
15.2.2012

Statistical Physics — Final Exam

Duration: 4 hours

Open material during the exam: class notes only!

1. One way to create Bose-Einstein condensation is to put atoms in a three-dimensional

optical lattice which is an atom trap created by standing light waves. There is no more

than one atom per site cooled to the lowest vibrational state. The ratio between the

number of atoms and number of sites is κ ≤ 1. The lattice is then adiabatically removed

(the intensity of light is lowered) so that the entropy of the gas is preserved. If κ = 1 then

after lattice removal the atomic wavefunctions delocalize and overlap so that the atoms

become a zero-temperature Bose-Einstein condensate (BEC).

Now consider κ < 1.

(a) Calculate the entropy of a partially filled lattice and compare it with the entropy of

the Bose gas.

(b) Find the condition that determines the smallest κ for which the formation of BEC

is still possible.

(c) Use the approximate value 5ζ(5/2)
2ζ(3/2)

≈ 1.3 and estimate the smallest κ numerically.

2. Consider an over-damped Brownian particle in a potential V (q) so that the respective

equation of motion is

q̇ = −dV

dq
+ η . (1)

Here the noise is white Gaussian with ⟨η(0)η(t)⟩ = 2δ(t). The potential has the asymp-

totic V (q → ±∞) → q5, that is V (q → +∞) → +∞ and V (q → −∞) → −∞. The

space q has the topology of a circle i.e. q = ∞ and q = −∞ is the same point.
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(a) Can such a potential support a Boltzmann-Gibbs steady state (which has zero prob-

ability current)?

(b) Find the stationary probability distribution ρ(q).

(c) Describe the form of the asymptotic of ρ(q) at large |q|.

3. Consider the 3-state Potts model with spins si = 1, 2, 3, on sites i of a d-dimensional

lattice, interacting with their nearest neighbors via a Hamiltonian

−βH = K
∑
⟨ij⟩

δsi,sj . (2)

(a) In d = 1 find the exact recursion relations by a b = 2 renormalization/decimation

process. Identify all fixed points and note their stability.

(b) write down the recursion relation K ′(K) for d = 2 square lattice, using the Migdal-

Kadanoff bond moving scheme with b = 2.

(c) By considering the stability of the fixed points at zero and infinite coupling, prove

the existence of a non-trivial fixed point at a finite K∗.

(d) Assuming the value of K∗ is known (there is no need to calculate it), write down

the expression for the critical exponent ν.

Good Luck!
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Solutions

Solution 1: Suppose we have P ≫ 1 sites of which κP sites are occupied. The entropy is

S = ln[P !/(κP )!(P − κP )!] ≈ P [(κ− 1) ln(1− κ)− κ lnκ] . (3)

The entropy of the κP atoms of a Bose gas below Tc is given by the formula (91) from the

lecture notes

S =
5g5/2
2g3/2

κP

(
T

Tc

)3/2

≈ 1.3 · κP
(
T

Tc

)3/2

. (4)

The condition that the entropies (3) and (4) are equal gives the temperature of the Bose gas

which appears after the trap is adiabatically removed. Requiring that this temperature is equal

to T = Tc gives the κ ≈ 0.5.

Solution 2: It is straightforward to check that the Boltzmann-Gibbs distribution e−V (q) is

non-normalizable, i.e. its integral over q diverges. Yet the Fokker-Planck equation is of the

second order, so it must have two solutions. Therefore, we need another solution:

∂ρ

∂t
=

∂

∂q

(
∂ρ

∂q
+

dV

dq
ρ

)
= −∂J

∂q
. (5)

Apart from the Boltzmann-Gibbs distribution, which has zero current, a solution with a constant

current is steady as well. Solving equation

∂ρ

∂q
+

dV

dq
ρ = −J = const , (6)

we find the true steady-state solution,

ρ(q) = −Je−V (q)

∫ q

−∞
eV (q′)dq′ , (7)

which is normalizable. Note that the current must be negative i.e. directed towards −∞. For

this solution to have a physical meaning, the phase space must be a circle i.e. the current that

flows to −∞ returns from +∞. Asymptotic at large q is ρ(q) ∝ q−4, which corresponds to a

fast (finite-time) escape to infinity according to the law q̇ = −q4.
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Solution 3: (a) Tracing over all 3 values of the spin s2 yields

3∑
s2=1

eK(δs1,s2+δs2,s3 ) =

e2K + 2 if s1 = s3

2eK + 1 if s1 ̸= s3

. (8)

The recursion relations are therefore eK
′+a′ = e2K + 2 and ea

′
= 2eK + 1, from which we find

K ′ = log
e2K + 2

2eK + 1
. (9)

To find the fixed points of this equation denote x = eK
∗ , which yields x2+x−2 = 0. The only

physical solution is x = 1, which corresponds to K∗ = 0. This is a stable fixed point, because

for K ≪ 1 we have

K ′ ≈ ln
3 + 2K + 2K2

3 + 2K +K2
≈ ln(1 +K2/3) ≈ K2

3
< K . (10)

In addition, K∗ = ∞ is also a fixed point. For K ≫ 1,

K ′ ≈ ln
eK

2
= K − ln 2 < K, (11)

and therefore this fixed point is unstable.

(b) In the Migdal-Kadanoff approximation, moving the bonds strengthens each bond by a

factor of 2. By replacing K → 2K in equation (9) we find that the recursion relation for K is

K ′ = log
e4K + 2

2e2K + 1
. (12)

(c) once again, K∗ = 0,∞ are fixed points. For K ≪ 1, by replacing K → 2K in equation

(10), we find that K ′ ≈ 4K2/3 < K, and therefore K∗ = 0 is stable. Similarly, for K∗ = ∞,

by replacing K → 2K in equation (11) we find that K ′ ≈ 2K > K, and so K∗ = ∞ is also

stable. Therefore, a non-trivial unstable fixed point must exist between them. This fixed point

can be found explicitly: denoting as before x = eK , we have x = (x4 + 2)/(2x2 + 1), or

x4 − 2x3 − x+ 2 = (x− 2)(x3 − 1) = 0. Therefore, there is a fixed point at K∗ = ln 2.

(d) The thermal exponent yt at the non-trivial fixed point is found from

2yt =
∂K ′

∂K

∣∣∣∣
K∗

= 4

[
e4K

∗

e4K∗ + 2
− e2K

∗

2e2K∗ + 1

]
=

16

9
, (13)

and ν = 1/yt ≈ 1.2.
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