
Statistical Mechanics 2012/2013 Problem Set 6

Submission date: 4.2.13, total of 120 points!

6.1 Noise in phase space and Langevin equations (25 points)
Consider a system with phase space coordinates p,q, having an internal potential energy Ṽ (q). The
system is coupled linearly to a thermal reservoir with temperature T . The Hamiltonian is then

H =
p2

2M
+ Ṽ (q) +Hbath(y1, y2, y3, . . .)− q · F(y1, . . .) . (1)

Here, y1, y2, . . . denote the degrees of freedom of the bath, Hbath is its Hamiltonian, and the last term
describes the coupling between the system and the bath. Assume that without the coupling, the bath
would contribute an external noise f(t) with mean zero. With coupling, the force develops a non-zero
mean value

〈F(t)〉 =
∫ t

−∞
dt′α(t− t′)q(t′) . (2)

where α(t− t′) is the susceptibility of the reservoir to the motion of the system described by q(t′). Our
system then has the following equation of motion:

ṗ =M q̈ = −∂qṼ + f +

∫ t

−∞
dt′α(t− t′)q(t′) . (3)

The correlation function of the noise in the absence of the system, is defined to beCb(t−t′) ≡ 〈f(t)·f(t′)〉.

(a) Use the fluctuation-dissipation theorem to show that the equation of motion of the system has the
form

M q̈ = −∂qV + f − β
∫ t

−∞
dt′Cb(t− t′)q̇(t′) , (4)

and find V in terms of Ṽ and Cb.

(b) Assume that the time scale at which the bath de-correlates is short compared to the time scales
of the system. Show that the equation is then that of a Brownian particle. Derive the friction
coefficient λ.

(c) Following the derivation leading up to equation (223) of the lecture notes, derive the Fokker-Planck
equation for the probability distribution in phase space P (p,q) of a Brownian particle in the po-
tential V (q) (this is known as the Kramers problem). Show that P (q,p) = 1

Z exp[−β(V (q) +
p2/2m)] is a stationary solution.

6.2 Fluctuations and dissipation of a damped oscillator (30 points)
A damped harmonic oscillator moving under the action of an external force f(t) obeys the equation of
motion

d2x

dt2
= −ω2

0x− λ
dx

dt
+ f(t) . (5)

Assume that the friction coefficient satisfies λ > 0.
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(a) Find the susceptibility α̂(ω). Plot its real and imaginary parts, respectively α′ and α′′, for three
cases: λ� ω0, λ = 2ω0 and λ� ω0.

(b) Check that α̂(ω) is causal, i.e., α(t) = 0 for t < 0. Examine the singularities of α(ω) in the
complex ω plane. At what value of λ do the poles begin to sit on the imaginary axis. What does it
mean physically?

(c) Given a periodic forcing f(t) = A cos(ωt), find x(t). Calculate the average power dissipated p(ω)
by integrating your resulting formula for fdx/dt. Compare your expressions for the power and for
α′′ with the general formula p(ω) = ω|f(ω)|2

2 α′′ which was derived in class.

(d) Using the fluctuation-dissipation theorem, find the correlation function 〈x(0)x(t)〉 at a given tem-
perature T when no external force is applied. Check that 〈x2〉 satisfies the equipartition theorem
(for that you need to recall what is the potential energy here).

6.3 Monte Carlo simulation of the fluctuation-dissipation theorem (25 points)
In this question you will examine in a numerical experiment the relation between fluctuations and dissi-
pation in a two-dimensional Ising model with Metropolis dynamics. Consider a two-dimensional Ising
model on an L×L square lattice with periodic boundary conditions. The Hamiltonian of the system in a
time-dependent external field is

H = −J
∑
〈ij〉

sisj −H(t)
∑
i

si, (6)

where si = ±1 are spins, and
∑
〈ij〉 denotes a sum over all nearest-neighbor pairs.

Below, an average in the equilibrium state with H = 0 is denoted by 〈· · · 〉0, while an average over
repeated stochastic evolutions of the system with a given protocol H(t) is denoted by 〈· · · 〉H(t). Use the
previously implementation of the metropolis algorithm with the maximal system size you can simulate
which should be around L = 200.

(a) Begin with no magnetic field, H = 0, and measure the correlation function for the magnetization:
C(t) =

〈
(M(0)− 〈M〉0)(M(t)− 〈M〉0)

〉
0
, where the magnetization is M(t) =

∑
i si(t). Work

at T = 3J . This is above the critical temperature, which is known from Onsager’s exact solution
to be Tc = 2J/ log(1 +

√
2) ≈ 2.27J . Verify that indeed 〈M〉0 = 0 at T = 3J . Note that this was

already measured in one of the previous homework exercises.

(b) Next, consider the time-dependent magnetic field

H(t) =

{
H0 when t < 0

0 when t > 0
. (7)

Determine how long it takes the system to equilibrate at T = 3J with a small magnetic field H0.
Allow the system to equilibrate at this magnetic field, and then, at time t = 0, turn off the field
and measure M(t). Repeat this protocol many times to find 〈M(t)〉H(t). Compare your results for
C(t) and 〈M(t)〉H(t) on a semi-logarithmic plot.

(c) Use the fluctuation-dissipation theorem to deduce the relation betweenC(t) and 〈M(t)〉H(t). Com-
pare your theoretical predictions with the numerical results. In particular, how does your analytical
ratio between C(t) and 〈M(t)〉H(t) compare with the numerical ratio at t = 0?

Note: Please attach your code to your answer.
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6.4 Alphabet (15 points)
A source produces a character x from the alphabet {0, 1, . . . , 9, a, b, . . . , z}. With probability 1/3, x is a
numeral; with probability 1/3, x is a vowel (a,e,i,o,u); with probability 1/3, x is one of 21 consonants.
All numerals are equiprobable, and the same goes for vowels and consonants. Estimate the entropy of the
source or the mean information per character in bits.

6.5 Large Deviation theory (25 points)
In class we considered the large deviation principle for the average one N independent identically dis-
tributed variables, yi (see section 8.4 in the lecture notes). We now consider the case where each variable
can assume M possible values with probablity pm,

P (yi = vm) = pm ∀m = 1, . . . ,M. (8)

We define the empirical vector as the average number of times the value m appears in the set of N
varaibles,

Lm =

N∑
i=1

δyi−vm
. (9)

Show that probability distribution of the empirical vector, PN (~L) where ~L = {L1, L2, . . . LM}, obeys
a large deviation principle in the limit N � 1 and find its rate function. One way to compute it is to
consider the generating function of PN (~L), and to compute it using the Laplace method. How is the
resulting rate function related to the concept of relative entropy (also known as the Kullback-Leibler
divergence)? Can you explain it intuitively?
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