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Quantum computers based on crystals of electrically trapped ions are a prominent technology for
quantum computation. A unique feature of trapped ions is their long-range Coulomb interactions,
which come about as an ability to naturally realize large-scale multi-qubit entanglement gates.
However, scaling up the number of qubits in these systems, while retaining high-fidelity and high-
speed operations is challenging. Specifically, designing multi-qubit entanglement gates in long ion
crystals of 100s of ions involves an NP-hard optimization problem, rendering scaling up the number
of qubits a conceptual challenge as well. Here we introduce a method that vastly reduces the
computational challenge, effectively allowing for a polynomial-time design of fast and programmable
entanglement gates, acting on the entire ion crystal. We use this method to investigate the utility,
scaling and requirements of such multi-qubit gates. Our method delineates a path towards scaling
up quantum computers based on ion-crystals with 100s of qubits.

I. INTRODUCTION

Trapped ion quantum computers are a leading quan-
tum computation platform, owing its success to the ac-
curate control of individual ions, long-range connectivity
and long coherence times. Despite their all-to-all con-
nectivity, linear ion crystals of growing length present in-
creasing difficulty in implementing high-fidelity and high-
speed entanglement gates. Some trapped-ion scale-up ar-
chitectures circumvent this challenge by interconnecting
separate ion crystals, either by ion shuttling between seg-
ments in a quantum charge coupled device (QCCD) ar-
chitecture [1–3] or by photonic interconnects [4–6]. How-
ever, both these approaches to scalability will benefit
from working with longer ion crystals as their basic build-
ing block, by taking full advantage of the inherent long-
range connectivity of the ions and its expected benefits
[7–11].

Quantum information processing devices, based on
crystals of 10s to 100s of trapped ions, have recently been
implemented [12–14], overcoming hurdles such as crystal
stability, cooling and coherence. Nevertheless, a promi-
nent challenge which remains unaddressed is the design
of multi-qubit entangling gates that are not hindered by
the overwhelming spectral density of the normal modes
of motion in large ion crystals. Specifically, designing
the required control signals that generate high-fidelity,
programmable, fast and robust multi-qubit entangling
gates is a quadratically constrained NP-hard optimiza-
tion problem [7], making the study of feasibility and scal-
ing of large ion crystals a formidable challenge.

Here we introduce a method, coined large-scale fast
(LSF), which efficiently designs multi-qubit entangling
gates for large-scale ion crystals, enabling scaling up the
trapped ion quantum processors to 100s of qubits in a sin-

gle crystal. We show that a solution of a special instance
of the optimization problem can be efficiently converted,
using a linear transformation and local optimisations,
to any other required entangling operation on the same
system. Thus we find suitable approximate solutions in
polynomial time. We use the LSF method to efficiently
generate programmable multi-qubit XX-type entangle-
ment operators and accumulate performance statistics of
various coupling geometries such as all-to-all interactions,
surface code stabilizer measurements, parallel pairwise
gates, among other examples. We highlight that pro-
grammable XX entangling gates, also known as ’Ising’
or ’global tunable’ gates, have been shown to be advan-
tageous for improving the performance of quantum error
correction codes [9], as well as for compilation of quantum
Fourier transforms [8], Clifford unitary operators with a
gate count that is independent of the qubit register size
and N -qubit Toffoli gates [10].
We further show that while a crystal of N ions can

have O
(
N2
)
types of different two-qubit gate interac-

tions, naively resulting in a problem with dimension N2,
it is in fact sufficient to only solveN quadratic constraints
in order to find solutions to any required XX gate. This
enables efficient study of the scaling of various proper-
ties, such as gate time, fidelity and required power, with
ion-crystals of 100’s of ions.
The LSF method has enabled us to study many types

of couplings in large ion crystals and investigate their
performance. This has generated a better understanding
of the application of the entanglement operations, namely
their advantages, limits and required resources. We show
that the minimal entanglement time is determined by
the smallest difference between the frequency of motional
modes which are used in the gate, ∆ν<. That is, Tmin =
2π∆ν−1

< . This scaling is intuitive as it corresponds to the
time it takes the slowest phonon wave-packets to traverse
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FIG. 1. Summary of results obtained by our method, shown as
total required Rabi frequency vs. gate time for various lengths
of ion crystals (color), including a N = 100 ion crystal. Each
point corresponds to a different entanglement operation. The
gate time (horizontal) is normalized by the minimal gate time,
Tmin (vertical gray dashed line), and the total Rabi frequency,
|r|, (vertical, log scale) is normalized according to the nuclear-
norm based estimation, Ωnuc and T/Tmin, described below.
As seen with this scaling, all our solutions collapse on a single
line (black dashed), signifying an inverse proportion between
required power and gate time. A specific realization (green
star), of a single gate stabilizer measurement for a N = 49
qubit surface code is analyzed in more detail below.

the entire ion crystal. For transverse modes of N equally-
spaced ions this implies that Tmin ∝ N2. Below that time
scale, the solution we find requires a divergent power, and
does not reach high gate fidelity.

Our analysis also presents an estimate of the power
that is required in order to drive different gates. Specifi-
cally, we show that the power required to drive an arbi-
trary multi-ion entanglement operation can be predicted
by extrapolating, from the power required for driving the
entanglement operation in the adiabatic regime, on a dif-
ferent ion-crystal system in which this operation can be
performed with global driving beams [7]. That is, many
system details, such as ion participation in the modes of
motion, or ion-qubit mapping, do not substantially af-
fect the required power. This is quantified by a nuclear
norm estimate, Ωnuc, of the coupling matrix φn,m, that
determines the entangling phase between ions n and m,
i.e. the sum of its eigenvalues in absolute value, detailed
below.

Figure 1 exhibits these results showing the total Rabi
frequency required to drive entanglement gates, which
vary in number of ions in the ion-crystal (color) and
the types of gates used, as a function of the entangle-
ment time. Each point in the plot corresponds to a
specific crystal size and desired entanglement operation,
and shows the gate performance averaged over 50 to
150 different solutions. We highlight that LSF enables
a straightforward design of multi-qubit entangling gates
over a N = 100 qubit register. Both axes are scaled
appropriately, such that all the data collapses approxi-

mately on the same unity slope line, showing we are able
to generate correct estimates for the required gate power,
as well as the minimal time for which our method is ef-
fective.
Figure 1 also highlights a specific realization (green

star) which implements the entanglement gate necessary
in order to perform a parallel stabilizer measurement of
all relevant qubits, for aN = 49 quantum error correction
surface code. This realization is analyzed with further
details below.
Lastly, while the character of the normal-modes of mo-

tion of trapped ion crystals is global, i.e. in general all
ions participate in all modes, we show that the applica-
tion of our method results in a reduction of the motion
of ions which are not used in the operation. This is in
stark contrast to the conventional method of entangling
ions using a center-of-mass mode of motion, in which
ions which are not driven and remain decoupled from
the gate, are nevertheless displaced by the same amount
as ions which are driven and coupled.
The remainder of the paper is ordered as follows, we

first describe the derivation of the LSF method, then we
perform an analysis of the total required Rabi frequency
and derive the nuclear norm based estimate. Lastly, we
focus on a specific realization (green star in Fig. 1) in
order to highlight certain aspects of its operation.

II. DERIVATION OF THE LARGE-SCALE FAST
METHOD

Trapped ion quantum computers use the normal-
modes of motion of the ion crystal as a phonon bus,
which mediates interactions between the ion qubits. This
is performed by driving the motional sidebands of the ion
crystal, which generates spin-dependent forces. A canon-
ical example of this method is the Mølmer-Sørensen (MS)
gate [15, 16]. In recent years there have been many pro-
posals and demonstrations which were focused on im-
proving the utility and fidelity of MS gates. These meth-
ods are, at large, based on modulating spin-dependent
displacement forces. This modulation may be imple-
mented with various methods such as amplitude [8, 17],
frequency [18] or phase modulation [19, 20] of the fields
driving the ions. Using the LSF method we analyze the
problem in the spectral domain [21–23]. That is, we fix a
discrete set of frequency components of the radiation field
driving the ions, and choose the (complex) amplitudes at
each of these components according to the desired en-
tangling operation. Since all other modulations can be
decomposed in a Fourier series, the spectral representa-
tion is equivalent to an analysis in the time domain. Our
method is therefore general.
The spectral approach taken here does offer conceptual

advantages as it is easier to manipulate analytically [24]
and offers physical intuition. Our approach is relevant to
any form of qubit encoding; e.g. ground state, optical or
metastable qubits [25], qubit drive; e.g. Raman, optical
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or laser-free, and architecture; e.g. global beam [26, 27]
or individually controlled ions.

To generate a high-fidelity entangling gate, a qubit
state which is initially unentangled with the motional
degrees of freedom must remain so after the gate is per-
formed. This requirement turns out to be linear in the
drive amplitudes, and is relatively easy to satisfy. Addi-
tional linear constraints may be added in order to make
the entanglement operation robust to various sources of
error and noise (see Appendix A). In favor of a simple
presentation, in what follows we assume that our degrees
of freedom are written in a form that by-construction
satisfies these constraints (see Appendix B).

Since the effective qubit-qubit interaction is quadratic
in the driving field’s amplitude [7], generating a desired
entangling operation reduces to the NP-hard quadratic
optimization problem,

argmin |r| such that rTAnr = φn ∀n = 1, ..,N . (1)

with |r| the norm of r ∈ RM, a vector representing
M amplitudes, satisfying N quadratic constraints, with{
An ∈ RM×M}N

n=1
a set of real symmetric matrices, de-

termined by the system parameters and {φn}Nn=1 a set
of phases which encode the desired entangling operation.
Simply put, we are seeking for the lowest power realiza-
tion of the entangling operation.

The LSF method is general, such that the choice of
system architecture determines the specific interpreta-
tion of r and the An’s. For example, we might use
the setup considered in Ref. [7], which generates en-
tangling gates for N ions using a global beam. Here
however we will focus on a more general setup, namely
we consider N ions which are individually addressed by
N independent driving fields, each having its own spec-
tral content. We assume, without loss of generality, that
all these spectra contain the same tones yet differ by the
amplitudes of these tones (which could be null). This
architecture enables qubit-qubit interactions which are
mediated through the normal modes of motion and im-
plements programmableXX entangling gates, i.e unitary

operators of the form, U = exp
(
i
∑

n,m φn,mσ
(n)
x σ

(m)
x

)
,

with σ
(n)
x the Pauli-x operator acting on the nth qubit

and φn,m the ’target’ matrix, completely controllable.
Accordingly this yields N = O

(
N2
)

quadratic con-
straints in direct correspondence to the target matrix,
and r ∈ RN×M , with M ∝ N , describing the distinct
amplitudes of M frequency pairs independently driving
each of the N ions.

We remark that the relevant time-scale for the gate-
time is given by ∆ν<, defined as the smallest difference
between adjacent motional mode frequencies, which are
used for the entanglement operation. Indeed in the adia-
batic limit, i.e. for a gate time, T , such that ∆ν<T ≫ 1,
the set of coupling matrices, {An}Nn=1 become diagonal,
such that satisfying the quadratic constraints is trivial
(see Appendix C). However due to the crowding of the

FIG. 2. Simple example of the quadratically constrained opti-
mization problem and our method. We chooseN = 1, M = 2,
specifically A1 = diag (1,−2) and φ1 = 2. The constraint
becomes a hyperbola (black dashed) in terms of the two am-
plitudes, r1 (horizontal axis) and r2 (vertical axis), and the
colored contours show other possible values of φ. The ideal
solution is shown (black arrow). Our optimization method
relies on the zero-phase solutions (gray dashed) and the high
density of contours around λz, (blue arrow), such that only
a small excursion by d (purple arrow) is required to convert
z to a solution satisfying the constraints (green arrow). Here
we have used λ = 3.

mode frequencies in large ion crystals this results in im-
practically slow gates. Indeed as 2π∆ν<T → 1 the tones
of the driving field strongly interact with many modes
and the coupling matrices are in general dense, making
the optimization problem non-trivial.

Using LSF, the NP-hard problem becomes indepen-

dent of the desired gate, i.e. independent of {φn}Nn=1.
We first explain this intuitively. We assume a non-trivial
and normalized ’zero-phase solution’ satisfying the con-
straints in Eq. (1) with the ’zero’ target φn = 0 for all
n = 1, ...,N , and denote it by z, with |z| = 1. This
solution can be scaled by any real number, i.e. λz still
satisfies the zero target. For a large enough λ a small de-
viation, d, from the zero-phase solution, i.e. r = λz+d,
generates arbitrarily large entanglement phases. Thus we
linearize the quadratic constraints in the vicinity of λz
and solve a linear equation for d that satisfies the con-
straints for a general target, φ. This allows us to ’con-
vert’ the zero-phase solution to a ’full’ solution of any
desired target. Crucially, the linear equation depends on
φ but the linearization does not, allowing for a quick
conversion from the zero-phase solution to any solution
of a general target. Accordingly, the ansatz solution sat-
isfies the quadratic constraints of the full problem, but
is still not necessarily optimal, in terms of its amplitude.
Thus further optimization is performed by an iterative
gradient descent, obtained by linearizing the quadratic
equations.

Figure 2 shows this intuitive picture with a single
quadratic constraint, i.e. N = 1, and two tones, i.e.
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M = 2. Specifically we use A1 = diag (1,−2) and
φ1 = 2, such that the constraints are satisfied along a
hyperbola (dashed black) in terms of the two amplitudes,
r1 (horizontal axis) and r2 (vertical axis). Zero-phase so-
lutions extend from the origin to arbitrarily large ampli-
tudes (dashed gray). We use a large zero-phase solution,
λz (blue arrow), such that a small deviation from it, d
(purple arrow), explores various values of φ1. Indeed a
converted solution, generating the desired target, φ1 = 2,
is found close by (green arrow). By linearization of the
hyperbloid we perform gradient descent to gradually lo-
cate the locally ideal solution (black).

Specifically, we assume λ is large, defined precisely be-
low, and set r, defined above, in the constraints of Eq.
(1). We obtain,

φn = 2λzTAnd+O (ϵ) , (2)

with the assumption
∣∣dTAnd

∣∣ ≤ ϵ, and ϵ the desired
operation infidelity. The expression in Eq. (2) defines an
easy linear equation, φ = Md, with Mn,k = 2

(
zTAn

)
k
,

n = 1, ...,N , and k = 1, ...,M. It is solved by,

rconvert = λz + λ−1M−1
pinvφ, (3)

with M−1
pinv the pseudo-inverse of M . We set λ such that

our linearization is consistent, i.e.,∣∣∣∣∣
(
1

λ
M−1

pinvφ

)T

Aj

(
1

λ
M−1

pinvφ

)∣∣∣∣∣ ≤ ϵ. (4)

The approximate solution in Eq. (3) satisfies the
quadratic constraint, up to order ϵ, but is still not op-
timal in terms of its magnitude. We iteratively improve
it by a series of linear gradient descent steps that act
to better satisfy the constraints and reduce the magni-
tude of the solution. This is done by defining the it-
eration, r(n) = roptimal − d(n+1), with roptimal the un-
known local solution of the optimization problem and
r(0) = rconvert. At each step we calculate the constraint

error, ∆φ
(n+1)
j = φj −

(
r(n)

)T
Ajr

(n). We then calculate
the next correction by using,

∆φ
(n+1)
j = 2

(
r(n)

)T
Ajd

(n+1) +O (ϵ) . (5)

As above the expression in Eq. (5) defines a linear
relation which can be inverted and solved for the correc-
tion, d(n+1). This will generate a solution which better
satisfies the quadratic constraints. In order to also mini-
mize its magnitude we use an additional linear condition,
r(n) · d(n+1) = −δ

∣∣r(n)∣∣, i.e. the correction d(n+1) acts

to reduce
∣∣r(n)∣∣ by a small numerical step, δ. All in all

the linear iteration takes the form,(
∆φ(n)

−δ
∣∣r(n)∣∣

)
=

(
M (n)

r(n)

)
d(n+1), (6)

with M
(n)
j,k = 2

((
r(n)

)T
Aj

)
k
. Finally we set r(n+1) =

r(n) + d(n+1).

These results imply a recipe for efficiently generating
solutions of Eq. (1). Namely, we aggregate many distinct
zero-phase solutions (see Appendix D). Then, given a de-
sired target gate, represented by φ, we obtain a solution,
r, by using Eq. (2) and the linear iteration in Eq. (6).
This process can be done rapidly and in parallel for all
of the aggregated zero-phase solutions, out of which the
best performing solution is chosen.
Lastly, we note that aggregation of zero-phase solu-

tions may be performed under the assumption of a global
drive, i.e. that the spectrum of all of the ions is identi-
cal. This recovers the setup of Ref. [7] in which only
N quadratic constraints, associated with the phase accu-
mulated by the N modes of motion, are required to van-
ish. Nevertheless, these zero-phase solutions can then
be readily converted to full solutions of independently
driven ions, avoiding the need to ever solve a dimen-
sion N2 quadratically constrained problem. Remark-
ably, the performance of our solutions that are converted
from zero-phase solutions of an N -dimensional quadratic
ansatz have a similar fidelity and power, compared to so-
lutions that are converted from zero-phase solutions of
an N2-dimensional quadratic problem, representing the
full degrees of freedom of the system (see Appendix G).

III. ENTANGLEMENT SCALABILITY IN
LARGE ION CRYSTALS

We use LSF in order to investigate performance and
scalability of entanglement operations in large ion crys-
tals. To this end we consider many trapped ions sys-
tems which vary in number of ions, operations time, drive
spectra, etc. For each such system we aggregate approxi-
mately 150 zero-phase solutions and convert them to full
solutions of many entanglement targets, φn,m.
We first observe that we find many zero-phase solutions

for systems for which T > Tmin = 2π∆ν−1
< with ∆ν−1

< the
smallest frequency difference of adjacent normal modes
of motion. For ions coupled via transverse modes this
yields Tmin ∝ N2. The N2 dependence originates from
the divergence of density of states of phonon modes at
the part of the motional spectrum in which ν ∝ k2. This
yields one factor of N due to the density of states, and
another factor of N due to the crystal length.
Indeed, Fig. 1 shows solutions for various number of

ions (color) and operation time (horizontal), scaled by
Tmin. For times T < Tmin we either do not find zero-
phase solutions or find solutions with a seemingly di-
verging power and high infidelity of the converted full
solutions. We note that this limit is determined by the
ion crystal spectrum and is agnostic to the target uni-
tary, i.e. entangling ions at the two edges of the crystal
can be performed at the same minimal gate time as that
of neighbouring ions. This stems from the fact that the
modes of motion of the ion crystal are global, i.e. involve
all ions in the crystal, and that in the fast-gate limit all of
the modes are excited. The minimal gate time, of high-
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fidelity realizations, is therefore given by the time it takes
the slowest sound mode to traverse the crystal.

We benchmark the solutions produced by LSF using a
small scale, N = 4, simulation. The simulation takes into
account the evolution of the ions and the phonon modes
under the model Hamiltonian (see Appendix A), as well
as next-order corrections, such as off-resonance coupling
to the qubit carrier transition and higher-order Lamb-
Dicke terms. All of the simulated gates exhibit a high
operation fidelity, matching the performance predicted
by LSF (see Appendix E).

Next we consider the total Rabi frequency required
to drive the entanglement gate, which we quantify as

|r| ≡
√∑

n,m (rn)
2
m. Since the gate design stems from

an NP-hard problem, one would expect that predicting
the required total Rabi frequency, before solving the op-
timization problem, to be challenging. Nevertheless such
a prediction is useful as it can be used for system de-
sign and as an a-priori stopping criteria for the gradient
descent process.

We address this challenge by the following analysis.
We first recall the expression for the Rabi frequency re-

quired to drive a MS gate, ΩMS =

√
|φMS|√
2πηT

, with φMS

the entanglement phase, and η ∝ ν−1 the Lamb-Dicke
parameter corresponding to the mode of motion at fre-
quency ν. This expression is valid in the adiabatic limit,
i.e. for T ≫ ν−1,∆ν−1

< . We then generalize ΩMS to a
system in which the target φn,m is native, i.e. it can be
implemented with a global driving field. This is achieved
in the case where that the normal-modes of motion of
the ion crystal are the eigenvectors of the matrix φn,m

[7], and each mode accumulates a phase that is the cor-
responding eigenvalue. We incorporate this change by

replacing φMS 7→
∑N

j=1 |φj | , with {φj} the eigenvalues
of φn,m. This sum is known as the ’nuclear norm’ of the
matrix φn,m. Furthermore we replace η with the average
η over all modes of motion. When we go beyond native
targets, we replace all the elements of φn,m with their
absolute value. Lastly, for independently driven ions we
expect the power to scale linearly with N . Thus, we
conjecture an estimate, Ωnuc,

Ωnuc = k

√
Nnuc (|φn,m|)
√
2π⟨η⟩T

, (7)

with nuc (|·|) the nuclear norm of a matrix with its ele-
ments taken in absolute value, and k a constant which
depends on the choice of implemented linear constraints
(e.g. additional linear constraints ensuring gate robust-
ness).

We benchmark this estimate on our set of solutions,
and find that this naive estimate gives surprisingly accu-
rate prediction of |r|, with the proportionality constant
in Eq. (7) fitted to k = 4. Indeed, Fig. 3 shows various
entanglement targets (points), on a N = 49 ion crys-
tal, which are separated to different conceptual groups:
randomly generated patterns (blue), parallel pairwise in-

FIG. 3. Benchmarking of the nuclear-norm estimation on a
N = 49 ion crystal. Estimation based on the nuclear norm
(horizontal) is compared to our method’s solutions (vertical),
for various entanglement gates. Each entanglement target
is converted to full solutions using 150 zero-phase solutions.
The average (point) Rabi frequency is shown. The entangle-
ment operations are divided to different groups (all on the
same ion crystal): randomly generated patterns (blue), par-
allel pairwise interactions (orange), all-to-all interactions of
subsets of the crystal (red), arrangements of subsets of the
ions in a grid to form cluster states (purple) and the entan-
glement operation required for a stabilizer measurement of a
surface code, on subsets of the ions (green). With this scaling
the various targets collapse on a line, which slightly deviates
from our estimation (black dashed). We use numerical fit to
slightly vary the exponent of the nuclear-norm from 0.5 to
0.551, yielding a good fit (gray dashed).

teractions (orange), all-to-all interactions of subsets of
the crystal (red), arrangements of subsets of the ions in
a grid, to form a cluster state (purple) and the entangle-
ment operation required for a stabilizer measurement of
a surface code, on subsets of the ions (green).

All of these solutions are based on the same collection
of zero-phase solutions, and implement the gate time at
T ≈ 2Tmin ≈ 12.9ms. For each of these solutions we show
the average (point) total Rabi frequency obtained by the
conversion of the many zero-phase solutions. We com-
pare our nuclear-norm conjecture in Eq. (7) (horizontal)
with LSF’s result (vertical), showing that all the solutions
collapse on a line. Our conjecture predicts this collapse
to occur on a line of unity slope (black dashed). However
we observe that the actual results slightly deviate. We
correct for this deviation by changing the square root of
the nuclear norm, in Eq. (7), to an arbitrary exponent,
which is numerically fitted to 0.551 (gray dashed), and
matches well with the data.

Remarkably, the data collapse shown in Fig. 3 implies
that the details of the mode structure and frequency are
largely irrelevant to the required Rabi frequency. The
analogy to a globally driven system provides an intuitive
explanation: Driving the ions independently is equivalent
to an effective ’reshaping’ of the participation of each ion
in each of the normal-modes, such that the resulting re-
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shaped mode structure fits the required operation better.
Here indeed, this reshaping causes the nuclear norm con-
jecture to match closely with the full computation, with a
small overhead, that comes about as a modification of the
exponent of the nuclear norm. We emphasize that while
this picture is intuitive, it could not have been verified
without the ability to compute optimal, multi-mode, en-
tanglement gates on large ion crystals, afforded by LSF.

We remark that the conjectured estimation based on
the nuclear norm assumes that the modes of motion of
the ion crystal are global, i.e. that in general all ions
are coupled to each other. Indeed in a pathological case
in which all ions oscillate independently from one other,
ion-ion entanglement is impossible, yet the nuclear norm
estimate will not diverge. Furthermore, we note that
other known matrix norms operating on φn,m, do not
generate the data-collapse shown in Fig. 3 above.

IV. SURFACE CODE STABILIZER OPERATION

We demonstrate our method and highlight certain as-
pects of it via an example. Specifically we outline the
entanglement gate required for stabilizer measurements
in surface codes. Here we consider a 49 ions crystal, en-
tangling 33 ions using a single pulse. Figure 4 shows
the formation of the stabilizer (left), namely by setting
appropriate non-zero coupling phases (black arrows) we
map the ion crystal (top) to a 7 × 7 square grid (bot-
tom), and form nine plaquettes (yellow) which can be
used to evaluate the X-parity of the plaquette vertices.
In this straightforward mapping some ions remain uncou-
pled (orange) and can be used in other subsequent oper-
ations, some form edge of plaquettes (blue) and some are
designated as ancilla qubits (dark blue).

It was shown in Ref. [28] that a surface code stabilizer
measurement can be implemented with a single multi-
qubit MS gate. Note, however, that our coupling map
between ions involved in a stabilizer measurement is not
all-to-all; rather it takes the form of a ’cross’. This is
in fact more efficient as it requires fewer non-zero en-
tanglement phases. Indeed the nuclear norm of the cross
coupling map is two times lower than that of the all-to-all
coupling.

Here we assume an equally spaced crystal of 40Ca+ ions
with an inter-ion distance of 5 µm. Qubits are mapped
on the ground state Zeeman 5S 1

2
manifold and are driven

with a 400nm laser field using a Raman transition, which
couples the ions using transverse modes of motion, at fre-
quencies of 3 MHz to 3.5 MHz. We choose an operation
time T ≈ 2Tmin ≈ 12.9ms. We use our method as pre-
scribed above in order to generate the required entangle-
ment gate. In order to effectively benchmark our method
we aggregate 150 zero-phase solutions which are all con-
verted to solutions of the full optimization problem and
analyzed. Figure 4 (right) shows the expected infidelity
(horizontal) and required total Rabi frequency (vertical)
to drive these solutions, normalized to the frequency of

7
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3 4 5 6

10 32 54 76 98 … …

FIG. 4. Multi-mode stabilizer measurement in the surface
code implemented on a 49 ion equi-distant crystal. Left: Our
method is used in order to generate a stabilizer measurement
in a 49 ions crystal surface code (top). The 49 ions are used
to form the surface code (bottom), namely nine plaquettes
(yellow) for which the X-parity can be measured. In this
scheme some ions are coupled (blue) by pairwise links (black
arrows) and others are not (orange). Ions with four links, in
the plaquette centers (dark blue) are ancilla qubits. Right:
Solution statistics due to the conversion of 150 zero-phase
solutions. All solutions generate similar performance in terms
of the required drive power (vertical) and all meet the fidelity
threshold, here set to 1 − 10−4 (horizontal). We highlight a
specific realization (green star) which we further analyze and
present below.

the first mode of motion, at 3 MHz. All solutions exhibit
a low infidelity, defined as,

I =
∑
n,m

∆φ2
n,m =

∑
n,m

(
φideal
n,m − φactual

n,m

)2
. (8)

This definition is an operational distance measure be-
tween the ideal entanglement phases, φideal

n,m and the

phases achieved by our method, φactual
n,m . At the limit

of small phase differences this definition converges to the
actual operation’s infidelity [29].
For the sake of comparison, in this setup a conventional

MS gate with the same gate time and coupled to the first
motional mode, ν1, requires a total amplitude of approx-
imately 0.108ν1 and will have a low gate fidelity, due to
operating outside of its adiabatic regime. In contrast, all
of our solutions exhibit a similar total amplitude, yet fea-
ture a high fidelity, with few outliers. This implies that it
is not necessary to aggregate many zero-phase solutions,
as they are in general similar in performance. We high-
light a low-power solution (green star) which is further
analyzed below.
We consider the spectrum given by the highlighted so-

lution (green star in Fig. 4). Some of the ions are decou-
pled from the stabilizer measurement (orange in Fig. 4)
and are not required to be illuminated or driven at all by
a spin-dependent force. Indeed, Fig. 5 (left) shows the
total power that is driving each ion, showing that the
decoupled ions are not driven. We emphasize that our
optimization was not constrained to provide such a so-
lution, i.e. the conversion of the zero-phase solution and
the subsequent gradient descent have automatically con-
verged to shutting off the illumination of decoupled ions.
Furthermore, we note that ancilla ions, i.e. ions 8, 10, 12,
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FIG. 5. Spectral analysis of highlighted solution. Left: Drive
amplitude per ion, |rn|. Our method converges to a solution
for which the drive of uncoupled ions (orange) is shut off while
coupled ions are driven (blue). We note that ions 8, 10, 12, 22,
24, 26, etc. are driven most strongly, as these ions have each
four links, seen in Fig. 4. Right: Tone amplitudes (in absolute
value) used to drive the highlighted gate, averaged over ions
(blue), and their standard deviation (shaded). Clearly the
spectrum is dominant in the vicinity of the lower modes of
motion (olive) as these modes are of higher wave-number and
are better suited for differentiating between the entanglement
of adjacent ions.

22, 24, 26, etc. (dark blue in Fig. 4), which have more
couplings to ions in the crystal, are accordingly driven
with a stronger field.

Next we consider the average spectrum driving the
ions, shown in Fig. 5 (right). The coupling pattern re-
quired for the surface code, when mapped to the linear
crystal, requires significant variation between adjacent
ions (e.g some links are nearest neighbours and some are
long range), which are more efficiently formed with high
wave-number modes of motion. Indeed the drive tones
(blue) are clearly focused around these modes (olive),
which for transverse normal-modes, reside at the low-
frequency end of the spectrum. These modes also have
a slightly larger Lamb-Dicke parameter, which quantifies
the coupling between the drive and spin-dependent dis-
placement, thus they better utilize the drive power, and
practically a lower heating rate (although not considered
in this analysis), resulting in a high-fidelity realization.
Figure 5 (right) also shows that we only make use of
driving tones which are close, compared to T−1, to mo-
tional modes. We have seen that these tones are the main
contributors to the gate solution, and thus enable a re-
duction in the number of degrees of freedom used in the
optimization.

Lastly we consider the ion-displacement, Xn, in-
duced by the drive implemented on the ions. The ion-
displacement is spin-dependent, i.e. its direction and
magnitude depend on spin-projections along the Pauli-
x axis. Since the qubit ground state is composed of
an equal superposition of all eigenstates along the Pauli-
x axis then, by symmetry, the mean displacement van-
ishes. However the time-dependent variance of the spin
displacement, is non-vanishing, and is given by (see Ap-
pendix F),

〈
X2

n

〉
t
=

N∑
j=1

(
O

(n)
j

)2 〈
x2j
〉
t
, (9)

FIG. 6. Ion motion. Left: Standard deviation of ion motion
during the entanglement operation. Averaged on coupled ions
(blue) including standard deviation (shaded), and on uncou-
pled ions (orange), which are also displaced by our drive. As
shown above coupled ions are illuminated and therefor are
more displaced than the uncoupled ions. We highlight ion
number 10 (blue dashed), which is coupled to four ions and
therefore moves significantly compared to uncoupled ions such
as ion number 0 (orange dashed). Right: Standard deviation
of ion motion, average on time. Here as well it is seen that
ions that are driven exhibit, in general, a larger displacement
than ions which are not driven, emphasizing the utility of the
solutions provided by our method. The inversion-symmetry
character of the modes of motion is apparent and manifests as
a symmetry in the standard deviation of motion among ions.

with
〈
x2j
〉
t
the time-dependent variance of the displace-

ment of mode j and O
(n)
j the normalized participation of

ion n in mode j (see Appendix F).

Figure 6 (left) shows
√
⟨X2

n⟩t, averaged over ions, with
ions which are used in the stabilizer operation (blue) and
ions which are uncoupled (orange), as a function of time.
Since the modes of motion couple, in general, all ions in
the crystal, then ions which are not illuminated still ex-
hibit motion, however this motion is reduced compared to
the ions which are illuminated. This highlights an appar-
ent advantage of independently addressed ions, namely
the spectra which drives each ion is effectively used to
tune the participation of each ion in each mode of motion,
generating an optimal realization of the operation. Fur-
thermore we consider the variance, averaged over time
(right), which reveals that uncoupled ions (orange) in
general have a smaller displacement. Furthermore, the
inversion-symmetry character of the modes of motion is
apparent and manifests as a symmetry in the deviation,
i.e. the motions of ion n and N − n are identical. This
implies that an efficient mapping from the linear crys-
tal to the implemented models can be used in order to
minimize unnecessary motion.

In summary, we have introduced a method, large-scale
fast, which helps mitigate some of the NP-hardness of de-
signing large-scale entanglement gates for trapped ions
qubits. Our method requires a few initial special so-
lutions, solving N , and not N2, quadratic constraints,
which are then readily converted to entanglement gates
of arbitrary programmable targets. This allows us to
construct specific interactions, such as parallel stabi-
lizer measurements for quantum error correction surface
codes. Furthermore, we use our method in order to inves-
tigate various aspect of multi-qubit entanglement gates
of large ion crystals. Our method delineates a path to-
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wards trapped ion crystals of 100s of ions and offers a
resolution to the gate-design problem.
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APPENDIX A: MODEL DERIVATION

We detail the derivation of the model used to formulate
the optimization problem in Eq. (1). In our analysis
below we rely on and generalize the derivations provided
in [7].
We consider a general spectrum of tones which drive

independently N trapped ions. Without loss of general-
ity, the driving applied to different ions may be regarded
as composed of the same tones, differing only by the
tone amplitudes. These tones are placed symmetrically
around the single qubit transition frequency, ω0. The
field driving the nth ion is,

wn (t) =2 cos (ω0t+ ϕ0)

·
M∑

m=1

[(
r(c)n

)
m
cos (ωmt) +

(
r(s)n

)
m
sin (ωmt)

]
.

(10)

That is, each spectrum contains 2M components at fre-

quencies {ω0 ± ωm}Mm=1. The amplitude of the cosine

(sine) mth tone pair illuminating the nth ions is
(
r
(c)
n

)
m

(
(
r
(s)
n

)
m
) and the phase of each tone in the pair is

ϕ0 ± 0 (ϕ0 ∓ π/2), such that all N × M tone pairs
have the same average phase, which generates a corre-
lated rotation around the Pauli sin (ϕ0)σx + cos (ϕ0)σy
axis. For simplicity we assume that ϕ0 = π/2 such that
the relevant Pauli operator is σx. The motional mode
phase space trajectories generated by the cosine and sine
quadrature are relatively rotated by π/2.
All in all this is captured by the lab-frame Hamiltonian

(ℏ = 1),

H = H0 + V

H0 =

N∑
j=1

[
νj

(
a†jaj +

1

2

)
+
ω0

2
σ(j)
z

]

V = 2Ω
N∑

n=1

σ(n)
x cos (kxn − ω0t) ·

M∑
m=1

[(
r(c)n

)
m
cos (ωmt) +

(
r(s)n

)
m
sin (ωmt)

]
,

(11)

with aj the annihilation operator associated with jth nor-

mal mode of motion, at frequency νj , σ
(n)
i the i-Pauli

operator acting on the nth ion, k the driving field’s wave
number, xn the position operator of the nth ion and Ω
a characteristic Rabi frequency. Clearly the last paren-
thesis in Eq. (11) can be written as a single cosine term
with a phase, however this form preserves a crucial as-
pect of our formulations, i.e. the exclusive linear and
quadratic dependence on the amplitudes. Furthermore,
here we have assumed that we are coupled to motional
modes along one principle direction of the trap, such that
the summation on modes is up to N (and not 3N), this
assumption can be easily relaxed [30].
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By using a conventional set of approximations, namely
the rotating wave approximation in Ω/ω0, the Lamb-
Dicke approximation, and by neglecting carrier-coupling
terms the lab-frame Hamiltonian is converted to the in-
teraction Hamiltonian,

HI = Ω

N∑
n=1

σ(n)
x

N∑
j=1

ηjO
(n)
j

(
a†je

iνjt +H.c
)
·

M∑
m=1

((
r(c)n

)
m
cos (ωmt) +

(
r(s)n

)
m
sin (ωmt)

)
,

(12)

with O
(n)
j the normalized participation of the nth ion in

the jth mode of motion, such that
∑N

j=1O
(j)
n O

(j)
m = δn,m,

and ηj the singe-ion Lamb-Dicke parameter associated
with the jth mode of motion (it is sometimes conven-

tional to define η
(n)
j = ηjO

(n)
j ).

The Hamiltonian in Eq. (12) can be rearranged in the

form, HI =
∑N

n=1

∑N
j=1 ζ

(n)
j (t)σ

(n)
x aj +H.c, with ζ (t) a

time dependent function read-off directly from Eq. (12).
That is, it has only σx spin operators and is linear in
the mode raising and lowering operators, it is therefore
analytically solvable. Specifically its Magnus expansion
vanishes after the second order. The resulting unitary
evolution operator is the well-known combination of spin-
dependent displacement of the motional modes and spin-
exclusive correlated rotation,

U =

N∏
j=1

Dj

(
N∑

n=1

σ(n)
x α

(n)
j

)
N∏

n,m=1

eiφn,mσ(n)
x σ(m)

x , (13)

with Dj (α) = exp
(
αa†j − α∗aj

)
a displacement opera-

tor which translates the jth mode by α
(n)
j , with,

α
(n)
j = −iηjO(n)

j Ω

·
M∑

m=1

ˆ t

0

dt′eiνjt
′
[(rcn)m cos (ωmt

′)− (rsn)m sin (ωmt
′)]

(14)

and entanglement phases,

φn,m = rTnAn,mrm

An,m = −Ω2
N∑
j=1

η2jO
(n)
j O

(m)
j

(
Acos,cos

j Acos,sin
j

Asin,cos
j Asin,sin

j

)
(
Af,g

j

)
m,l

= −
ˆ t

0

dt1

ˆ t1

0

dt2 sin (vj [t1 − t2])

· [f (ωmt1) g (ωlt2) + f (ωmt2) g (ωlt1)]

(15)

with rn =
(
r
(c)
n , r

(s)
n

)
and t = T the entanglement oper-

ation time.

Using the definitions in Eqs. (14) and (15) we ob-
serve that mode displacement is linear in the field am-
plitudes while the two-qubit rotation phase is quadratic
in them.While the linear constraints resulting from the
former are discussed in the next Appendix, the quadratic
constraints resulting from the latter lead to the optimiza-
tion problem in Eq. (1).

APPENDIX B: GATE HARMONICS AND
LINEAR CONSTRAINTS

We discuss convenient choices for the tones {ωm}Mm=1
and show how to write the degrees of freedom in a from
that by-construction satisfies the linear constraints.
Driving the entanglement operation with a multi-tone

representation of the field carries a lot of physical intu-
ition. Specifically, it is beneficial to choose the tones ωm

in the vicinity of the mode frequency band {νj}Nj=1, since

the coupling between tones and modes scales inversely
with their frequency difference. Thus in our demonstra-
tions above we choose ω1 slightly below the smallest tone
frequency and ωM (assuming they are ordered) slightly
above the largest frequency, defined precisely below.
We expect the field amplitude to vanish before t = 0

and after t = T , therefore a convenient choice of tones
is the harmonic basis, i.e. ωm = 2π

T hm, with hm ∈ N
the tone number. This also makes the method’s speed
limit apparent - in order efficiently differentiate between
the effect of adjacent modes a tone must be placed be-
tween them, thus the characteristic minimal gate time
scales as ∆ν−1

< as shown in the main text. We note that
the harmonic choice also simplifies the evaluation of the
integrals in Eqs. (14) and (15).
In the main text we state that the optimization

problem needs to satisfy both linear and quadratic
constraints, however the former may be solved by-
construction. Indeed, in order to ensure that at the op-
eration time, t = T , the state of the motional mode is
the same as in t = 0 we therefore require that the dis-

placement operators, D(α
(n)(T )
j ), in Eq. (13) are unit

operators. Crucially, this ensures that an initial state in
which the qubit and motion degrees of freedom are de-
coupled, remain decoupled after the operation. This is
satisfied by requiring that,

α
(n)
j (T ) = 0 ∀j, n = 1, ..., N. (16)

Focusing on the linear constraints, we note that while
Eq. (16) naively contains N2 constraints, they can all
be solved by restricting rn ∈ ker (L) for all n = 1, .., N ,
with,

Lj,m =


t́

0

dt cos (νjt) cos (ωmt) m = 1, ...,M

t́

0

dt sin (νjt) sin (ωmt) m =M + 1, ..., 2M

,

(17)
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and j = 1, ..., N . This restriction removes the linear re-
quirement from the optimization problem in Eq. (1).
Furthermore, the matrices An,m and Aj can be easily
transformed to the kernel space of L such that their di-
mension is reduced and their evaluation is faster. The
kernel space can be either found exactly or approximately
under some infidelity tolerance [31].

The entanglement operation can be endowed with ad-
ditional properties that ensure its robustness to various
sources of errors and noise such as unwanted coupling
to the carrier, and other transitions, pulse timing er-
rors, phonon-mode heating, phonon frequency drifts etc.
These may be added as additional rows of the matrix L
[7].

Out of these properties, decoupling of the carrier tran-
sition is necessary in order to justify the resulting in-
teraction in Eq. (12). A convenient way of doing so is
by letting the driving fields rise and fall continuously at

t = 0 and t = T , respectively, with the choice r
(c)
n = 0

for all n = 1, .., N , which further simplifies all of the ex-

pressions above. Here we set rn 7→ r
(c)
n = 0 and for

simplicity identify rn with r
(s)
n and Aj with Asin,sin

j . We
remark that with this choice the drive profile is not time-
symmetric, while there are known advantages for using a
time-symmetric drive [32].

APPENDIX C: TRIVIAL SOLUTION IN THE
ADIABATIC LIMIT

In the slow gate limit, ∆ν<T ≫ 1 satisfying the
quadratic constraints is trivial and any bipartite qubit-
qubit coupling can be achieved. Here we prove this di-
rectly by constructing such a solution. In this limit it
is helpful to choose spectral tones containing frequen-
cies of the form ωs 7→ ωj,s = νj + 2π

T s with s ∈ N.
We have doubled the index s to (j, s) for convenience.
Since T is large we can safely assume that the tone
ωj,s couples exclusively to mode j and satisfies the lin-
ear constraints by construction. Furthermore, with this
choice the matrices Aj become diagonal, i.e each of the
tones coupled to mode j contributes to the entanglement
phase independently, and scales as s−1. In other words

(Aj)(j′,s′),(j′′,s′′) ∝ δj,j′δj,j′′δs′,s′′ (s
′)
−1

[21].

We are required to generate N (N − 1) /2 bipartite en-
tanglement phases φn,m, with 1 ≤ n < m ≤ N . We
do so by designating a unique tone to each phase. Since
these tones do not interfere (whether they are driving
distinct or the same mode of motion) then we simply
need to scale the drive amplitudes accordingly. Specif-
ically, to satisfy the constraint on φn,m we choose an
arbitrary mode which couples to both ions. Without loss
of generality this can always be the center of mass mode,
jCOM. We drive both ions with the same tone ωj,s set-
ting j = jCOM and s = N · n+m, and set its amplitude

driving both ions to be
√

(N ·n+m)φn,m

O
(n)
jCOM

O
(m)
jCOM

.

APPENDIX D: ZERO PHASE SOLUTION
AGGREGATION

Our method relies on the conversion of preexisting zero
phase solutions to full solutions. Here we give a general
recipe to how these are generated. Obtaining a solution
to the quadratic constraints in Eq. (1) is a NP-hard prob-
lem, therefore the constraints are met using a numerical
search. Since we are interested in zero phase solutions
the norm of z is irrelevant, so we normalize it to 1.
We randomize a unit length vector, z(0), and assume it

is close to some zero phase solution. We use the lineariza-
tion described in Eqs. (5) and (6) in order to iteratively
improve the solution. We note the the norm condition in
Eq. (6) is replaced with d(n+1) ·z(n) = 0, and in any case
z(n+1) is normalized to unit length after each iteration.
We halt the iterations after they have converged or

fulfilled the infidelity required threshold. The solution is
accepted and added to a zero phase pool of solutions if it
fulfills the infidelity threshold and has a low overlap with
already existing solutions.

APPENDIX E: SMALL SCALE SIMULATION

We consider a numerical time-step simulation of our
method for a small number of ions. The simulation serves
two purposes; the first is verification of our results. In
particular, it validates the Magnus expansion that leads
to Eq. (13), and the corresponding solutions of Eq. (15).
Second, it allows us to consider the effect of small terms
that we have neglected in the Hamiltonian; such as those
due to carrier coupling and higher orders in the Lamb-
Dicke expansion.
The simulation is limited to a small number of ions

due to the computational complexity of working with an
exponentially growing Hilbert space. Considering N ions
and a phonon cutoff for each motional mode, Ncutoff, the
total Hilbert space dimension is 2N ·NN

cutoff. Fortunately,
it is possible to at least circumvent the exponential scal-
ing in Ncutoff; we use the fact that the system Hamilto-
nian, in Eq. (12), is given by a sum of terms that each

act on a single motional mode, i.e. HI =
∑N

j=1Hj . Since

the different modes of motion commute, [Hj , Hj′ ] = 0, it
is sufficient to consider one mode at a time, and sequen-
tially evolve the system with each Hamiltonian Hj . For
each step in the calculation a Hilbert dimension of only
2N ·Ncutoff is sufficient.
In particular, we use the algorithm proposed in [33]:

for k = 1, ...,N , we use the initial state ρ(t = 0) =
ρqubit(t = 0) ⊗ ρmotion,k(t = 0) and numerically evolve
with Hamiltonian Hk from time t = 0 to t = T . We
then trace out the motional degree of freedom and use
ρqubit(T ) as the new initial qubit state for Hk+1. At
the end of this procedure, we calculate the fidelity of the
simulated gate as ⟨ψideal| ρqubit(T ) |ψideal⟩.
We use this to simulate the solutions obtained by our

method above, on a four ion system. We observe a very
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1 2

3 4

FIG. 7. Numerical simulation of a four ion gate which imple-
ments a cluster state coupling map (inset of left plot). Left:
The population of each spin basis state over the duration of
the gate; bold lines correspond to states with non-zero ampli-
tude at the gate time. Right: average occupation number of
each phonon mode over the duration of the gate. The values
shown here are well below Ncutoff = 14.

good agreement between the fidelity obtained through
the simulation and that predicted by Eq. (8). As an
example, we highlight a gate which implements the four-
ion “cluster state.”

Figure 7 (left) shows the populations of each spin basis
state over the duration of the gate, as determined by the
simulation; the target final state is |ψ⟩ = 1

2 (|0000⟩ −
|0110⟩ − |1001⟩ − |1111⟩). Also shown in Figure 7 (right)
is the average phonon occupation number for each of the
four motional modes.

The phonon cutoff we use is Ncutoff = 14, which is
justified by the fact that phonon states above n = 10 are
hardly populated at all, i.e.

∑
n>10 ⟨n| ρmotion(t) |n⟩ <

10−5.
For this gate the fidelity returned by the simulation is

99.987%, nearly identical to the value predicted by Eq.
(8). This is the ideal case, which is also solved analyt-
ically, however the simulation also allows us to consider
potential sources of error. For example we can add a
carrier coupling term to the Hamiltonian:

Hc.c = 2

N∑
n=1

M∑
m=1

σ(n)
y cos(ωmt) (rn)m (18)

We note that due to the σy operators, the addition of
this term breaks our assumption that the Hamiltonian
can be decomposed to a sum of commuting terms. Thus
we heuristically account for carrier coupling by consider-
ing Hj → Hj +

1
NHc.c. Accounting for carrier coupling,

the simulation gives essentially the same fidelity. We note
that carrier coupling generally has a greater impact on
the gate fidelity when working with smaller motional fre-
quencies. However, if necessary, robustness against car-
rier coupling could always be further improved by impos-
ing additional linear constraints.

Furthermore, we study the effect of higher order Lamb-
Dicke terms in the Hamiltonian. Specifically we consider
terms that modify the first-order sideband interaction
(not spin squeezing terms). We do so by modifying the
phonon creation and annihilation operators in the Hamil-
tonian to include O(η2) terms in the Debye-Waller factor
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T/T

min

3

4

5

6

7

8

9
10

In
fid

el
ity

10-5

Estimated
Simulated (ideal)
Simulated (with error)

FIG. 8. Fidelities of multiple four-ion gates (corresponding to
either a cluster state or all-to-all coupling map), each with a
different gate time. For each gate, three values of the fidelity
are shown: estimated with Eq.(8) (blue), calculated from the
simulation in the ideal case (orange), calculated from the sim-
ulation while accounting for both carrier-coupling as well as
higher-order Lamb-Dicke errors (yellow). It is clear that the
fidelity determined by the simulation is very close to the es-
timated value. Moreover, the errors considered here do not
have a significant effect on the fidelity.

[34]. With these terms included, the simulation fidelity
is essentially unchanged; we note that these terms are
expected to have a negligible contribution, as η2 ≈ 10−4.
Figure 8 shows fidelities determined by the simulation

of multiple four-ion gates, corresponding to the N = 4
gates in Fig. 1, both for the ideal case as well considering
the two error sources mentioned above, compared with
our method’s expected fidelity as defined in Eq. (8).

APPENDIX F: QUANTIFYING MODE AND ION
POSITION VARIANCE

The unitary evolution operators allow for calculating
the position and momentum expectation values of the
motional modes as well as individual ions in the ion crys-
tal. Here we provide the expressions used for the analysis
of ion and mode motion, shown in Fig. 4, above.
For simplicity, we assume that the initial state of all

modes of motion is the ground state, nj = 0. Moreover,
we assume the initial spin state is in the Pauli-x basis,
|s1, ..., sN ⟩, i.e. with sn = ±1 signifying the ±1 single-
qubit eigenstates of σx. Due to the unitary evolution
operator in Eq. (13), the expected value of displacement
of the jth mode in this state, is given by

⟨xj⟩t =
N∑

n=1

2sn Re
[
α
(n)
j (t)

]
, (19)



13

with α
(n)
j define in Eq. (14) above. The initial qubit com-

putational ground state, is a state in which all qubits
are set to σz = 1, and is an equal superposition of all
|s1, ..., sN ⟩ states. Thus the expectation value of the
qubit ground state will vanish, due to the summation
of sn = ±1 for all n.

Therefore a better quantifier for displacement of the
the phonon mode, during gate operation, is the mode
variance, given by,

〈
x2j
〉
t
=

1

2N

∑
s∈{+1,−1}N

(
N∑

n=1

2sn Re
[
α
(n)
j (t)

])2

, (20)

where the first sum is on all possible |s1, ..., sN ⟩ states.
This is simplified to,

〈
x2j
〉
t
= 4

N∑
n=1

(
Re
[
α
(n)
j (t)

])2
, (21)

The expected position of the nth ion, Xn, is given by,

⟨Xn⟩ =
∑N

j=1O
(n)
j ⟨xj⟩. Since in the spin ground state

all mode expectation values vanish, then so does the ex-
pected ion position. Here as well we instead use the po-
sition variance, yielding,

〈
X2

n

〉
=

N∑
j=1

(
O

(n)
j

)2 〈
x2j
〉
t
. (22)

The expression in Eq. (22) is used in order to generate
Fig. 6 of the main text.

APPENDIX G: COMPARISON OF ZERO PHASE
SOLUTIONS USING GLOBAL ADDRESSING

AND MULTI-ADDRESSING ANSATZ

As described in the main text, we aggregate zero-phase
solutions under the assumption that the ions are driven
by a global beam, equally illuminating all ions. This re-
sults in only N quadratic constraints, and has solutions,
zg ∈ RM . These solutions are then used as zero-phase so-
lutions for independently addressed ions, as zn = zg for
all n = 1, .., N . Since these zero-phase solutions originate
from a subspace of the full optimization problem search
space, i.e. they have M degrees of freedom, instead of
N ×M , then they might result in sub-optimal converted
solutions.

Here we use a small-size system in order to exem-
plify that the performance of solutions originating from
a global zero-phase solution, is in effect as good as that
of solutions based on N × M degrees of freedom. To

do so we use a small, nine ion, crystal. We generate
50 zero-phase solution using a global assumption (with
9 quadratic constraints), zg and 50 zero-phase solutions,
assuming independent, multi-addressing of the ions (with
9 × 8/2 = 36 quadratic constraints), z. These solutions

FIG. 9. Comparison of zero-phase solutions using global ad-
dressing and multi-addressing ansatz. Left: Total Rabi fre-
quency required by the two approaches. For each target
(point) we present the average Rabi frequency for the con-
verted global ansatz (orange) and multi-addressed indepen-
dent ions ansatz (blue). Showing an agreement between both
ansatze. Right: Overlap between the two types of anstaz
for a specific target realization. Showing the closest overlap
between zero-phase solutions on the horizontal axis and the
overlap of the corresponding full solution in the vertical.

are then converted to full solutions of various random
targets, rg and r respectively.
All of the converted solutions yield high-fidelity entan-

glement gates, which satisfy the infidelity criterion, set
here intentionally high, to 10−8. Figure 9 (left) shows
a comparison of the total required Rabi frequency of
both types of zero-phase solution ansatze. Each point
corresponds to a random target positioned according to
its square root absolute nuclear-norm

√
nuc (|φn,m|) and

|r| scaled by the frequency of the first mode of motion,
ν1 (vertical). Solutions converted from a global ansatz
(blue) require a drive power that is almost equal to those
converted from an independent ansatz (orange). We note
that a similar behavior is exhibited in terms of fidelity.
This indicates that the independently driven zero-phase
solutions do not provide superior converted solutions.
We furthermore study correlations between the solu-

tions. We choose the right-most entanglement target, in
Fig. 9, and for each multi-addressed zero-phase solution,
z we find an extended globally addressed zero-phase solu-
tion, z̃g =

(
zg zg · · · zg

)
∈ RNM which is ’closest’ to it

in terms of overlap in aboslute value, i.e. that maximizes
the quantity oz ≡ |z̃g · z| / |z̃g| |z|. We plot these overlaps
on Fig. 9 (right) on the horizontal axes. We compare to
the same overlap of the converted solutions (vertical). We
observe a low overlap between zero-phase solutions and
a high overlap between full solutions, meaning that the
while the zero phase solutions of both methods yielded
different results, many converted solutions converge to
the same locally optimal solution.
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