Statistical Mechanics 2012/2013 Problem Set 5

Submission date: 14.1.13

5.1 Fluctuation of the number of particles and of the wave intensity ($32 \mathbf{p t s}$)

(a) Find the mean squared fluctuation of the number of particles in the state number k of the ideal Fermi and Bose gases.
(b) Consider a meter measuring the amplitude of light coming from a monochromatic noncoherent source. This can be described by a set of classical light waves of a specific frequency, ω, with random phases and amplitudes. Calculate the fluctuation in the mean intensity of the radiation, $\left\langle(\Delta I)^{2}\right\rangle$, by averaging over long time (much longer than ω^{-1}) and over the random phases. Express your result in term of the mean intensity of the radiation, $\langle I\rangle$. How is this result related to the quantum result you have computed in (a) for Bose gas?

5.2 Renormalization group (42 pts)

Consider the partition function of 1 d Ising model in an external field

$$
\begin{equation*}
Z_{N}(K, L, C)=e^{N C} \sum_{\{\sigma\}} \exp \left[K \sum_{i} \sigma_{i} \sigma_{i+1}+L \sum_{i} \sigma_{i}\right] \tag{1}
\end{equation*}
$$

(a) Express it via the decimated partition function by summing over all odd spins:

$$
Z_{N}(K, L, C)=Z_{N / 2}\left(K^{\prime}, L^{\prime}, C^{\prime}\right)
$$

Find the recursion relations $K^{\prime}(K, L)$ and $L^{\prime}(K, L)$ (remember that there is also a correction to the free energy).
(b) In the variables $x=e^{-4 K}$ and $y=e^{-2 L}$ find the fixed points of the renormalization procedure and analyze their stability.

5.3 Random walk (26 pts)

Using Fourier representation, show that a random walk on a triangular lattice gives the same continuous limit for the probability on site, $P(x, t)$, as was given by a cubic lattice. Hint: It may be useful to use an explicit representation of the lattice vectors.

