =

{
H0 when t < 0

0 when t > 0
. (8)

Determine how long it takes the system to equilibrate at T = 3J with a small
magnetic field H0. Allow the system to equilibrate at this magnetic field, and
then, at time t = 0, turn off the field and measure M(t). Repeat this protocol
many times to find ⟨M(t)⟩H(t). Compare your results for C(t) and ⟨M(t)⟩H(t)

on a semi-logarithmic plot.

(c) Use the fluctuation-dissipation theorem to deduce the relation between C(t) and
⟨M(t)⟩H(t). Compare your theoretical predictions with the numerical results. In
particular, how does your analytical ratio between C(t) and ⟨M(t)⟩H(t) compare
with the numerical ratio at t = 0?

Note: Please attach your code to your answer. Also, make sure to save your code, as it
might be useful for future homework assignments.
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