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The trapped-ion qubit tool box

Roee Ozeri*

Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 76100, Israel

(Received 31 January 2011; final version received 28 June 2011)

In this tutorial we review the basic building blocks of Quantum Information Processing with cold trapped atomic
ions. We mainly focus on methods to implement single-qubit rotations and two-qubit entangling gates, which form a
universal set of quantum gates. Different ion qubit choices and their respective gate implementations are described.
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1. Introduction

Information is physical. Physical systems are used on a
daily basis to carry out different information handling
tasks. One of the most common information handling
task is that of information processing, or computing.

Contemporary information processing is per-
formed on a very large scale. We regularly consume
and process enormous quantities of information. As an
example, a typical 4 min long song, encoded in an mp3
format file, has a size of a few MB, which means that it
needs a few tens of millions of small physical bits;
systems that have two physical states that correspond-
ingly represent the logical states 0 and 1; to be saved in
memory. For music to be heard, all these bits have to
be processed with many small transistors. This means
that we need large arrays, of billions of physical
systems which constitute all the necessary building
blocks for large scale information processing. To be
able to fit them all in a reasonable volume and keep
power consumption on a manageable level, these
physical systems have to be very small. To this end,
the typical transistor size has been cut by half every
two years for the past four decades. The current size of
a memory cell or transistor in commercial semicon-
ductor devices is 32 nm. We know that the physical
laws that govern the behaviour of microscopic physical
systems are different than those at macroscopic scales.
On nanometric scales the laws of quantum mechanics
often dominate.

The limitations and advantages imposed by the
laws of quantum mechanics on information processing
have been the focus of intensive study for the last three
decades [1]. It is now widely believed that a computer,

with a performance that is completely governed by
quantum mechanics, will be in principle more efficient
than its classical counterpart. Its operation will
certainly be very different. If a classical bit is a physical
system that can be in one of two states, representing 0
or 1, a quantum bit (qubit) can be in a superposition of
both. N qubits can be in a superposition of 2Ndifferent
logical states.

Quantum information processing (QIP) requires
the coherent manipulation of the joint quantum state
of a register of N qubits, in a 2Ndimensional Hilbert
space. Some of the resulting states are highly entangled
superpositions in which the superposition parts repre-
sent states that differ in many of the N qubits. For
useful computations N will be mesoscopically or even
macroscopically large. A superposition of two states
that are macroscopically distinct was never experimen-
tally observed and is, according to many people, even
hard to envisage. The violent contrast between the
superposition principle, governing the behaviour of
microscopic systems, and our daily life experience at
macroscopic scales was already noted in the early days
of quantum mechanics [2]. The effort of realising a
macroscopic quantum computer is thus also (and
primarily) an effort to advance the superposition
principle onto a macroscopic scale and hence it enjoys
the unique position of having both practical as well as
fundamental importance.

Among the many systems studied as a possible QIP
platform, trapped-ions have many advantages. Atomic
ions can be trapped by electric fields in ultra-high
vacuum and then laser-cooled to extremely low
temperatures. Figure 1 shows a linear crystal of eight,
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trapped and laser-cooled, 88Srþions. Owing to their
high degree of separation from any thermal environ-
ment, quantum superpositions of trapped-ion states
have relatively long coherence times. Extremely
accurate control has been demonstrated over their
collective internal states [3,4]. Trapped ions can be
laser-cooled to the ground-state of their confining
potential, thus providing excellent control of their
motion as well. Qubits have been encoded into
trapped-ion states [3,4]. In the last decade or so, all
the basic building blocks needed for coherent control
of ion qubits were developed [5]. Several quantum
algorithms have been demonstrated using up to eight
or so ion qubits and, from a quantum computing point
of view, the challenge that experimentalists in this field
are currently facing is to find ways to scale this system
up to large numbers.

The challenge of experimentally realising a large-
scale quantum computer is hard, and it has many
different fronts. A large-scale trapping architecture has
to be developed [6], tools for applying parallel
quantum gates in multiple trapping regions are needed
[7], and so forth. One particular challenge is to be able
to drive high-fidelity coherent operations on a collec-
tive quantum state of a large number of ion qubits.
Obviously, the larger the quantum register is, the larger
is the space of possible quantum operations. However,
the number of possible operations in a quantum code
has to be finite, and in particular, independent of the
number of qubits in the register. This problem is
analogous to the problem of efficiently compiling a
computer program into a machine code that imple-
ments physical logical operations on a logical register
of bits, in a classical computer. In QIP, a finite set of
unitary operations, which can be concatenated to
approximate any operation on an arbitrarily large
qubit register, is called a universal quantum gate set.
This tutorial reviews the basic building blocks of
quantum computing operations with trapped-ion
qubits, with an emphasis on ways to implement a
universal quantum gate set.

1.1. Universal gate set

The perfect coherent control of a quantum state in a
2Ndimension Hilbert space requires the ability, up to a

global phase, to unitarily connect any two state vectors
in this space. This seems to be a horrendous task,
considering that any such unitary operator is generated
by 22N7 1 independent generators. Fortunately, it was
shown that any such operation can be approximated to
an arbitrary precision by concatenating a finite number
of operators chosen from a small (i.e. of size which is
independent of N) set [8,9]. This small and finite set of
operators is called a universal set of quantum gates.

Up to a global phase, a pure quantum state of a
single qubit can be visualised as a vector pointing at
the surface of a sphere called the Bloch sphere,
illustrated in Figure 2. Any unitary single qubit
operation is therefore equivalent to a rotation R :
R(b,f,y) of the Bloch vector. This rotation is speci-
fied by the three Euler angles b, f, and y. The angles
7p/2 5 b 5 p /2, and 0 5 f 5 2p determine the
direction of n ¼ (cosb cosf, cosb sinf, sinb), the axis
around which the Bloch vector is rotated, and y is the
rotation angle. In the Hilbert space of a single qubit,
rotations are represented by SU[2] operators, i.e.
2 6 2 unitary matrices with a unity determinant.
These rotations are generated by the three Pauli
matrices ŝx, ŝy and ŝz. The rotation R is therefore
represented by the operator,

R̂ðb;f; yÞ ¼ R̂ðn; yÞ ¼ exp
�iŝ � ny

2

� �
¼

cos y
2� inzsin

y
2 �inx � ny

� �
sin y

2

�inx þ ny
� �

sin y
2 cos y

2þ inzsin
y
2

" #
;

ð1Þ

where ŝ is the Pauli operators vector.

Figure 1. A linear crystal of eight trapped, and laser cooled
88Srþions.

Figure 2. All pure states of a single qubit can be
geometrically described as all the points on the surface of a
sphere, called the ‘Bloch sphere’. All possible single-qubit
operations are therefore equivalent to rotations in three
dimensions.
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Deutsch was the first to propose the quantum
Toffoli gate [8], a rotation R̂ of a single target qubit
which is conditioned on the state of two control
qubits, as a universal gate set (see Figure 3(a)). Here
the state of the target qubit undergoes a rotation R̂ if
and only if the state of both control qubits is in the
logical j1i. Later, Barenco and co-authors proved that
single qubit rotations, R̂, together with two-qubit
controlled-not (CNOT) gates, shown diagrammati-
cally in Figure 3(b), are a universal quantum gate set
as well [9]. A CNOT quantum gate performs a y ¼ p
rotation of the target qubit around the Bloch sphere
x-axis, i.e. R̂ ¼ ŝx, only if the control qubit is in state
j1i. Both of these gate set examples are not finite
since R̂ is defined through continuous parameters. It
has been shown, however, that by restricting to a
small set of rotation angles, any single qubit rotation,
R̂, can be approximated to accuracy e by concatenat-
ing a string of length logc(I/e), where c is a constant,
approximately equal to 2, of operators from the small
set above [1,10].

1.2. QIP with trapped ions

Qubits that are encoded in the internal states of laser-
cooled and trapped ions are promising candidates as a
quantum computing platform [3]. Trappedions are well
isolated; thus the coupling of environmental noise to
their internal electronic states is weak. The long

coherence time attainable with atomic superpositions
has been long recognised and led to the development of
atomic time standards [11]. Manipulation of atomic
superpositions with electro-magnetic radiation has
been extensively studied [12]. Single atomic-qubit
rotations were demonstrated long before the emer-
gence of quantum information science (e.g. [13]).

In a seminal paper Cirac and Zoller proposed a
method to implement a CNOT gate between ion qubits
by using their long-range Coulomb interaction [14]. In
the last few years, different schemes for implementing
quantum gates that can serve as parts of a universal set
were theoretically suggested [15–19] and experimen-
tally demonstrated on trapped-ion systems with high
fidelity [20,21].

In this tutorial we review some of the current
methods for implementing a universal quantum gate
set on trapped ion qubits. Here we will focus on the
universal gate set suggested in [9], i.e. single qubit
rotations and two-qubit CNOT gates. In Section 2 we
review different ion qubit choices, in Section 3 we
outline methods of implementing single qubit rotations
on the various qubit choices. Finally, in Section 4 we
describe a method for implementing a two-qubit
entangling gate. Here we focus on a two-qubit phase
gate that is based on spin-dependent light forces.

2. The ion qubit

Quantum information is encoded in the internal
electronic levels of trapped ions. Ions with a single
electron in the valence shell have a relatively simple
level structure and are therefore well suited for this
purpose. The relatively manageable electronic level
structure also simplifies the laser-cooling of such
‘alkali-like’ ions. Once singly ionised, all the elements
with stable isotopes in group A II earth alkalies, Beþ,
Mgþ, Caþ, Srþ, and Baþ, are good candidate ions with
a single electron in the zero angular momentum
orbital, S, of the nth electronic level. All of these ions
have filled S and P orbitals at the (n 7 1) level and no
electrons in the D orbital of the (n 7 1) level, if they
are heavy enough to have one. All the radioactively
stable, singly ionised, group B II transition metals,
Znþ, Cdþand Hgþ, qualify, with (n 7 1) filled S, P,
and D orbitals and a single electron at the n S level.
Finally, the only singly ionised lanthanide with a single
electron in the valence shell is Ybþ, with filled (n 7 1)
S and P and (n 7 2) F orbitals and a single electron at
the n S level. The trapping and laser-cooling of all ions
mentioned above were demonstrated [22–30].

Since it is only singly ionised ‘alkali-like’ ions that
are currently used for QIP purposes, it is worthwhile
reviewing common features in their internal level
structure. Figure 4 shows a schematic diagram of the

Figure 3. Quantum circuits of universal gate sets. (a) The
Toffoli gate is a controlled rotation. The state of a target
qubit is rotated only if the state of both control qubits is in
the logical j"i. (b) Single-qubit rotations and controlled-not
(CNOT). In a CNOT gate the state of a target qubit is
rotated by 1808 around the x-axis, if the state of the control
qubit is in the logical j"i.
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first few levels of such ‘alkali-like’ ions. The ground
electronic state of the valence electron is ns2S1/2, where
n is the valence shell principal quantum number and S
is the zero angular momentum orbital. The electron
can be optically excited to the P orbital via an electric–
dipole transition. Owing to spin–orbit coupling, the P
orbital splits into two fine-structure levels: np2P1/2 and
np2P3/2. Table 1 lists the S1/2 ! P1/2 and S1/2 ! P3/2

transition wavelengths and the natural spectral width
of the P1/2 levels for the various ions.

Earth alkaline ions heavy enough to have a D
orbital in the (n 7 1) shell (Caþ, Srþ, and Baþ, as well
as Hgþand Ybþ), have the nd2D3/2 and nd2D5/2 fine-
structure levels between the S and the P levels. Since
the S and the D orbitals both have even parity, the
electric–dipole transition is forbidden and the two
levels are coupled only through their electric–quadru-
pole moment. The lifetime of the D levels (and hence
the natural width of the S ! D transition) is therefore
long (narrow), and typically of the order of one second
(one Hz). The D ! P transition is an electric dipole
transition and therefore, once excited to the P level, the
electron can decay both to the states in the S as well as
in the D levels with a fixed branching ratio, f. The
S! P transition is typically used for laser-cooling and
other QIP manipulations, and in those ions that have
low-lying D levels, re-pumping lasers, e.g. with a
wavelength that is tuned to the D ! P transition, are

necessary to prevent the ion from remaining in the
long-lived D manifold.

In odd isotopes or even isotopes with non-zero
nuclear spin, I 6¼ 0; all the above levels are split into
two or more hyperfine manifolds. A small magnetic
field usually splits these manifolds further into different
Zeeman sub-levels.

A qubit is best encoded in a pair of levels that are as
resilient as possible to decay and decoherence. Since
levels in the P manifold have a very short lifetime (in
the few nS range), qubit levels are typically encoded in

Table 1. A list of atomic constants of several of the
hyperfine-ion qubits. Here I is the nuclear spin, g is the
natural width of the P1/2 level, Dhf is the S1/2 hyperfine
splitting, l1/2 and l3/2 are the S1/2 ! P1/2 and S1/2 ! P3/2

transition wavelengths, respectively.

Ion I g/2p (MHz)
Dhf

(GHz) l1/2 (nm) l3/2 (nm)

9Beþ 3/2 19.6 1.25 313.1 313.0
25Mgþ 5/2 41.3 1.79 280.3 279.6
43Caþ 7/2 22.5 3.23 396.8 393.4
67Znþ 5/2 62.2 7.2 206.2 202.5
87Srþ 9/2 21.5 5.00 421.6 407.8
111Cdþ 1/2 50.5 14.53 226.5 214.4
137Baþ 3/2 20.1 8.04 493.4 455.4
171Ybþ 1/2 19.7 12.64 369.4 328.9
199Hgþ 1/2 54.7 40.51 194.2 165.0

Figure 4. A diagram of the typical level structure of singly ionised ‘alkali-like’ ions. The ground electronic state is the zero
angular momentum orbital, S, of the n th electronic level. An electric–dipole allowed transition to the P orbital (typically in the
blue-ultraviolet range) allows for laser-cooling, optical pumping and state-selective fluorescence detection. In those ions that are
heavy enough to have a D orbital in the (n 7 1) th electronic level, a narrow electric–quadrupole transition allows for the
realisation of an optical qubit.
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two S1/2 states or a S and D superposition. Three
typical choices for an ion qubit are discussed below.

2.1. Zeeman qubit

Encoding a qubit in a pair of S1/2 levels has the
advantage of a practically infinite spontaneous decay
time. In ions where I ¼ 0, the only states in the S1/2

level are the two Zeeman states corresponding to the
valence electron spin pointing parallel and anti-parallel
to the external magnetic field direction [31]. The energy
splitting between the qubit levels is gs mB B ’ 28 MHz
mT71. Here gs is the bound electron g-factor, mB is
Bohr magneton and B is the magnetic field magnitude.
An advantage of choosing this qubit is that since the
qubit levels are the only levels in the S1/2 manifold,
optical pumping out of the qubit manifold does not
occur. One obvious drawback of the Zeeman qubit is
that since the energy difference between the two qubit
states depends linearly on the magnetic field, magnetic
field noise will cause dephasing. Furthermore, at low
magnetic fields the frequency separation between the
two qubit states is smaller than the P level natural
spectral width and therefore state selective fluorescence
cannot be directly applied for qubit state detection.

2.2. Hyperfine qubit

In odd isotopes or even isotopes with non-zero nuclear
spin, I 6¼ 0, the S1/2 is split into (4I þ 2) different mF

states in two hyperfine manifolds: F ¼ I + 1/2. A
qubit can be encoded in any pair of hyperfine states
[32–36]. The manifolds are split at a low magnetic field
by Dhf ¼ (I þ 1/2)Ahf, where Ahf is the ground-state
hyperfine constant, which for all the ions discussed
here is in the few GHz range. Table 1 lists Dhf values
for various hyperfine ion qubits. A small magnetic field
removes the degeneracy between different Zeeman
states in each of the two manifolds. The Zeeman shift
at a low magnetic field is given by gF mB BmF, and at all
magnetic field levels it can be analytically calculated
from the Breit–Rabi formula [37]. A clear advantage of
the hyperfine qubit choice is that pairs of levels can be
found such that their energy separation does not
depend, to first order, on the magnetic field. The most
commonly used example is the jF ¼ I þ 1/2,mf ¼ 0i
and jF ¼ I 7 1/2,mf ¼ 0i states at zero magnetic field,
often referred to as the ‘clock transition’ states.
Working exactly at zero magnetic field is not feasible
since the degeneracy between different Zeeman states
has to be removed to enable spectroscopic addressing
of various transitions. Consequently, at a low non-zero
field, B0, the magnetic field dependence of the clock
transition is first order but small. At certain magnetic
fields, large enough such that the magnetic dipole

energy is comparable with �hAhf, other transitions can
be found that are first order insensitive to magnetic
field variations [38].

2.3. Optical qubit

Ions that have a low-lying D level have the possibility
of encoding a qubit into levels connected by the S! D
optical transition. Since the lifetime of the D level is
typically of the order of a second, the fundamental
limit to the optical qubit coherence time is long relative
to a typical operation time. However, in contrast with
the two previously discussed qubit choices where the
local oscillator is in the radio frequency (RF) or
microwave range, here the local oscillator is a laser.
The coherence time of the qubit is therefore also
limited by a finite laser linewidth. A laser linewidth
comparable to the D level natural spectral width (’ 1
Hz) requires laser fractional frequency stability of the
order of 10714, a non-trivial task. This difficulty
renders the optical ion qubit choice less common. In
ions with I 6¼ 0 both the S and the D levels are
hyperfine split. Since the P1/2 level of ions cannot
decay to the D5/2, an optical qubit that is encoded on
the S1/2 ! D5/2 transition enables state-selective
fluorescence on the S1/2 ! P1/2 transition (see Section
2.4). Table 2 lists the S1/2 ! D5/2 transition wave-
lengths, the D5/2 level lifetime, and f, the branching
ratio of P ! S/P ! D spontaneous decay for the
various ions.

2.4. Initialisation and detection

All the ion qubit choices mentioned above are
initialised to a fiducial state using optical pumping
techniques [3]. Qubit state detection is typically
performed using state-selective fluorescence [3,39,40].
Photons are scattered from a laser beam resonant with
a transition connecting one of the qubit states to a
short-lived state. The scattered light is collected on a
photo-detector. Whether or not the photo-detector
measures light indicates the state onto which the ion
qubit superposition collapses. For optical ion qubits,

Table 2. The table lists the S1/2 ! D5/2 transition
wavelengths, the D5/2 level lifetime and, f, the branching
ratio of P ! S/P ! D spontaneous decay in various optical
ion qubits.

Ion lD5/2 (nm) D5/2 lifetime (s) f

Ca þ 729.1 1.17 1/17
Sr þ 674.0 0.36 1/14
Ba þ 1761.7 30 1/3
Yb þ 411.0 0.007 1/290
Hg þ 281.6 0.1 1/700
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state-selective fluorescence is straightforward since the
two qubit levels are optically separated. For example,
the ion scatters photons from a laser beam that is
resonant with the S1/2 7 P1/2 transition [41–43]. The
ion cannot decay from the P1/2 to the D5/2 level
and therefore if the qubit superposition collapses on
the D5/2 state, then no photons are detected during the
detection period. Errors in detection here will be due to
background photon counts and the finite spontaneous
decay probability of the D5/2 state during the detection
period. Hyperfine qubit levels are typically separated
by much more than the P level’s natural width
(typically a few GHz as compared with a few tens of
MHz; see Table 1). State-selective fluorescence is
therefore possible on a cycling transition, i.e. a
transition in which, due to selection rules, the P level
decays only to a single S state [40,44]. Errors in this
case will be mostly due to off-resonance coupling of the
detection laser to unwanted states [38]. A fairly large
magnetic field is needed in order to separate the two
states of a Zeeman qubit by much more than the P
level natural width. Hence, state-selective fluorescence
cannot be used directly. Detection is typically per-
formed in Zeeman qubits by shelving one of the qubit
states on a spectrally distant meta-stable state, e.g. one
of the D5/2 states [45–47]. Other detection schemes that
use quantum logic protocols to enhance detection
efficiency have been demonstrated as well [48,49].

3. Single qubit gates

Single-ion qubit gates have been extensively reviewed
(e.g. [3,4,50]). Here we initially provide a general
description of single-ion qubit gates followed by a
discussion of specific implementations for the various
qubit choices.

The qubit levels are coupled by electro-magnetic
(e.m.) travelling plane waves, i.e. we assume that the
ion is placed in the far-field of the e.m. radiation. This
assumption does not always hold, however, and there
have been several proposals to implement ion qubit
gates using near-field e.m. fields [3,51–55]. The qubit
evolution is determined by the time-dependent
Hamiltonian,

ĤðtÞ ¼ Ĥ0 þ V̂ðtÞ: ð2Þ

Here Ĥ0 is the free Hamiltonian of a spin connected to
a 1D harmonic oscillator (h.o.),

Ĥ0 ¼
1

2
�ho0ŝz þ �homðâyâþ 1

2Þ; ð3Þ

where o0 is the qubit levels frequency separation
and om is the h.o. frequency. The time-dependent

periodic potential V̂ðtÞ is induced by coupling to the
e.m. wave,

V̂ðtÞ ¼ �hO0ðŝþ þ ŝ�Þcos ðkx̂� otþ fÞ: ð4Þ

The coupling constant O0 is also known as the Rabi
frequency and ŝþ=� are the spin raising/lowering
operators,

ŝ� ¼ ŝx þ iŝy ¼ j #ih" j;
ŝþ ¼ ŝx � iŝy ¼ j "ih# j: ð5Þ

The wave-vector, frequency, and phase of the e.m.
plane wave are k, o, and f, respectively. The position
operator can be written in terms of the h.o. creation
and annihilation operators, â and ây,

kx̂ ¼ kxeq þ kx0ðây þ âÞ � kxeq þ Zðây þ âÞ: ð6Þ

The phase owing to the equilibrium position of the ion,
kxeq, can be absorbed in f. Here k is the projection of
k along the trap direction, x0 ¼ (�h/2mom)

1/2 is the h.o.
ground-state width and Z ¼ kx0 is the Lamb–Dicke
parameter. Moving to the interaction representation
and using the rotating-wave approximation (RWA),
the interaction Hamiltonian is

HintðtÞ ¼ �hO0=2ŝþexp�
iZ
�
â exp ð�iomtÞ þ âyexp ðiomtÞ

��
exp ½iðf� dtÞ� þH:C: ð7Þ

The RWA keeps only terms that vary slowly in time
and contribute the most to time evolution under Ĥint.
Expanding the exponent in Equation (7) we obtain
terms oscillating at multiples of om. When d ¼ som,
with integer s, only one of these terms is in resonance
and dominantly contributes to the ion qubit time
evolution. Here the Rabi frequency is modified to

On;nþs ¼ Onþs;n ¼ O0hnþ sjexp ½iZðâþ âyÞ�jni
� O0Dnþs;n;

ð8Þ

indicating the coupling of the two qubit levels and the
n and n þ s h.o. levels. The coupling is modified by
Dnþs,n, the Debye–Waller factor. For the 1D harmonic
oscillator the Debye–Waller factor is analytically
calculated to be

Dnþs;n ¼ exp ð�Z2=2ÞZjsj n<!

n>!

� �1=2

Ljsjn<ðZ
2Þ: ð9Þ

Three different cases are commonly used. The carrier
transition occurs when s ¼ 0 and the two qubit levels
are coupled without changing the h.o. motional state.
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The Hamiltonian in the interaction representation is
given by

Ĥcarrier ¼
�hOn;n

2
ŝþexp ðifÞ þ ŝ�exp ð�ifÞð Þ: ð10Þ

The red sideband (RSB) transition is the transition for
which d ¼ 7om (s ¼71). Here, when the ion qubit
spin state is raised, a single h.o. quantum of motion is
annihilated. The interaction Hamiltonian for the RSB
is

ĤRSB ¼
�hOn�1;n

2
âŝþexp ðifÞ þ âyŝ�exp ð�ifÞ
� �

: ð11Þ

This Hamiltonian is identical to the well-known
Jaynes–Cummings Hamiltonian in quantum-optics.
The third case is that of the blue-sideband (BSB)
transition, where d ¼ þ om (s ¼ þ 1) and the raising
of the qubit spin is accompanied by creating a single
h.o. quantum,

ĤBSB ¼ Ĥint ¼
�hOnþ1;n

2
âyŝþexp ðifÞ þ âŝ�exp ð�ifÞ
� �

:

ð12Þ

Note that both the BSB and the RSB transitions
entangle the qubit spin with its motional state.

When the deviation of the ion from its average
position is much smaller than the radiation wave-
length, Zðhðây þ âÞ2iÞ1=2 � 1, the Debye–Waller factor
(9) can be expanded using Z as a small parameter. In
this regime, known as the Lamb–Dicke regime, the
Rabi frequencies of the three cases discussed above can
be approximated by

On;n ’ O0 1� ðnþ 1=2ÞZ2
� �

; ð13Þ

On�1;n ’ O0n
1=2Z; ð14Þ

Onþ1;n ’ O0ðnþ 1Þ1=2Z: ð15Þ

The carrier Rabi frequency On,n is corrected by (n þ 1/
2)Z2, a correction that is small in the Lamb–Dicke
regime. The RSB and BSB Rabi frequencies depend on
the ion motion to a greater extent and are proportional
to Zn1/2and Z(n þ 1)1/2, respectively. Note that the
RSB Rabi frequency vanishes for n ¼ 0 since no h.o.
quanta can be further extracted.

The dependence of the Rabi frequencies on Z and
n can be understood by considering the effect of
photon recoil on the overlap between different h.o.
wavefunctions. Look at the overlap between a
momentum-displaced h.o. ground-state, a Gaussian,
and either a ground-state (carrier transition) or the

first h.o. excited state (BSB transition), shown in
Figure 5. Here the wavefunction is plotted versus
momentum in units of 2p�h/x0. In these units the h.o.
ground-state width is unity whereas the momentum
displacement is Z � 1. The overlap between the
ground-state and the displaced ground-state is 17Z2/
2 since the Gaussians are displaced by Z around their
maximal overlap point. The overlap between the
displaced Gaussian and the first excited state
increases linearly with Z since the Gaussian peak is
displaced along the excited state’s linear slope. The
dependence on n results from the fact that the
distance between nodes in the h.o. wavefunction,
and therefore also the width of each node is roughly
�hn1/2/x0. The overlap between n and the displaced
n þ 1 wavefunctions would therefore also be propor-
tional to n1/2. The n1/2 dependence can also be
thought of as resulting from bosonic amplification.

To avoid entanglement of the ion qubit spin with
its motion, on-resonance carrier transitions are used to
drive single qubit gates. Here the interaction Hamilto-
nian, Equation (10), is time independent and the qubit

Figure 5. Momentum transfer in the Lamb–Dicke regime.
(a) The overlap between a harmonic-oscillator (h.o.) ground-
state and the same ground-state displaced by Z, owing to
photon recoil, decreases by Z2/2. Here, we use the units where
x0, the ground-state width equals unity. (b) The overlap
between the h.o. first excited state and the recoil displaced
ground-state increases linearly with Z.
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time evolution in the interaction representation is given
by

jCðtÞiint ¼ exp ð�iĤintt=�hÞjCð0Þiint
¼ exp ð�iys � nÞjCð0Þiint � R̂ðy;f; 0ÞjCð0Þiint:

ð16Þ

Here y ¼ On,n t and the Rabi vector direction are
given by the unit vector n ¼ cosf; sinf; 0ð Þ pointing
in the Bloch sphere equatorial plane. The rotation
matrix R̂ð0;f; yÞ represents the spinor rotation
operator,

R̂ 0;f; yð Þ ¼ cos y=2ð Þ �ieifsin y=2ð Þ
�ie�ifsin y=2ð Þ cos y=2ð Þ

� 	
: ð17Þ

The origin of the coupling, represented by O0, can vary
and depends on the ion qubit choice. Next, we describe
three different single-qubit gate coupling implementa-
tions for the different ion qubit types.

Figure 6. Magnetic dipole coupling between the two states of a Zeeman qubit in a single trapped88Srþion. (a) A diagram of the
Zeeman qubit levels. (b) A Rabi-nutation curve. The probability of finding the ion-qubit in the j"i state oscillates vs. time.

3.1. Magnetic dipole coupling

Zeeman or hyperfine qubits have a separation between
their levels that is in the RF or microwave range. The
two qubit states represent different directions or
magnitudes of a magnetic dipole and can therefore
be coupled by inducing magnetic dipole transitions.
The time-varying potential in the presence of an
oscillating magnetic field is

VðtÞ ¼ �m̂ � B0 cos ðkx̂� otþ fÞ: ð18Þ

The magnetic moment of the electron is
m̂ ¼ mBðgSŜþ gLL̂þ gIÎÞ, where Ŝ, L̂, and Î are the
electronic spin, the electronic orbital angular momen-
tum, and nuclear spin operators, respectively, and gS,
gL and gI are the corresponding g-factors. The Rabi
frequency here is given by O0 ¼ h# jm̂ � B0j #i. For a
Zeeman qubit m̂ ¼ gSmBŝ. The Rabi frequency will
maximise to O0 ¼ 2p 6 28B0 MHz when B0 (in mT) is
perpendicular to z, e.g. B0 ¼ B0x. Figure 6 shows the
probability of finding a Zeeman qubit, in a 88Srþ ion,
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oscillating versus time, due to magnetic-dipole cou-
pling. Since for different ion qubit choices and
quantisation magnetic field magnitudes the qubit
separation frequency varies between a few MHz and
a few GHz, the wavelength of B0, l ¼ 1/jkj will vary
between 0.01 and 1000 m, where the typical x0 is
between 10 and 100 nm. The Lamb–Dicke parameter
in this case will be negligibly small, resulting in a
carrier Rabi frequency that is almost nearly indepen-
dent of the ion motion. The disadvantage is that
sideband transitions cannot be efficiently driven.
Another disadvantage is that this way single-ion qubit
addressing is impossible. The fidelity of magnetically
driven single-qubit gates is mainly limited by the

amplitude and phase noise of the magnetic RF field at
the position of the ion.

3.2. Two-photon Raman coupling

Two-photon Raman transitions employ a laser as an
optical ‘carrier’ of the RF qubit separation frequency.
In this scheme, photons are coherently transferred
between two optical modes with frequencies that are
separated by o0 þ som as illustrated in Figure 7. The
laser frequencies are off-resonance, by a detuning Di,
with optically allowed transitions from the qubit levels
to several excited levels, ei. With the qubit choices
mentioned above, ei are typically the different states in

Figure 7. A diagram showing Raman coupling. The Raman beams are detuned from transitions to excited states and the
difference in energy between the two beams has to match the energy separation between the two qubit states. In order to excite
ion motion, the two Raman beams cannot be co-propagating. A common choice is for the beams to cross at right angle with the
difference in their wave-vectors parallel to the trap axis, as shown in the figure.
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the P1/2 and P3/2 levels. Thus, the electric fields of the
two Raman modes can be written as

Er=b ¼ er=bEr=bcos ðkr=b � x̂� or=btþ fr=bÞ; ð19Þ

where red and blue (r/b) correspond to the lower and
higher frequency fields, respectively, and e is a unit
vector in the field polarisation direction. To fully solve
for the ion evolution, the amplitudes associated with
the multiple levels involved have to be calculated.
However, when the detuning is significantly larger than
the coupling strength, the amplitude associated with
the optically excited states, ei, reduces as 1/Di and
oscillates at two time scales, Di, and a slow time scale
that adiabatically follows the ground-state amplitudes.
It is thus possible to ‘adiabatically eliminate’ the
amplitudes of the ei states and write the equations of
motion only in terms of the ground-state amplitudes
and their derivatives. The problem thus reduces to an
effective two-level problem involving only the qubit
levels. The effective Rabi frequency here is

O0 ¼
ErEb

4�h2

X
i

h" jd̂ � erjeiiheijd̂ � ebj #i
Di

: ð20Þ

The time-dependent potential would then reduce to
the form of Equation (4), with f ¼ fb 7fr and
k ¼ kb 7 kr. The carrier Hamiltonian in the RWA will
be

O0 ¼ Ĥint ¼
�hO0

2
Dn;nðŝþexp ðifÞ

þ ŝ�exp ð�ifÞÞ þ ðD" � D#Þŝz: ð21Þ

The first term on the rhs is identical to Equation (10).
The second term on the rhs is due to the difference in
the qubit levels’ light shifts induced by the off-
resonance Raman beams,

D#=" ¼
jErj2

4�h2

X
i

jh# = " jbd � erjeiij2
Di;r

þ jEbj2

4�h2

X
i

jh# = " jbd � ebjeiij2
Di;b

: ð22Þ

The differential light shift can be tuned to zero by
carefully choosing the beam polarisation and detuning.

The Lamb–Dicke parameter and therefore the
ability to impart momentum and the sensitivity of
the Rabi frequency to the ions’ motion depends on the
angle between the Raman beams. In order to efficiently
drive sideband transitions, the angle between the
Raman beams needs to be as large as possible and
the difference in their wave vector should be such that
k has a maximal projection along the trap axis. For the

purpose of driving single qubit rotations it is desirable
to avoid changes in the Rabi frequency owing to ion
motion and therefore often a co-propagating Raman
beam configuration is chosen. Raman beams can be
focused to a size limited by the (optical) diffraction
limit, typically of the order of a wavelength, and
therefore single-ion qubit addressing is in principle
possible.

Similarly to the magnetic dipole transition case,
errors are caused by classical noises. Laser intensity
noise and beam pointing fluctuations result in noise in
the Rabi frequency. Phase and frequency noise
between the Raman frequency difference and the ion
qubit frequency separation also reduces the gate’s
fidelity. However, in this case, in addition to classical
noises, the quantum nature of light will further
contribute to the gate error [56]. For laser beams the
effect of quantum noise on the interaction with an
atom is attributed to spontaneous scattering of
photons. Ground-state coherence is only affected by
Raman spontaneous scattering events in which a
population is transferred between different ground-
state levels [57], or when the scattering amplitude from
the two qubit states are different [58]. The spontaneous
Raman scattering probability during a single qubit
gate contributes to the gate error. This contribution
reduces for larger Di values.

3.3. Optical quadrupole coupling

Optical qubits are manipulated with optical fields.
Consider an optical ion qubit encoded in superposi-
tions of the jS1/2, mi and jD5/2, m

0i states. Since the two
qubit states have the same parity, it is only electric
quadrupole transitions, which require an electric field
gradient across the ion, which couple the two levels.
Given an optical electric field,

E ¼ eE0cos ðk � x̂� o0tþ fÞ ð23Þ

the electric quadrupole Rabi frequency is given by

O0 ¼
eE0

2�h
hS1=2;mjðe � rÞðk � rÞjD5=2;m

0i: ð24Þ

Figure 8 shows the response spectrum of an optical
qubit in a single 88Srþ ion to a narrow line width laser
scanning across its transition frequency. Red and blue
side-bands are apparent on both sides of the carrier
transition.

Unlike two-photon Raman transitions, here the
Lamb–Dicke parameter cannot be tuned to zero.
Errors in optical quadrupole single qubit gates will
result from classical noises in the intensity and
frequency of the driving laser, and in addition, from
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a thermal component in the ions’ motion. Another
error results from the finite probability of the D5/2 level
to decay during the gate. However, since the lifetime of
the D levels is typically ’ 1 s and much larger than the
gate time, this error is typically small.

4. Two-qubit gates

Thus far, we considered only single-qubit rotations.
In addition to single-qubit gates, the standard
universal gate set includes CNOT entangling opera-
tions. CNOT gates rotate the state of a target qubit
around the x-axis by 1808, depending on the logical
state of a second, control, qubit. Lexicographically
ordered, a general two-qubit state is written as the
four vector

aj ""i þ bj "#i þ gj #"i þ dj ##i ¼

a
b
g
d

2664
3775: ð25Þ

The CNOT operation is then represented by the
matrix

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

2664
3775

a
b
g
d

2664
3775 ¼

a
b
d
g

2664
3775: ð26Þ

Since the roles of the target and control qubits are
different, implementing this gate on an array of
trapped-ion qubits requires a physical operation that

Figure 8. Optical electric–quadrupole coupling between the two states of an optical qubit in a single trapped 88Srþion. (a) A
diagram of the optical qubit levels. (b) A spectral response of the ion to the laser frequency. On both sides of the transition carrier
are red and blue sidebands corresponding to emission and absorption of longitudinal (z) or radial (r) quanta of motion.
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can distinguish between the two. An entangling
operation that is symmetric with respect to both ions,
appears to be an easier operation to implement.
Rotating the target qubit by a Hadamard rotation,
which up to a global phase can be composed from two
consecutive rotations Ĥ ¼ exp ðip=2ÞR̂ð0; 0; pÞR̂ð0;
p=2; p=2Þ, both before and after the gate, we obtain
the operation

Î1 � Ĥ2

� � 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

2664
3775 Î1 � Ĥ2

� �
¼

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �1

2664
3775:

ð27Þ

Here, a p phase shift is imprinted on the j##i state with
respect to the three other collective spin states. Note
that since this gate and the CNOT are connected via
single-qubit rotations, they are equivalent in terms of a
universal gate set. A subsequent p/2 rotation of both
qubits around the z-axis yields

R̂1 p=2; 0; p=2ð Þ � R̂2 p=2; 0; p=2ð Þ

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �1

26664
37775

¼ exp �ip=2ð Þ

1 0 0 0

0 i 0 0

0 0 i 0

0 0 0 1

26664
37775: ð28Þ

Here, a p/2 phase is imprinted on anti-parallel spin
states with respect to parallel spin states.

Both examples above are entangling operations
that rely on imprinting a phase on certain collective
spin states. It is important to emphasise that whether a
certain entangling operation is a phase gate or not
depends on the choice of basis in which it is presented.
As an example, the last operation, written in the x
basis is,

½R̂1ð0; p=2; p=2Þ � R̂2ð0; p=2; p=2Þ�

1 0 0 0

0 i 0 0

0 0 i 0

0 0 0 1

26664
37775

R̂1ð0; p=2;�p=2Þ � R̂2ð0; p=2;�p=2Þ
� �

¼ exp ðip=4Þ
21=2

1 0 0 �i
0 1 �i 0

0 �i 1 0

�i 0 0 1

26664
37775 � Û; ð29Þ

a collective spin flip operation,

Ûj ##i ¼ exp ð�ip=4Þ
21=2

j ##i þ ij ""ið Þ; ð30Þ

Û2j ##i ¼ j ""i: ð31Þ

In fact, most of the proposed implementations of an
entangling gate for trapped-ion qubits can be thought
of as a phase gate in one basis and a collective spin-flip
operation in another.

4.1. Quantum phases in cyclic motion

Entangling phase gates change certain two-qubit
collective spin states only by phase factor multi-
plication. One of those collective spin states undergoes
cyclic evolution during the gate, at the end of which, it
returns to its initial state with an acquired phase. The
phase factors that accompany the cyclic evolution of a
quantum state were first studied by Berry for adiabatic
state evolution [59] and later by Aharonov and
Anandan for the general case [60]. Following [60], let
us consider a general quantum state undergoing a
cyclic evolution with a period t,

jCðtÞi ¼ exp ðifÞjCð0Þi: ð32Þ

The state evolves according to the time-dependent
Schrödinger equation,

ĤðtÞjCðtÞi ¼ i�hðd=dtÞjCðtÞi: ð33Þ

We define the ‘bare’ state,

jFðtÞi ¼ exp ½�ifðtÞ�jCðtÞi; ð34Þ

such that f(t) 7 f(o) ¼ f. We can now write a
differential equation for f,

df

dt
¼ � 1

�h
hCðtÞjĤðtÞjCðtÞi þ ihFðtÞ




 d
dt




FðtÞi: ð35Þ

The phase accumulated by jCi at time t is given by
integrating Equation (35),

f ¼ � 1

�h

Z t

0

hCðtÞjĤðtÞjCðtÞidt

þ i

Z t

0

hFðtÞ



 d
dt




FðtÞidt � fD þ g:
ð36Þ

There are two different contributions to the total
phase. The first term on the rhs in Equation (36) is fD,
the dynamic phase, i.e. the time integration of the
energy expectation value divided by �h. The second term

542 R. Ozeri

D
ow

nl
oa

de
d 

by
 [

W
ei

zm
an

n 
In

st
itu

te
 o

f 
Sc

ie
nc

e]
 a

t 0
0:

53
 0

9 
N

ov
em

be
r 

20
11

 



on the rhs is the geometric part of the phase, g. This
part is independent of the exact Hamiltonian under
which the state evolves but rather on its evolution path
in parameter space. Assuming that at every time
instance the wavefunction can be mapped onto a
parameter space a, jF(t)i: jFai, then g can be written
as an integral along a closed a-contour,

g ¼ i

Z t

0

D
FðtÞ




 d
dt




FðtÞE dt ¼ i

I
c

hFajrajFai � da :

ð37Þ

To illustrate the geometric origin of g, consider a
wavefunction evolving around the closed contour in
parameter space, as shown in Figure 9. The infinite-
simal phase difference, Dg between jFai and jFa þ Dai is
defined as

exp ð�iDgÞ ¼ hFajFaþDai
jhFajFaþDaij

: ð38Þ

Taking the log of both sides of Equation (38) yields

� iDg ’ hFajrajFai � da: ð39Þ

The geometric phase is thus calculated by integrating
Equation (39) around the a-contour yielding Equation
(37). By defining the vector potential

Aa ¼ ihfajrajfai; ð40Þ

we can write an effective ‘magnetic field’,

Ba ¼ r� Aa: ð41Þ

Using Stokes theorem we then express the geometric
phase as the effective magnetic field flux through the
parameter space area, S,

g ¼ �
Z Z

S

B � n dS: ð42Þ

Here n is the unit vector normal to S. The encirclement
of a finite area in parameter space is therefore a
necessary condition for accumulating a geometrical
phase in cyclic motion.

An ion qubit is a (pseudo-) spin connected to a
harmonic oscillator. A phase gate such as (28) can be
implemented by acquiring either a dynamic or a
geometric phase or both, during a cyclic motion either
in spin configuration space or in the h.o. phase space.
Cirac and Zoller’s seminal 1995 proposal for an
entangling gate with trapped-ion qubits [14] imple-
ments a phase gate where the phase is geometric and
the cyclic motion is in spin configuration space. A later
proposal by the same authors uses a dynamic phase
acquired during a cyclic motion in phase space [61]. In
the following section we will concentrate on a class of
gates, initially proposed by Sørensen and Mølmer [15]
and independently by Milburn and co-authors [16],
which uses spin-dependent forces to acquire a sum of
geometric and dynamic phases during a cyclic motion
in h.o. phase space.

4.2. Driven harmonic oscillator

A classical harmonic oscillator evolves periodically in
phase space under the influence of a force, F(t) ¼ F0

cos(ot), oscillating at a frequency slightly off-reso-
nance from its harmonic frequency, o ¼ om7d.
Starting at rest, x(t ¼ 0) ¼ p(t ¼ 0) ¼ 0, the position
and momentum of the oscillator at subsequent times
are given by,

xðtÞ ¼ F0=m

o2 � o2
m

cos ðotÞ � cos ðomtÞ½ � ð43Þ

pðtÞ ¼ F0

o2 � o2
m

om sin ðomtÞ � o sin ðotÞ½ �: ð44Þ

Initially the driving force increases the oscillation
amplitude until, at time t ¼ p/d, the force and the
oscillator are out of phase. From this time onward
the force dampens the oscillator until, at time t ¼ 2p/d,
the oscillator returns to its initial state. To make an
analogy with the quantum case, we normalise the h.o.
position by 2x0 and the momentum by p0 : �h/x0 and
move to a frame rotating at the oscillator frequency.
Neglecting terms that are proportional to d/om we
arrive at

Figure 9. A wavefunction evolving around a closed contour
in parameter space. The two circles represent the
wavefunction at a and a þ Da.
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x0ðtÞ ¼ xðtÞ
2x0

cos ðomtÞ �
pðtÞ
p0

sin ðomtÞ

� F0x0
2�hd

1� cos ðdtÞ½ �; ð45Þ

p0ðtÞ ¼ xðtÞ
2x0

sin ðomtÞ þ
pðtÞ
p0

cos ðomtÞ

� F0x0
2�hd

sin ðdtÞ½ �: ð46Þ

We define the complex function a(t) ¼ x0(t) þ ip0(t).
The h.o. oscillator motion in the complex plane is
along the curve

aðtÞ ¼ F0x0
2�hd

1� exp ðidtÞ½ �: ð47Þ

The h.o. therefore periodically evolves around a circle
in the complex plane, the area of which is

S ¼ p
F0x0
2�hd

� 	2
: ð48Þ

We now turn to solving the quantum, driven, harmonic
oscillator. The quantum Hamiltonian of a driven h.o.
is

H ¼ �homðâyâþ 1=2Þ þ FðtÞx̂ � H0 þ VðtÞ: ð49Þ

Note that here we assume that the force is spatially
uniform and therefore it does not vary across the h.o.
wavefunction. Moving to the interaction representa-
tion and using the RWA we write i�h(d/dt)jCiI ¼
VIjCiI, with

VI ¼
F0x0
2

âyexp ðidtÞ þ âexp ð�idtÞ
� �

: ð50Þ

VI does not commute with itself at different times;
however, for a short enough Dt, we can still write

jCðtþ DtÞiI ¼ exp � i

�h
VIDt

� �
jCðtÞiI

¼ exp ðDaây þ Da?âÞ
h i

jCðtÞiI
� D̂ðDaÞjCðtÞiI; ð51Þ

where D̂ðDaÞ is the displacement operator,

D̂ðaÞj0i ¼ jai ¼ exp � 1

2
jaj2

� �X1
n¼0

an

ðn!Þ1=2
jni: ð52Þ

When operating on the h.o. ground-state the displace-
ment operator forms coherent states of motion. Here
the infinitesimal displacement is

DaðtÞ ¼ � i

2�h
F0x0 exp ðidtÞDt � ½Dx=2x0 þ ip=p0�:

ð53Þ

The real and imaginary part of the displacement can be
identified with its position and momentum parts,
respectively. To add two infinitesimal displacements,
we use the Baker–Hausdorff formula,

exp ðÂÞ exp ðB̂Þ ¼ exp ðÂþ B̂Þexp
�
1

2
½Â; B̂�

�
; ð54Þ

for operators Â and B̂ that commute with their
commutator, ½Â; ½Â; B̂�� ¼ ½B̂; ½Â; B̂�� ¼ 0. We thus get

D̂ðaÞD̂ðbÞ ¼ D̂ðaþ bÞ exp ½i Imðab?Þ�: ð55Þ

The displacement operator can accordingly be re-
written as

Û t ¼ 0; tð Þ ¼ D̂
XN
i¼1

Dai

 !

exp i Im
XN
j¼2

Daj
Xj�1
k¼1

Dak

 !	" #( )

¼ D̂ að Þexp i Im

I
a 	 da

� �
; ð56Þ

with, a ¼
PN

i¼1 Dai. The total displacement at time, t, is
therefore,

aðtÞ ¼
Z t

o

DaðtÞdt ¼ � i

2�h

Z t

o

F0x0 exp ðidt0Þdt0

¼ F0x0
2�hd
ð1� exp ðidtÞÞ: ð57Þ

The quantum wavefunction and the classical h.o.
therefore follow an identical trajectory in phase space,
illustrated in Figure 10. As in the classical case, after
time tg ¼ 2p/d, the h.o. wavefunction returns to its
initial state.

The total phase that is accumulated by the end of
the gate is

f ¼ Im

I
a? da ¼ p

2

F0x0
�hd

� �2

: ð58Þ

To implement the phase gate (28), the force
magnitude and detuning are adjusted such that
f ¼ p/2. Comparing the phase to the area encircled
in phase space during the gate, Equation (48), we
obtain

g ¼ 2S: ð59Þ
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A proportionality between the phase accumulated per
cycle and the area encircled by the wavefunction in
phase space suggests that the phase has a geometric
origin.

To make the connection with Equation (36) we
calculate the dynamic and geometric contributions to
f. The dynamic phase is simply

fD ¼ �
1

�h

Z tg

0

haðtÞjV̂IðtÞjaðtÞidt

¼ F0x0
2�h

Z 2p=d

0

ða?exp ðidtÞ þ a�idtÞ

¼ p
F0x0
�hd

� �2

¼ 2f: ð60Þ

The geometric part of the phase is

g ¼ i

I
c

hajrjai � da: ð61Þ

Here phase space is the parameter space (a complex
plane) and the wavefunction trajectory is parame-
terised by the complex displacement a. We evaluate the
integrand along the wavefunction path by

hajrjai � da ¼ hajaþ Dai � 1: ð62Þ

Coherent states are an over-complete basis of
wavefunctions and are therefore not mutually

orthogonal. The overlap between two coherent states
a and b is

hajbi ¼ exp � 1

2
ðjaj2 þ jbj2Þ þ a?b

� 	
: ð63Þ

We therefore arrive at

hajaþ Dai � 1 ’ 1

2
ða?Da� aDa?Þ ¼ i Imða?DaÞ;

ð64Þ

leading to the geometric phase

g ¼ �Im
I

a? da ¼ �f: ð65Þ

The total phase acquired during the gate is conse-
quently the sum of partially cancelling dynamic and
geometric contributions. Although of different origin,
the geometric and dynamic parts of the phase are
proportional to each other. The total phase, therefore,
is also proportional to the geometric phase and
accordingly, to the area encircled in phase space [62].
The fact that f depends on the wavefunction path in
phase-space rather than on dynamic properties of the
gate Hamiltonian contributes to the phase gate
robustness against noise.

Following Equation (40) we can define a vector
potential,

Figure 10. An illustration of the quantum driven harmonic-oscillator wavefunction trajectory through phase-space. The
oscillator is starting from the ground-state and is off-resonantly driven with a periodic force with amplitude F0. The area that the
oscillator is circulating in phase space is equal to S ¼ p [F0 x0 /2�hd]2.
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A ¼ ihajrjai ¼ �ImðaÞ;þReðaÞ; 0½ �: ð66Þ

The effective magnetic field (as in Equation (41)) is
then perpendicular to the complex plane, i.e. B ¼ Bzz
and constant,

Bz ¼
@ReðaÞ
@ReðaÞ þ

@ImðaÞ
@ImðaÞ ¼ 2: ð67Þ

By using the Stokes theorem, Equation (42), we again
find that the geometric phase equals minus twice the
phase-space area encircled, as in Equations (59) and
(65). The motion of the h.o. wavefunction in phase-
space (in the interaction representation) is therefore
analogous to the motion of a charged particle in a
uniform magnetic field. The acquired geometric phase
is therefore analogous to the Aharonov–Bohm phase.

4.3. Spin-dependent forces

Acquiring a phase is not sufficient for realising a two-
qubit phase gate such as in Equation (28). The phase
acquired and therefore also the wavefunction trajec-
tory through phase-space have to be dependent on the
collective two-qubit spin state. To this end, spin-
dependent forces have to be used.

Since light couples differently to different spin
states, it can be used to apply spin-dependent forces on
trapped-ion qubits. Spin-dependent forces can be
applied to Zeeman or hyperfine ion qubits by using
the differential light shift, Equation (22). Here, a
spatial variation in the light shift induces different
forces on ions in different collective spin states. Ions in
a collective spin superposition move along position-
momentum paths that are entangled with the different
spin states. Since the force evolution is cyclic, spin and
motion are disentangled at the end of the gate. Here,
since the different collective spin states are eigenstates
of ŝz � ŝz, the gate is referred to as a sz gate.

It is somewhat less trivial using the light shift, due
to coupling to a third level, to apply spin-dependent
forces to an optical ion qubit. This is because for a
given transition wavelength, when one of the qubit
levels is connected to a third level, only that level will
be light shifted. Forces on the two ion qubits will only
depend on one of the qubit states. Another example of
an ion qubit on which such sz gates fail are ‘magnetic
field insensitive’ qubits. Here, since the magnetic field
couples primarily to the electron spin, and to a far
lesser degree to the nuclear spin, ‘magnetic field
insensitive’ qubits have equal amplitudes of different
electron spin contributions to the two qubit states [63].
Light also couples primarily to the electron spin and
therefore the difference in light shifts is very small and
is mainly due to the small difference in detuning

between both qubit states. These small differential light
shifts are insufficient to efficiently drive an entangling
gate. Entangling phase gates on the two ion qubits
mentioned above are possible, however, when differ-
ential forces are applied on spin states that lie on the
Bloch sphere equatorial plane. In the measurement
basis, the action of these gates is similar to Equation
(30). Since this gate is a phase gate in the basis of
eigenstates of ŝf � ŝf, where ŝf ¼ cosfŝx þ sinfŝy,
i.e. f is the angle form the positive x-axis, the gate is
often referred to as a sf gate.

4.4. rz gates

In the case of magnetic field-sensitive Zeeman or
hyperfine qubits, sz gates can be driven with a pair of
beams similar to the single-qubit Raman gate case,
Equation (20). Here, however, the difference in
frequency between the beams is far from the qubit
transition frequency, o0, and is close to resonance with
the trap motional frequency, ob 7 or ¼ om þ d. In
the RWA, no terms are resonant and therefore no
direct coupling between the two qubit levels occurs.
Instead, the only effect of the light field is to shift the
two qubit levels by D"/#, given in Equation (22).

To form a spatially varying potential, the two
beams are crossed such that the vector difference of
their wavevectors, Dk ¼ kb 7 kr, is parallel to the axial
direction of the trap. By choosing beam polarisations
mutually perpendicular and with a magnetic field
direction that is perpendicular to both one obtains a
local polarisation of the light field that varies
periodically between right circular, linear, left circular,
a linear polarisation perpendicular to the previous, and
back to right circular, over a period of 2p/Dk. This
configuration is often referred to as the lin ? lin
configuration, known from Sisyphus cooling. The light
potential of each of the qubit levels can hence be
written as,

D#="ðx; tÞ ¼
1

2
ðD#=";þ þ D#=";�Þ þ

1

2
½D#=";þ � D#=";��

cos ðDk � x� Dotþ DfÞ: ð68Þ

Here D#/", þ and D#/",7 are the light shifts of the # and
" qubit levels owing to the presence of a right and left
circularly polarised field, respectively. The force on
each of the qubit levels is therefore,

F#="ðx; tÞ ¼ �
dD#="ðx; tÞ

dx

¼ �hk

2
½D#=";þ � D#=";�� cos ðDkx� Dotþ DfÞ:

ð69Þ
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With two equal-mass ions in the trap, there are two
normal modes of motion along the trap longitudinal
axis. The centre of mass (CM) mode, where the two
ions oscillate in phase, has an angular frequency that
equals that of a single ion, ocm ¼ om. The second
mode is the ‘stretch’ (ST) mode, where the two ions
oscillate out of phase, has an angular frequency of
ost ¼ 31/2om [64]. The position operator of each ion
can be written as,

x̂i ¼ xeq;i þ
xcm0

21=2
ðâycm þ âcmÞ 


xst0

21=2
ðâyst þ âstÞ; ð70Þ

where âycm (âcm) and â
y
st (âst) are the creation (annihila-

tion) operators of the CM and ST modes, respectively.
The root mean square of the ground-states’ spatial
spread of the two normal modes are xcm0 and xst0.
The þ (7) signs correspond to the ion with a positive
(negative) equilibrium x position. This sign change is
due to the ions’ opposite direction of motion in the ST
mode. When exciting the CM mode the total force is
the sum of forces on the two ions, and when exciting
the ST mode the total force is the difference in forces.
The treatment of a driven h.o. above assumes a
uniform force. In the Lamb–Dicke regime we neglect
the variation of the force (69) over the ions’
wavefunction spread, thus neglecting wavefunction
squeezing effects during the gate [65]. The force is
accordingly considered as uniform with a value given
by Equation (69) at the ions’ equilibrium position.

4.5. rf gates

As discussed in Section 4.3, it is hard to apply spin-
dependent forces to certain ion qubit realisations such
as optical-qubits or hyperfine clock-transition qubits
[63]. It is possible, however, to apply forces that will
depend on their superpositions. In particular, it is
possible to apply forces that will be equal in magnitude
but opposite in direction on the two qubit states:
jþfi ¼ 271/2(j"i þ exp(if)j#i and j7fi ¼ 271/2(j"iþ
exp(7if)j#i). Here, spin-dependent forces are applied
in a basis that lies in the equatorial plane of the initial
qubit (ion energy eigenstates) Bloch-sphere. As shown
in Equation (30), in the qubit basis this operation will
look like a collective spin rotation. This kind of gate
was initially proposed by Sørensen and Mølmer [15]
and demonstrated both on hyperfine as well as optical
qubits [21,66].

5. Summary

In this tutorial we reviewed several of the building
blocks necessary for QIP with trapped-ion qubits. We
focused on ways by which a universal quantum gate set

can be implemented, and in particular on quantum
gates which are driven by electro-magnetic fields in the
far-field region. Here, in order to impart momentum to
a cold ion, optical fields are needed. Use of optical
fields requires relatively narrow line-width lasers. Since
atomic transitions of ions are typically in the violet to
ultraviolet spectral regions, lasers are needed at this
wavelength range. The advent of gallium-nitride diode
lasers has significantly lowered the cost of near-UV
and violet laser systems. In fact, for some ion species
considered as quantum information carriers, such as
Caþor Srþ, all the necessary wavelengths for QIP
operations are available either directly, or with
frequency-doubled, diode laser systems. There are,
however, several difficulties and disadvantages in using
light fields as control fields for QIP. One difficulty is in
integrating light into a large-scale ion-trap architecture
[7]. Realistically, all the routing (e.g. with optical
fibres) and switching will have to be multiplexed into
the trap array structure. This is a non-trivial task and
several initial steps have been taken in this direction
[67]. Another disadvantage is that, although treated
here in a classical fashion, a light field (as well as any
other control field) is essentially a quantum field,
featuring quantum noise in its operation on a qubit.
Quantum noise in the operation of a certain control
field will pose a quantum limit to the operation’s
fidelity. In the operation of light fields on an atom, this
error can be thought of as originating from sponta-
neous scattering of photons during the gate operation
[56]. Optical light fields suffer from this type of error to
a much larger extent than do control fields in the radio-
frequency or microwave frequency range. It is im-
portant to note that our review is not at all exhaustive.
For example, in the last few years, alternative methods
have been suggested, with a few initial demonstrations,
in which a universal quantum gate set is performed on
trapped-ion qubits using only microwave fields [51]–
[55]. Here, momentum transfer to trapped-ions is
achieved with strong magnetic field gradients.

As mentioned in the introduction to this tutorial,
despite experimental realisation of all the basic
building blocks for a trapped-ion quantum computer,
there are many different difficulties that must be
overcome until a large-scale device is finally realised.
One such difficulty lies in the way decoherence, or
error, scales as a function of the quantum register size.
Without active error-correction, the error probability
in a quantum register after a given time would scale
exponentially with the register size, thus negating
large-scale quantum computing. Fortunately, it has
been shown that by using certain error-correction
protocols, and given that the error-probability per
operation is below a certain threshold, large scale
quantum computing is rendered fault-tolerant [68,69].
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This means that under these conditions, the error in a
quantum computation would be independent of the
register size or the number of computational steps. The
fault-tolerance threshold is not cast in stone and
depends on many parameters such as the exact noise
mechanism, the error-correction protocol used, the
register architecture and so forth. However, under
rather general assumptions, this threshold has been
estimated to be in the 1072– 1074range [70]. In the last
few years, a large effort has been directed toward
perfecting all the basic operations on trapped-ion
qubits, e.g. initialisation, detection, memory error, and
one- and two-ion gates, and reducing the error in these
operations as much as possible. Currently, typical
errors in the gates described above are also in the
1072– 1074range [21,43,47,71,72], with good prospects
for further improvements.

There is a broad consensus, we believe, that a very
large gap exists between the QIP capabilities demon-
strated so far with trapped-ion qubits, or any other
qubit technology for that matter, and realising a large-
scale quantum computer. On the other hand, this gap
is also widely believed to be purely technological rather
than fundamental. If this is the case, with more effort
and time, a quantum computer will eventually be
realised. Failure to eventually realise a quantum
computer will be glamorous because it will indicate a
need to modify the laws of quantum mechanics when
describing large-scale systems.
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