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Qubits based on ions trapped in linear radio-frequency traps form a successful platform for quan-
tum computing, due to their high-fidelity of operations, all-to-all connectivity and degree of local
control. In principle there is no fundamental limit to the number of ion-based qubits that can be
confined in a single 1d register. However, in practice there are two main issues associated with long
trapped ion-crystals, that stem from the ‘softening’ of their modes of motion, upon scaling up: high
heating rates of the ions’ motion, and a dense motional spectrum; both impede the performance
of high-fidelity qubit operations. Here we propose a holistic, scalable architecture for quantum
computing with large ion-crystals that overcomes these issues. Our method relies on dynamically-
operated optical potentials, that instantaneously segment the ion-crystal into cells of a manageable
size. We show that these cells behave as nearly independent quantum registers, allowing for parallel
entangling gates on all cells. The ability to reconfigure the optical potentials guarantees connectiv-
ity across the full ion-crystal, and also enables efficient mid-circuit measurements. We study the
implementation of large-scale parallel multi-qubit entangling gates that operate simultaneously on
all cells, and present a protocol to compensate for crosstalk errors, enabling full-scale usage of an
extensively large register. We illustrate that this architecture is advantageous both for fault-tolerant
digital quantum computation and for analog quantum simulations.

I. INTRODUCTION

Trapped ions have ideal properties to be used as qubits
for quantum computing (QC); they feature long coher-
ence times, efficient state preparation and detection tech-
niques, and a high degree of connectivity [1–5]. A quan-
tum register of 1000s of qubits, or more, can be formed,
for example, by utilizing an equally spaced crystal of ions
in a linear RF Paul trap. Indeed recent years have seen
many experimental attempts to work with increasingly
larger trapped-ion registers [6–9].

However, there are two practical issues associated with
large ion-crystals that impede progress in this direction.
The first is heating rates; as the number of ions in the
crystal, N , increases, heating of the ions’ motional modes
due to electric field noise drastically increases. Of par-
ticular concern is the axial center-of-mass (COM) mode,
whose frequency typically decreases as 1/N . This mode
is especially vulnerable, as electric field noise tends to
be spatially uniform and to target low-frequency modes
[10, 11]. The resulting significant heating rates prohibit
the implementation of high fidelity qubit operations, and
might destabilize the ion-crystal.

The second issue with large ion-crystals is spectral
crowding. As the size of the crystal increases the
frequency of adjacent motional modes becomes tightly
spaced. For large ion-crystals with a dense mode spec-
trum, resolving individual modes becomes challenging;
this complicates the implementation of entangling gates

between two or more ions, which involves exciting their
common motion. Granted, spectral control methods
[12, 13] allow for simultaneously targeting multiple modes
to achieve desired qubit couplings with high fidelity.
While such methods are promising for a moderate, up
to 100’s, number of ions, they do not generally provide a
scalable solution for arbitrarily large ion-crystals. First,
the optimal control problems that must be solved to im-
plement these methods becomes intractable for large N .
Moreover, there is strong evidence that the minimum
achievable gate time is set by the smallest frequency spac-
ing among the motional modes [14]. This implies that
gate times scale at least as N2, making large ion-crystals
prohibitively slow for quantum computations.

One active direction for scaling ion traps is the quan-
tum charge-coupled device (QCCD) architecture [15, 16].
This setup involves many spatially separated trapping
sites, each containing a small number of ions, where com-
munication between sites is done by shuttling individual
ions. Inevitably, this comes at the expense of high over-
head in hardware and long circuit duration dominated
by ion-shuttling and ion-cooling times. An alternative
scale-up approach is using photonic-interconnects in or-
der to link small-scale ion-crystals [17–19]. This method
as well involves a high overhead, due to the currently low
entanglement rate via the interconnect, leading to slow
operations.

Here we propose a scalable architecture for QC based
on trapped ions qubits, that maintains the advantages of
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a long ion-crystal, while circumventing its challenges. In
our proposal, an arbitrarily long ion-crystal is segmented
into cells by means of dynamically operated optical po-
tentials, e.g. optical tweezers. In this way, the crystal’s
motional mode structure is modified such that heating
rates reflect only the cell size, and not N . Further-
more, programmable high-fidelity multi-qubit entangling
gates can be implemented independently within each cell
simultaneously. In addition, we show that mid-circuit
measurements, a cornerstone of quantum error correc-
tion (QEC) techniques, as well as other central quantum
computational tools, are straightforward to implement in
an optically segmented ion-crystal.

In this work we generalize the method presented in Ref.
[14], and employ qubit-local driving fields that imple-
ment programmable multi-qubit entangling gates. The
method in Ref. [14] provides a clear physical intuition,
an efficient procedure for designing gate drive parameters
and a thorough scaling analysis, all of which are relevant
to this proposal.

The integration of optical tweezers into ion traps is an
active area of research [20–25]. Specifically Refs. [22–25]
make use of optical tweezers in order to generate tar-
get entanglement operations. In Ref. [20] the authors
use tweezers for parallel two-qubit entangling gates, the
system’s scalability is discussed however there is no treat-
ment of large ion-segments or ion-crystal heating rates.
In Ref. [21] the authors consider segmenting an ion-
crystal using tweezers, however do not analyze generat-
ing large-scale entanglement or connectivity between the
segments. Mid-circuit measurements are not discussed
in any of the above works. Unlike previous studies, here
we detail how to achieve a holistic architecture, incorpo-
rating parallel and large-scale entangling operations and
mid-circuit measurements, that are needed for large scale
QC.

The remainder of this paper is organized as follows.
In section II we present an overview of the proposed ar-
chitecture. In section III we sketch two examples of ap-
plications of quantum information processing tasks that
are amenable to our architecture: quantum simulation
and quantum error correction. An in-depth analysis of
our proposed architecture follows. Namely, in section IV
we derive the spectral properties of optically segmented
traps. In section V we analyze the implication of optical
segmentation on the ion-crystal’s heating rate. In sec-
tion VI we present our method for designing high-fidelity
multi-qubit logical operations that are not hindered by
unwanted crosstalk. Lastly, in section VII we present a
protocol for performing mid-circuit measurements.

II. PROPOSED ARCHITECTURE

There are well-established techniques for preparation,
control and measurement of trapped-ions based qubits for
small-scale registers [26, 27]. We therefore focus mostly
on unique aspects of our architecture. We propose a QC

architecture in which a long trapped ion-crystal, made of
N ions, is segmented into S cells, with each cell contain-
ing C computational qubits available for quantum com-
putation and simulation, generating a C ·S qubit register.
The segments are formed by placing BA barrier ions be-
tween adjacent cells, that are illuminated by an optical
trapping potential, i.e. optical tweezers, made of tightly
focused laser beams [28, 29], that provide an additional
local confinement for the barrier ions.
The key point enabling scalability is that due to the

optical segmentation the cells behave as nearly indepen-
dent quantum registers. Indeed, we show below that
both challenges of scaling-up trapped ions based QCs,
i.e., ion-crystal stability and the performance of logical
operations, both scale with the cell size, C, and not the
total number cells, S. Thus the dynamically reconfig-
urable segmentation removes the fundamental limits on
the number of cells and on the number of qubits in the
ion-crystal, and accordingly on quantum circuit and sim-
ulation size.
A general overview of our scalable architecture, is pre-

sented schematically in Fig. 1. In favor of a simple pre-
sentation we show segmentation of only S = 4 cells, and
explicitly highlight C = 8 computational qubits (green)
per cell. In practice 10s of qubits may be placed in each
cell, and the number of cells is theoretically unlimited
(vertical dots), forming a large ion-crystal. The cells
are separated by BA barrier ions (dark purple), with the
schematic showing BA = 2. BB additional ions (light
green) are placed in the center of each cell and are used
for segment re-configuration and mid-circuit measure-
ments, with the schematic showing BB = 2. Thus, the
ion-crystal contains N = (C +BA +BB)S+BA trapped
ions.
The figure shows a general mode of operation of the

QC, with parallel operations along the vertical axis and
sequential operations, ordered from left to right, that
form computational steps. Specifically, barrier ions are
strongly confined with optical trapping potentials (dark
purple), generating the S = 4 segments in this example
(configuration ‘A’). At the nth computational step, local
and global driving fields simultaneously implement uni-

tary operations, U
(A)
s,n (blue), with s = 1, 2, ..., S. These

unitary operators implement components of the over-
all quantum algorithm, and may involve all C (green)
computational qubits and BB (light-green) auxiliary ions
which are not optically confined in this configuration.
Next all BA and BB barrier ions are optically confined,

enabling mid-circuit measurement of the auxiliary ions
as well as recooling of the ion-crystal and preparation of
ions to be used as auxiliary ions (detailed below). Clas-
sical feedback (orange arrows), based on the mid-circuit
measurement results, may be implemented at this step
in order to influence the next layer of unitary evolution.
Next, the segmentation is reconfigured by strongly con-

fining previously unconfined BB barrier ions and remov-
ing the confinement of the BA barrier ions, thus inter-
changing their roles. This dynamically and quickly gen-
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FIG. 1. Architecture for scalable trapped-ion quantum com-
puting using RF traps and dynamic optical potentials. The
ion-crystal (vertical direction) is segmented to cells by dy-
namically applying optical trapping potentials. This gen-
erates S segments, each containing C computational qubits
(green) that are separated by BA consecutive optically con-
fined ‘barrier ions (dark purple). Additional BB ions in each
cell (light-green) are used to support additional segmenta-
tion configurations of the ion-crystal, and mid-circuit mea-
surements (‘Meas.’) that enable classical feedback (orange
arrows) for the implementation of e.g. quantum error correc-
tion. For simplicity the schematic shows only 4 segments with
8 computational qubits per cell, however in practice our pro-
posal supports 10s of qubits per cell and an arbitrary number
of segments (vertical dots). The horizontal direction shows a
typical mode of operation of the QC, namely logical opera-

tions, involving multi-qubit logical gates, U
(A)
s,n , are performed

in each cell, s, at the nth computational step. The optical
potentials are then switched to a different segmentation con-
figuration, allowing for large-scale connectivity between cells

of the previous configuration, U
(B)
s,n . Thus ultimately guar-

antying connectivity between all computational qubits. An
intermediate segmentation configuration, in which all BA and
BB ions are optically confined, is used to accommodate for
mid-circuit measurement, cooling of the ion-crystal and state
re-initialization.

erates a different configuration of the segments (configu-

ration ‘B’). Unitary operators, U
(B)
s,n , can now be imple-

mented and connect previously uncoupled qubits. Ad-
ditional measurement and re-configuration steps can be
applied as required. We remark that here we have shown
only two basic ion-crystal configurations (A and B), and

have further considered here and below BA = BB , how-
ever various additional segmentation configurations, with
different parameters, can be flexibly generated provided
relevant ions are allocated as barrier ions.
In addition to the configurable optical trapping po-

tentials, we make use of local independently and simul-
taneously applied coherent driving fields. As we show
below, using these local fields for controlling just one
of the atomic transitions of the trapped ions is enough
in order to accommodate for programmable multi-qubit
logical gates [14], which occur simultaneously in all cells
(U (A)s and U (B)s in Fig. 1), as well as for the mid-circuit
measurements and the state preparation that they entail.

III. APPLICATION DEMONSTRATIONS

We sketch examples of applications that showcase the
utility of our architecture. These examples rely on var-
ious features of our proposal, e.g. implementing large-
scale multi-qubit entangling operations and perform-
ing mid-circuit measurements. The methods underlying
these features are thoroughly discussed and analyzed in
the sections below.
We start by considering analog quantum simulations

on our system, specifically a three dimensional (3d)
quantum-spin model. In general, quantum simulations
are considered a well-suited task for noisy intermediate-
scale quantum (NISQ) era QCs [30], as simulation of
quantum systems is a notoriously challenging task for
classical computers, while quantum computers are con-
sidered naturally suited for it [31]. Indeed, numerous
quantum systems have recently implemented impressive
demonstrations of quantum simulations [32–34].
Quantum simulations using trapped-ions based qubits,

have also been recently demonstrated [35–42], many of
which take advantage of the unique all-to-all coupling
present in these systems. In these works Ising-type inter-
actions, that are inherent to trapped ions systems, can
be straightforwardly iterated and combined with single-
qubit rotations in order to generate arbitrary XYZ-type
spin-models [43, 44].
Our architecture is well-suited for quantum simula-

tions, as our ability to design programmable multi-qubit
entanglement manifests as the dimensionality and geom-
etry of the simulated model [45], and the optical seg-
mentation and reconfiguration provide a straightforward
approach to simulating 3d bulk systems. Such 3d systems
are challenging to simulate on linear or planar quantum
processors with short-range interactions, due to a large
gate overhead required for embedding the 3d geometry.
For simplicity, we focus here on a 3d rectangular lat-

tice of spins, though many other geometries can be real-
ized, e.g. hexagonal. Figure 2 shows an implementation
of such a d × d × 2S rectangular Ising model. Specif-
ically, Fig. 2(a) shows a single cell of the ion-crystal,
that contains 2d2 computational qubits (green), and en-
codes a pair of two-dimensional planes of the simulated
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FIG. 2. Quantum simulation of a 3d rectangular Ising spin-
model on an optically segmented ion-crystal. Computational
qubits (green) are coupled in cells (purple brackets) such that
each cell holds two planes of the rectangular spin-model, and
implements inter-plane (dark-blue and bright-blue links) and
intra-plane (orange links) couplings (a) Couplings of a sin-
gle cell, holding two planes of the model, with d = 4, used
for both segmentation configurations. (b) Multiple cells form
the 3d Ising model. The two optical configurations (‘A’, ‘B’
and purple brackets) enable interlaced coupling of the planes
(solid orange and dashed yellow, respectively), such that two
entanglement operations implement the model’s Hamiltonian.
(c) We design the control pulses that implement the nearest-
neighbor couplings required for the Ising model, here for d = 4
and S = 5. The resulting coupling between all qubit pairs
(horizontal and vertical axes) is shown (color), exhibiting a
block-diagonal structure that implements the links shown in
(a), for each cell. (d) Deviation of the qubit-qubit coupling
from the ideal structure (log scale), showing a low error, that
is not limited by crosstalk between adjacent cells, and enables
scaling up. The implementation’s infidelity scales as the de-
viations squared, and is here evaluated to 10−4 per cell.

system. Programmable entanglement gates implement
the required couplings that generate the model’s geome-
try, i.e. inter-plane couplings (dark-blue and bright-blue)
and intra-plane couplings (orange). The model is made
three dimensional, as shown in Fig. 2(b), by interlac-
ing the vertical couplings between adjacent layers (solid
orange and dashed yellow), using the two segmentation
configurations (purple brackets).

As an example, we consider a specific realization of our
architecture, in trapped 40Ca+ ions, and utilize it for a
d = 4 and S = 5 realization of a nearest-neighbor Ising
model (see further system details in the SM [46]). We
design the control pulses that drive the computational
qubits, and generate the required entanglement opera-
tions for simultaneous XX-coupling of the qubits, in the
entire ion-crystal, similarly to the couplings shown in Fig.
2(a). For simplicity, we use a uniform, unity coupling be-
tween all nearest-neighbor qubits. Our design protocol is
presented and discussed below.

We calculate the coupling terms that result from the
control pulses that we designed, and plot them in Fig.
2(c), with each point on the plot representing a qubit-
qubit coupling between qubits of the corresponding in-
dices (horizontal and vertical axes). The block-diagonal
structure that is seen reflects the underlying segmented
structure of the ion-crystal. The relative difference be-
tween the ideal and the resulting qubit-qubit couplings is
shown in Fig. 2(d) in log-scale exhibiting a low coupling
error that indicates a high-fidelity and accurate simula-
tion. Indeed, the overall performance of our implementa-
tion, simultaneously coupling 160 computational qubits,
is evaluated with an infidelity that is better (lower) than
10−4 per cell.

We note that with this encoding, a time-step of an
XX nearest-neighbor 3d rectangular Ising model can be
implemented with only two sequential multi-qubit entan-
glement gates, such as that shown in Fig. 2(c), which,
for d = 4 and S = 5, would otherwise require the ap-
plication of 384 sequential two-qubit gates between arbi-
trary pairs in the quantum register (in general O

(
d2S

)
two-qubit gates). By considering more elaborate models,
e.g. next-nearest neighbor interactions within the two-
dimensional planes, non-uniform couplings between the
planes, or larger systems, the two-qubit gate count will
increase, while with our method two multi-qubit gates
still suffice.

The second example showcases a path towards fault-
tolerant quantum computation [47–49]. As shown in
3(a), each segment (purple brackets, ‘A’) is utilized
to encode a single logical error-corrected qubit using a
distance-five surface code. The code uses 25 computa-
tional qubits to store the logical state, and 12 auxiliary
(ancilla) qubits to readout the values of both X and Z
stabilizer measurements. The entire set of X stabilizer
measurements can be implemented in one step, using
a single multi-qubit entanglement gate and mid-circuit
measurements. Then, the auxiliary qubits are reinitial-
ized, after which the entire set of Z stabilizers is similarly
performed. Clearly cell segmentation does not require 12
barrier ions, thus here most of the 12 auxiliary qubits are
implemented by computational qubits in the cell.

Naturally, these stabilizer measurements can be per-
formed across all logical qubits in parallel. Note that
not all segments must implement the same operation at
any given time; some may, for example, implement X
stabilizer measurements while others implement Z stabi-
lizer measurements. Figure 3(b) shows a specific example
involving five logical qubits, and a multi-qubit entangle-
ment gate, designed to perform simultaneous X and Z
stabilizer couplings, in different cells, throughout the en-
tire ion-crystal. The relative difference between the ideal
and the resulting qubit-qubit couplings is shown in Fig.
3(c) in log-scale, exhibiting a low error that indicates a
high-fidelity and accurate implementation.

Entanglement between two logical qubits, imple-
mented on independent surface codes, can be achieved,
for example, using ‘lattice surgery’ [50, 51]. In this
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FIG. 3. Quantum error correction code on an optically seg-
mented ion-crystal. (a) We implement several distance-five
logical qubits, shown pictorially as grids of 5×5 computational
qubits (green). Each cell in configuration ‘A’ (purple brack-
ets) houses a single logical qubit (labeled 0 - 12 and 25 - 36)
and twelve auxiliary qubits (labeled 13 - 24). Programmable
multi-qubit gates generate the required entanglement struc-
ture for stabilizer measurements on each logical qubit in par-
allel. Here we show an implementation that generates X-
stabilizers (light-blue plaquettes and blue lines). Z-stabilizers
may be implemented with an additional gate (light-red pla-
quettes). Connectivity across the entire register is enabled by
configuration ‘B’ (light-purple brackets) such that each cell
in this configuration holds data qubits of two adjacent logical
qubits. This enables logical entangling operations between
any neighboring encoded qubits via stabilizer measurements
formed on the border between the two surface codes (yellow
plaqeuttes and orange lines), using the auxiliary ions in this
configuration (labeled 17’-19’). (b) Example of programmable
multi-qubit gate generating X and Z stabilizers on five logical
qubits, implemented on a segmented ion-crystal with S = 5,
C = 34 and B = 3. We design the control pulses that im-
plement the entanglement gates required for the various sta-
bilizers. The resulting qubit-qubit couplings between corre-
sponding qubit pairs (horizontal and vertical axes) is shown
(color), exhibiting a block-diagonal structure that reflects the
formation of five logical qubits. (c) Deviation of the qubit-
qubit coupling from the ideal structure (log scale), showing a
low error, that is not limited by crosstalk between adjacent
cells, and enables scaling up. The gate’s infidelity scales as
the deviations squared, and is here evaluated to 10−4 per cell.

method, stabilizers formed along the border between two
surface codes are measured, projecting the joint state
of the logical qubits to an entangled basis. In our case,
this is naturally enabled by re-configuring the optical seg-
mentation (light-purple brackets, ‘B’) such that ions from
neighboring cells can interact, as shown schematically in
Fig. 3 (orange lines and yellow plaquettes). Following
this operation, the segmentation reverts to its original
configuration, and additional stabilizers are measured.
The overall result of this procedure is an entangling log-

ical XX operation between the adjacent surface codes.
We emphasize that even though S = 5 is used in this

example, our architecture’s scalability enables using con-
siderably more cells in order to implement many logical
qubits. This example shows one potential route to fault
tolerance using our architecture; however many different
variants could be considered. First the distance of the
code, and thus the number of physical qubits required,
should be determined by the demands on the overall logi-
cal error rate. Moreover, the choice of the surface code it-
self, while motivated by its high fault tolerance threshold,
is not the only possible choice. In fact, there are other
high-threshold codes, with potentially better encoding
rates, that may be suitable as well [52]. Constructing an
optimal protocol for fault tolerant QC within our archi-
tecture, including a prescription for performing logical
non-Clifford operations, is a subject for further study.

IV. SPECTRAL PROPERTIES OF
OPTICALLY-SEGMENTED ION-CRYSTALS

In general, similar to alternative scale-up methods, seg-
mentation decouples cells from each other, reshaping the
well-known all-to-all coupling of trapped ion-crystals to
local all-to-all couplings within cells of manageable sizes
of tens of ions. As we show below, here this segmentation
allows to maintain the ion-crystal’s stability as well as
to shape programmable multi-qubit quantum gates that
act simultaneously and independently within the differ-
ent cells. Another unique feature of our scale-up strategy,
compared to other segmentation approaches, stems from
the ability to dynamically and quickly reconfigure the
applied segmentation, generating new cells that combine
and couple previously decoupled qubits, thus enabling
fast and large-scale connectivity within the whole ion-
crystal.
We analyze the effect of optical segmentation on the

ion-crystal, specifically on collective modes of motion of
the ion-crystal in the axial and transverse directions. To
this end we assume that the barrier ions are illuminated
by beams that generate an optical harmonic trapping
frequency of the form [53],

ωo.t.p =

√
2Re[α (λ)]

m
|E|, (1)

where α (λ) is the wavelength-dependent polarizibility of
an illuminated ion, m is its mass, and E is the field
strength. The impact of this potential is best quanti-
fied by comparing it to another important parameter in
the system, namely the characteristic frequency-scale as-
sociated with Coulomb interaction between adjacent ions
[20],

ν =

√
e2

4πϵ0md3
, (2)
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with e the elementary electron charge, ϵ0 the vacuum per-
mittivity and d is the inter-ion distance of an equidistant
ion-crystal. As we show below, a strong optical potential,
ωo.t.p > ν, drastically changes the motional mode struc-
ture of the chain. By incorporating the optical trapping
potential with common methods to analyze ion-crystal
motion [54], we obtain the normal-mode frequencies and
structure in the axial and transverse directions (for fur-
ther details see the SM [46]).

We first consider the effect of the optical trapping on
the axial modes of motion of the ion-crystal, that lie at
the lower parts of the motional spectrum and are typi-
cally more prone to heating. When considering the joint
motional mode structure of two identical ion-crystals, in
two completely separate traps, we observe a degenerate
mode structure, with each motional frequency appearing
twice, and each motional mode being localized at one of
the ion-crystals. Thus we intuitively expect that the mo-
tional spectrum of a well-decoupled optically segmented
ion-crystal will form approximately degenerate bands.

Figure 4 demonstrates this by showing the axial mo-
tional spectrum of a N = 231 long ion-crystal for a
varying optical trapping potential that segments the ion-
crystal into S = 6 cells, separated by BA = 3 barrier
ions, such that each cell contains 35 ions (out of which
C = 32 are computational qubits and BB = 3 acts as
barrier ions for segmentation configuration ‘B’). As the
optical trapping potential increases the axial spectrum
(blue) forms 35 bands of S modes each.

Indeed the formation of bands heralds the decou-
pling of the motion of cells from each other, such that
band frequencies resemble those of an independent, un-
segmented, ion-crystal containing C +BB ions (orange),
with each mode in the band being a superposition of local
excitations of the corresponding mode of the independent
cell. Thus, the width of each band marks the relevant
rate in which a motional excitation traverses from one
cell to another. That is, an excitation of a local mode in
a single cell is composed of a superposition of all modes
of the band, which then disperse at a time scale that is
inversely proportional to the band width.

Figure 4 further shows BA high-frequency bands, con-
taining S + 1 modes, associated with the motion of
(S + 1)BA barrier ions. Crucially these bands are spec-
trally separated from the ‘bulk’ ions such that their mo-
tion is essentially decoupled from the bulk. We exploit
this fact below in order to implement mid-circuit mea-
surements and cooling of the barrier ions.

Figure 5 shows the transverse (radial) band structure
of the sameN = 231 ions systems with ωo.t.p set to match
the scale of the RF trapping in the transverse direction,
ωrad, yielding ωo.t.p ≈ 4.2ν (dashed vertical line in Fig.
4). Similarly to the axial direction, optical segmentation
results in the formation of C +BB bulk-bands as well as
additional BA bands associated with the motion of bar-
rier ions (blue). The average frequencies of the bands re-
semble those of an independent cell (orange), also shown
in the inset (bottom right) that presents a zoom-in on the

FIG. 4. Axial spectrum of an ion-crystal with N=231 ions,
segmented into S = 6 cells. Cells are separated by BA = 3
barrier ions and include C+BB = 35 ions each. The axial fre-
quencies (blue) are shown for various trapping optical poten-
tials, ωo.t.p and are normalized by the characteristic Coulomb
scale, ν. For comparison, an additional axial spectrum of
an independent ion-crystal with 35 ions is shown (dashed or-
ange). For ωo.t.p > ν the axial spectrum of the optically seg-
mented trap forms bands which are located at the frequencies
of the independent cell. As ωo.t.p increases high-frequency
bands form, which are due to the BA barrier ions. The radial
trapping frequency, ωrad/ν ≈ 4.2 (vertical line), is relevant for
generating multi-qubit operations. The inset is a zoom-in on
the center-of-mass band (vertical axis in log-scale), showing
that at ωo.t.p = 2ν the segmented crystal’s modes resemble
the independent cell, implying that heating is dictated by the
properties of a single cell rather than the whole, multi-cell,
crystal.

last four computational qubit bands, showing narrow and
well-separated bands. For transverse modes of motion
the band index, b (horizontal axis), ordered according
to the band’s frequency, is opposite to the mode’s wave
vector, i.e. large b’s represent long-wavelength modes of
motion.

Transverse modes of motion are used in order to gener-
ate entanglement between computational qubits, by me-
diating qubit-qubit interaction via spin-dependent mo-
tion. Typically the entanglement operation duration is
inversely related to the frequency difference between ad-
jacent modes of motion [14].

Here, the frequency gap between bands, ∆ωb = ωb −
ωb−1, with ωb the mean frequency of the modes of bulk
bands, b = 1, ..., C + BB , marks the typical interaction
rate between ions within the same cell. Thus a simple es-
timation of unwanted crosstalk in the entanglement op-
erations between cells is given by εBW,b = BWb

2∆ωb
, with

BWb the bandwidth of band b, that sets the coupling
rate between cells. The resulting estimate is presented in
the inset (top left) of Fig. 5 (orange), showing that high
b bands, associated with long-wavelength motion across
cells, results in a higher crosstalk, at the few percent
level. A more precise estimate of the crosstalk is also
shown (blue) and discussed below.
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FIG. 5. Radial modes spectrum of an optically-segmented
ion-crystal containing N = 231 ions, and the resulting cell
crosstalk. Due to the segmentation the mode frequencies
(blue) form C +BB bands, which imitate the structure of an
unsegmented independent cell (orange). Additional BA high-
frequency bands associated with the barrier ions are formed as
well. The bottom-right inset shows a zoom-in on the last four
bulk bands. The bands are well separated and narrow in fre-
quency. The top-left inset presents estimations of unwanted
crosstalk between cells during simultaneous multi-qubit oper-
ations, mediated by the various bulk bands. The estimations
are formed by considering only spectral consideration, εBW,b

(orange) or mode-structure considerations, εJ,b (blue). Both
predict a ∼ 2.5% crosstalk due to mainly long-wavelength
motion of the cells, associated with high bands. Mitigation of
the crosstalk is presented in the main text.

Optically confined ions are not used as computational
qubits since optical confinement significantly degrades
their coherence due to spontaneous photon scattering
and uncontrolled light-shifts. For example, we consider
40Ca+ ions that are illuminated by a confining optical
field at 400 nm with a beam that has a diameter of 1 µm,
driving the S ↔ P transition. In this setup, a harmonic
confinement frequency of ωo.t.p = ωrad = 3 MHz, used
throughout our analysis, requires an optical power of 50
mw per barrier ion. The resulting photon scattering rate
from the P manifold is approximately 10 kHz and the
frequency shift of the S ↔ P transition is approximately
2 GHz. Photons scattered from barrier ions are signifi-
cantly detuned, by few THz, from this transition in the
computational qubits, resulting in a low, < 1 Hz, deco-
herence rate.

V. HEATING RATES OF
OPTICALLY-SEGMENTED ION-CRYSTALS

A crucial criteria for successfully scaling-up ion-
crystals is maintaining crystal stability. In the standard
approach to trapped ion-crystals this challenge comes
about as a heating rate of the crystal that scales unfavor-
ably withN . Specifically, in un-segmented ion-crystals as
N increases, the frequencies of low-lying long-wavelength

modes of motion decrease, and become more susceptible
to electrical noise, leading to degradation of coherent op-
erations, destabilization of the ion-crystal and its even-
tual melting. Utilizing optical trapping potentials gen-
erates cell-local heating rates, which only depend on the
cell size, C, and not on the total number of ions N (or
S), potentially allowing for arbitrarily long ion-crystals.
This is shown graphically in Fig. 4, since for ωo.t.p ≥

2ν the low-lying COM band is lifted and its frequency
converges to the COM mode of an independent cell
(inset), implying cell-dependent (and not N -dependent)
heating rates. The COM modes remain gapped regard-
less of N .
We directly quantify the phonon excitation rate of the

optically-segmented architecture. For a given motional
mode, the phonon excitation Fermi’s golden rule rate due
to the presence of some electric field noise, δE(t, r), is
given by [11],

Γ(k) =
e2

4mℏωk
S
(k)
E (ωk), (3)

with ωk the frequency of mode k, and S
(k)
E (ωk) is the

spectral density of the electric field noise. The mode’s
heating rate is ℏωkΓ

(k).
The precise form of the spectral density function is

a subject of much theoretical and experimental study
[10, 11, 55–59], is system-dependent and its theoretical
limits remains somewhat inconclusive. Yet it is generally
agreed that it scales as, SE(ω) ∝ ω−αD−βT γ , with mode
frequency ω, ion-electrode distance D, and temperature,
T , and α, β and γ are scaling exponents. Motivated by
many experimental results, here we assume that the noisy
electric field is spatially uniform along the ion-crystal and
that α = 1.
Using these consideration we obtain the system’s exci-

tation rate (see details in the SM [46]),

Γ =
∑
k

Γ(k) ∝
∑
k

e2

4mℏω1+α
k

∑
i,j

A
(i)
k A

(j)
k , (4)

with Γ(k) the excitation rate of the kth mode and A an
orthogonal axial mode-matrix, such that A

(i)
k is the par-

ticipation of the ith ion in the kth axial mode of motion,
obtained by analyzing the axial mode structure [46, 54].
Due to the summation over k, our formulation of Γ in

Eq. (4) is extensive, e.g. for two identical and indepen-
dent copies of an ion-crystal, Γ will be evaluated as twice
the value of a single copy of the ion-crystal. Thus ideal
decoupling between cells in the optically segmented ion-
crystal is expected to show-up as proportionality of Γ to
S.
Figure 6 shows the predicted excitation rate of the op-

tically segmented ion-crystal, due to Eq. (4), for vari-
ous values of the cell size, C (horizontal axis), and num-
ber of segments, S (colors). The barrier size is set to
BA = 3 and each cell contains C+BB ions, with BB = 3.
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Excitation rates are calculated for ion-crystals reaching
N > 1300 ions. The figure shows, Γ/ (ΓindS) (vertical
axis), such that the excitation rates are normalized by the
number of segments, S, and by the excitation rate of an
independent unsegmented ion-crystal containing C+BB

ions, Γind. We observe that the normalized excitation
rates are all of order unity and converge towards 1 as C
increases, with a negligible dependence on the number
of segments. Thus we conclude that the cell’s stabiliza-
tion is dominated by cell properties, and is specifically
independent from other cells in the ion-crystal.

The main contribution to Γ is given by the lowest fre-
quency band, which is a COM motional band. This is in-
tuitive as COM modes have the lowest motional frequen-
cies, as well as a high overlap with the uniform electric
field noise considered here, as compared to other modes
which have negligible contributions. This is seen in the
dashed lines of Fig. 6 in which we calculate Γ using ex-
clusively this single band (while Γind is still calculated in
full).

FIG. 6. Axial excitation rate of optically segmented ion-
crystals. The excitation rates (vertical axis), Γ, are shown
for various values of cell sizes, C (horizontal axis) and num-
ber of segments, S (colors). We normalize Γ by the excitation
rate of an independent single cell, Γind and by the number
of segments, S. All resulting normalized rates are of order
unity, showing that the stability of the optically segmented
ion-crystal is dictated by C, and is largely independent of
S. We repeat this process but with only considering the low-
est band of motional modes in the expression for Γ (dashed),
without varying Γind. The resemblance between this result
and the full expression of Γ (solid) shows that the lowest-
lying band is the dominant contributor to the heating. This
result is intuitive as this band is a COM motional band, hav-
ing a high-overlap with a uniform electric field.

VI. PARALLEL MULTI-QUBIT LOGIC AND
CROSSTALK MITIGATION

In trapped ions based quantum computers, logical
gates between qubits, i.e. entanglement, is typically facil-
itated by spin-dependent forces acting on normal-modes

of motion of the ion-crystal [60, 61]. Thus adequate con-
trol of the normal-mode structure is crucial for scaling-up
the trapped ion quantum register size. Specifically, uti-
lizing many modes of motion simultaneously enables pro-
grammable long-range interactions [12–14], which are sig-
nificant for efficient implementation of various quantum
computational tasks [52, 62–65]. However utilizing mul-
tiple modes of motion becomes increasingly challenging
in large ion-crystals due to the overwhelming complexity
of the required qubit drive, which comes about as a NP-
hard optimization problem [12], as well as an apparent
slow-down of the feasible gate duration [14] which, in ab-
sence of segmentation, scales as N2. Thus segmentation
plays here a crucial role as well in generating independent
large, yet manageable, computational qubit cells.
The heuristic estimation for crosstalk error, provided

by εBW,b above, can be improved by a detailed consid-
eration of the transverse mode-structure. Specifically,
based on the quadratic-form of qubit-qubit entanglement
discussed thoroughly in [14], the coupling term between
ions c (c′) in cells s (s′), mediated by band b, is estimated
as

J
(c,s),(c′,s′)
b =

S∑
m=1

R
(c,s)
(b,m)R

(c′,s′)
(b,m) , (5)

with R an orthogonal radial mode-matrix (similar to A

above) such that R
(c,s)
(b,m) is the participation of ion c of cell

s in mode m of band b (specific examples of J
(c,s),(c′,s′)
b

are shown in the SM [46]). Using Jb above, we form a
more detailed crosstalk estimation, namely,

εJ,b =

max
c̸=c′,s ̸=s′

∣∣∣J (c,s),(c′,s′)
b

∣∣∣
max
c̸=c′,s

∣∣∣J (c,s),(c′,s)
b

∣∣∣ , (6)

with s, s′ maximized over all S cells in the segmented
ion-crystal and c, c′ maximized over all C computational
qubits in each of the cells. In essence the estimation
in Eq. (6) compares the coupling between ions in the
same cell (s = s′) to coupling between ions in differ-
ence cells (s ̸= s′). This estimation is also shown in the
inset (top-left) of Fig. 5 (blue), exhibiting a similar be-
havior to that of εBW,b, i.e. ∼ 2.5% crosstalk mainly
due to long-wavelength motional excitations of the cells.
We also evaluate separately the contribution of nearest-
neighbor cells, εnnJ,b, which follows the same definition as

εJ,b in Eq. (6) but with s′ = s ± 1 in the numerator.
This estimation is shown as well in the inset (top-left) of
Fig. 5 (green stars), showing an almost exact agreement
with εJ,b. Thus we conclude that the ∼ 2.5% crosstalk is
mainly due to unwanted coupling between adjacent seg-
mented cells. Further analysis shows that in general 2-3
barrier ions, each confined with an optical trapping fre-
quency of ωo.t.p ≈ ωrad are sufficient for maintaining low
crosstalk levels (see the SM [46]).
A few percent crosstalk level, reflected by both εBW,b

and εJ,b, marks an almost complete decoupling between
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cells. Nevertheless, it is too high for high-fidelity quan-
tum operations, and restricts performing simultaneous
logical gate on distinct cells. However this crosstalk level
is low enough such that it can be mitigated perturba-
tively in a scalable manner. Here we specifically rely on
the large-scale fast (LSF) method, presented in Ref. [14].

In essence, LSF makes use of a multi-tone drive in or-
der to generate programmable multi-qubit gates, which
naively involves solving a quadratically constrained op-
timization problem of dimension N2, and generates the

unitary gate, exp
(∑N

n,m=1 φn,mσ
(n)
x σ

(m)
x

)
, with σ

(n)
x a

Pauli-x operator acting on the nth qubit and φn,m a tar-
get multi-qubit coupling matrix. The hardness of the op-
timization problem is mitigated in LSF with two key re-
alizations. First, for each fixed system any non-vanishing

drive solution to a special ‘zero-phase’ version, φ
(0)
n,m = 0,

of the optimization problem can be efficiently converted
to a high-fidelity solution of any general problem. Sec-
ond, the zero-phase solutions (ZPS) can be obtained by
considering homogeneous illumination of the ion-crystal,
resulting in a dimension N quadratic problem.

The operational approach of LSF is naturally adopted
to our architecture, making the design of multi-qubit en-
tanglement, simultaneously in all cells, fast and scalable.
Specifically, we use LSF in order to generate ZPSs for an
effective ‘typical’ cell of the bulk of the ion-crystal (see
the SM [46]). Up to small deviations that are corrected
below, this ZPS is adequate to all of the ion-crystal’s
cells. Using LSF, different multi-qubit gates are designed
for each cell by converting the same ZPS. This classi-
cal computation can be performed fast and in parallel.
After performing these steps we obtain a specific drive
spectrum, for all computational and auxiliary qubits in
the ion-crystal, that generates the required entanglement

per-cell at once, exp
(∑S

s=1

∑C
n,m=1 φ

(s)
n,mσ

(n,s)
x σ

(m,s)
x

)
,

with σ
(n,s)
x a Pauli-x operator acting on the nth qubit

in cell s and φ
(s)
n,m the desired multi-qubit target of cell

s.

As discussed above, the unwanted coupling between
cells incurs a ∼ 2.5% crosstalk error, which is dominated
by nearest-neighbor cells. Here this brings about a typi-

cal coupling of ∼ 0.025φ
(s)
n,m between ions in distinct cells.

Therefore we make use of an additional mitigation layer
on top of LSF. Crucially, the nearest-neighbor structure
of the crosstalk enables our mitigation technique to scale
favorably, in terms of classical computation resources,
and does not impose constraints on the ion-crystal size.

Specifically, we perform an iterative optimization by
linearizing the quadratic constraints around the current
solution, with the initial solution given by LSF as dis-
cussed above. The resulting linear equations provide con-
ditions that resolve crosstalk as well as inaccuracies of
the LSF solution that originate from the assumption of
a typical cell. We do so locally, i.e. the linear condi-
tions are formed for only two adjacent cells at a time,
generating C (C − 1) linear constraints that improve the

LSF results and 3C2 linear constraints that correspond
to crosstalk terms. The iterative optimization is stopped
when a target infidelity is reached. Crucially since the lin-
ear equations are local, relating only four adjacent cells
at a time, they involve only O

(
C2
)
linear constraints,

allowing parallel optimization of the next four adjacent
cells [46].

An additional condition for a high-fidelity process is
decoupling of the qubits from the modes of motion at
the end of the entanglement operation. This is typically
satisfied by forming constraints for each of the N modes
of motion independently. Here however such an approach
will be a hurdle to scalability since it will be infeasible
to satisfy a large N number of constraints. Instead, we
make use of only C +BA,B linear constraints of the typ-
ical cell, and supplement these with additional robust-
ness properties that make the decoupling insensitive to
the mode frequency inaccuracies, described in Ref. [66],
such that each constraint enforces the decoupling of an
entire band at once.

FIG. 7. Performance of the crosstalk mitigation method as a
function of optical trapping potential ωo.t.p, evaluated on the
entanglement used to implement a simulation of a 3d rectan-
gular Ising model. Top: Error per cell, using Eq. (7), as a
proxy for the entanglement infidelity of the entire multi-qubit
operation. For ωo.t.p ≳ ωrad the crosstalk compensated solu-
tion (dark-blue) shows a low, < 10−4, infidelity. As expected,
the initial LSF solution, based on the effective typical cell
(orange) shows a ∼ 10−2 infidelity. The mitigation degrades
in the weak optical confinement regime, due to long-range
coupling between cells that is not considered in the crosstalk
mitigation method. Indeed this degradation appears when
considering long-range cells (dashed purple), and not seen
when only considering nearest-neighbor and onsite coupling
(dashed pink). Additional infidelity due to residual coupling
to motional modes (dashed light-blue) exhibits a similar be-
havior. Bottom: The required total drive coupling, given
in units of the lowest transverse mode frequency (bottom).
The crosstalk compensated solution (dark-blue) only incurs a
small, ∼ 10%, overhead on the initial LSF solution (orange).
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We study the efficacy of our crosstalk mitigation
method by considering a segmented ion-crystal system
used for a 3d Ising model simulation, similar to that
shown in Fig. 2 above, with S = 5, d = 3 and
BA = BB = 3. We design the control pulses that im-
plement the required qubit-qubit couplings, for various
optical trapping frequencies. The resulting operation in-
fidelity is evaluated, to leading order in the qubit-qubit
coupling deviations and in residual ion displacements, as,

I = Ishort + Ilong + Imotion (7)

such that Ishort approximates the infidelity due an erro-
neous qubit-qubit coupling within each cell and crosstalk
to nearest-neighbor cells, Ilong is the infidelity due to
qubit-qubit coupling between cells that are not nearest-
neighbors and Imotion approximates the infidelity due to
residual coupling between the qubits and the phonon
modes of motion.

Figure 7(top) presents the infidelity, I, of the initial
LSF solution, based on the typical cell (orange) and the
crosstalk corrected solution (dark-blue). It exhibits an
apparent cross-over between two regimes at ωo.t.p = ωrad,
at which point the transverse mode band structure is
manifested. At low optical confinement the performance
of the uncorrected, typical-cell solution (orange) is low,
such that our leading-order estimation breaks-down. At
strong optical confinement this solution generates an in-
fidelity of ∼ 10−2, as expected from our analysis above.
However the crosstalk-corrected solution (dark-blue) suc-
cessfully generates solutions that have an infidelity that is
better (lower) than 10−4 for the entire multi-qubit oper-
ation, throughout the strong optical confinement regime.

We account for the different contributions to the
crosstalk-corrected solution, given by Eq. (7). We note
that Ishort (dashed pink), has a negligible contribution,
regardless of optical confinement, while Ilong (dashed
purple) converges to low values only at the strong confine-
ment regime. This behavior is expected as our optimiza-
tion actively corrects for on-site and nearest-neighbor
terms, and ignores other terms. This implies that strong
optical confinement successfully decouples next nearest-
neighbor (and further) cells, removing the need to take
the entire ion-crystal into account, and enabling scalabil-
ity. Similarly, due to a well-formed band structure, the
motional infidelity, Imotion (dashed light-blue), becomes
small at strong optical confinement, and in general dom-
inates the overall infidelity.

Figure 7(bottom) shows the total drive coupling, i.e.
Rabi frequency, required to drive the initial LSF solution
(orange) and the crosstalk corrected solution (dark-blue),
given in terms of the frequency of the lowest radial mode,
ν1, as a characteristic scale. The compensated solution
incurs a small overhead of ∼ 10% on the initial solution.

We remark that our architecture and crosstalk com-
pensation method can also be implemented by global
driving of entire cells using similar techniques, such as
in Refs. [12, 14].

VII. MID-CIRCUIT MEASUREMENTS

The ability to perform mid-circuit projective measure-
ments, and apply coherent feedback based on the mea-
sured results, is at the heart of QEC, as well as addi-
tional central quantum computational tools [67–69]. In
trapped-ions based systems, projective state detection is
typically performed by state-dependent florescence. This
poses a technical challenge, as the scattered photons usu-
ally heat-up the ion-crystal due to photon recoil. Fur-
thermore the photon may be resonant with neighbor-
ing ions and scattered by them, resulting in decoher-
ence of the quantum state of the entire system. Thus,
so far, mid-circuit measurements have been implemented
in trapped ions either in small ion-crystals, which are
well separated from other parts of the quantum register,
by ‘shelving’ all computational qubits to non-resonant
atomic states, or by using two different atomic species
spectraly separating logical and incoherent operations
[70–73].
In our optically segmented ion-crystal scheme, opti-

cally confined ions are well-suited for mid-circuit mea-
surements, as their motion is separated to independent
bands (top part of the spectra in Figs. 4 and 5), thus pho-
ton scattering heating remains local and does not heat
the other crystal modes. Furthermore, the optical fields
generating the trapping also substantially light-shift the
atomic transition lines of the ions, specifically the pho-
ton emission lines, such that photon scattering is largely
suppressed. Thus no physical shuttling of the ions into
dedicated measurement regions is required, nor the use
of multiple ion-species.
We describe the protocol used to measure the qubit

state of some target ions, without incurring decoherence
on computational qubits, or heating of bulk modes. After
the measurement is completed, we cool and re-initialize
the measured ions. Figure 8 (top) illustrates these gen-
eral steps involved in performing mid-circuit measure-
ments. For simplicity we consider the required operations
on three types of ions in the ion-crystal, i.e. computa-
tional qubit ions, ‘C’ (green), barrier ions to be measured,
‘B’ (light-green) and optically confined barrier ions, ‘A’
(purple). Crucially, our measurement method can be per-
formed in parallel throughout the entire ion-crystal on all
required ions. In our architecture ions may be optically
confined specifically for the purpose of mid-circuit mea-
surements, without having an essential role in segmenta-
tion of the ion-crystal, as showcased in the application of
a QEC surface code, above.
For concreteness we consider a specific realization, in

trapped 40Ca+ ions. Furthermore we consider a local
control over a single wavelength, at ∼ 400 nm, which
couples the two qubit states defined in the 4S1/2 ground
state manifold via Raman transitions mediated by the
short lived 4P manifolds. This local control, acting inde-
pendently on all ions, is primarily used for generating sin-
gle qubit rotations and multi-qubit programmable gates,
however here it is utilized as a means to ‘localize’ global
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FIG. 8. Top: schematic of mid-circuit measurement proto-
col, showing three types of involved ions, computational qubit
ions, C (green), barrier ion to be measured, B (light-green)
and optically confined barrier ions, A (purple). Operations
are ordered from left to right. Data is encoded on ion C (ver-
tical line), and one of the qubit states of the ion is ‘shelved’
to a non-fluorescing state using local control. Next an inter-
mediate optical segmentation configuration is used, confining
both ions A and B, and separating their motion from the
computational qubits. The state of the barrier ions is mea-
sured (‘Detect’) and then reset (‘Prepare’). Lastly the optical
segmentation configuration is switched. Bottom: Relevant
atomic levels of 40Ca+ ions, showing 4S1/2 the ground state
manifold, the metastable 4D5/2 manifold and the short-lived
4P1/2 manifold. The S ↔ P transition varies between the
no-optical confinement (left) and optically confined (right)
cases, allowing to separate the two cases spectrally (see main
text). The main optical field used in the protocol are shown,
namely at 729 nm (red), coupling the S ↔ D levels, at 400
nm (dark-blue), generating Raman transition between qubit
states as well as additional local light-shifts, and at 397 nm
(light-blue) coupling the S ↔ P levels.

control fields using light-shifts, detailed below. While ad-
ditional local controls, that can be used in our scheme,
will act to simplify the resulting mid-circuit measurement
protocol, we show that a single local control remarkably
suffices to facilitate all requirements.

The main atomic levels used for standard qubit oper-
ation are presented in Fig. 8 (bottom) in the case of no
optical confinement (left) and with optical confinement
(right). The ground state manifold is coupled to the nar-
row meta-stable 4D5/2 manifold via a 729 nm field (red
arrow). In the case of no optical confinement, this transi-
tion can be localized by light-shifting the 4S1/2 manifold
of a target ion by using the locally controlled 400 nm
field (dark-blue arrow). For these purposes a small, e.g.
few MHz light-shift suffices. On the other hand, opti-
cal confinement strongly light-shifts the 4S1/2 ↔ 4P1/2

level (right), making the 729 nm coupling off resonant.
In principle, this strong shift can be taken into account,
however since the S ↔ D transition is narrow it imposes
stringent requirements on the intensity stabilization of

the optical confinement. Here we simply do not make
use of the S ↔ D transition for optically confined ions
relaxing the requirements for intensity stabilization.
However, Raman transitions within the qubits sub-

space, mediated by the 400 nm field, are negligibly af-
fected by optical confinement, and exclusively in terms
of their Rabi frequency.
An additional field resonant with the S ↔ P transition

at 397 nm is used (light-blue). Its frequency does require
adjustment to the light-shift due to optical confinement,
however the P level is broad, thus the required stabil-
ity of the optically confining fields is reasonable. The
combination of local 400 nm and 397 nm fields, together
with standard repump fields (not shown), adjusted as
well for light-shifts, accommodates for all the necessary
steps, i.e., state detection, various cooling techniques and
state preparation.
The mid-circuit protocol shown in Fig. 8 is carried out

by first encoding some information on ion B via the en-
tanglement operations detailed above (vertical line con-
necting ions C and B), e.g. parity information of a pla-
quette shown in Fig. 3. Then, one of the qubit states of
ion B is ‘shelved’ to the D manifold via a combination
of 400 nm light-shift and 729 nm coupling, making this
operation local on the ion.
Next, the segmentation configuration is changed to an

intermediate setting where all barrier ions are illumi-
nated. The purpose of optically confining ion B is to
prepare it for being measured, by separating its motion
from the computational qubit’s motion and to light-shift
its S ↔ P transition. However the confinement of ion
A cannot be relaxed since ion B might fully populate
the D level, in which case it is not optically confined.
State detection is performed using the light-shifted 397
nm field, followed by qubit reset and preparation using a
combination of the 397 nm and 400 nm fields.
During the detection and preparation steps all opti-

cally confined ions scatter 397 nm photons, such that all
of them are required to be cooled down in the ‘prepare’
step, which can be done in parallel. The scattered pho-
tons are substantially detuned, by approximately 2 GHz,
from the absorption lines of the computational qubit ions,
having a linewidth of few tens of MHz, thus negligibly in-
fluencing their state. Nevertheless the state of neighbor-
ing computational qubits, located few micrometers apart,
may be further protected by shelving both of their qubit
states to the D level (at the shelving step). Alternatively
they may simply remain unutilized.
Lastly the segmentation configuration can now be

changed, exchanging the roles of ions ‘A’ and ‘B’. The
cooled ‘A’ ions are returned to the bulk of the cells and
cool-down the bulk modes via sympathetic cooling.

VIII. SUMMARY

Here we propose a scalable architecture for quantum
computing; it is based on a large register of trapped-ion
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qubits together with dynamically operated optical po-
tentials. Our proposed architecture circumvents the two
most prominent challenges in working with ever-larger
ion-crystals – prohibitively high heating rates and spec-
tral crowding of the ions’ motional modes. It does so by
effectively segmenting an arbitrarily large trapped ion-
crystal into several independent segments of a manage-
able size. Despite the local structure that results, con-
nectivity across the full trapped ion-crystal is enabled
by rapidly reconfiguring the optical potentials. The op-
tical potentials further enable mid-circuit measurements
of the confined ions, followed by classical feedback.

The utility of this architecture is emphasized when
combined with a method for programmable multi-qubit
entangling gates, such as that proposed in Ref. [14]. We
have used this method to numerically study the appli-

cation of independent multi-qubit unitaries on each cell
in parallel and in a scalable manner. Moreover we have
extended this method to enable arbitrarily good com-
pensation of crosstalk errors that arise between adjacent
segments.
Our architecture requires modest hardware resources

and makes use off well-established experimental tech-
niques; it is thus an ideal platform for quantum simu-
lation, quantum computation, as well as ultimately for
fault tolerant quantum computing.
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IX. SUPPLEMENTAL MATERIAL

A. Mode structure calculations

Mode structure, i.e. motional mode frequencies and mode participation matrices are generated by diagonalizing
a classical Hamiltonian. Specifically we consider an isospaced RF trapped ion-crystal, of ions with mass m and
charge e. Optical trapping potentials are taken into account by incorporating an additional on-site potential term
for illuminated ions. In all of our examples in the main text and below we have considered equally-spaced trapped
40Ca+ ions, with an inter-ion distance of 5 µm and a 400 nm optical field that generates the additional confinement
and segmentation.

We assume the ion-crystal forms a stable linear chain, such that axial and transverse modes can be considered
independently. Thus, following Ref. [54], for axial modes we write the secular matrix,

V axial
n,m =

{
−2 eEn.n

d|n−m|3 n ̸= m

4ζ (3) eEn.n

d + 1
2mω2

o.t.pbn n = m
, (8)

with bn = 1 (bn = 0) if ion n is (not) illuminated by an optical potential, d the distance between ions, ζ (3) ≈ 1.202
is Apéry’s constant, En.n = e

4πϵ0d2 is the electric field strength created by nearest-neighbor ions and ϵ0 is the vacuum

permittivity. The eigenvalues of V axial are 1
2mω2

a , with ωa the axial motional mode frequencies. The eigenvectors are
normal-modes of motion associated with the corresponding frequency, designated in the main text as the mode-matrix
A.

Similarly, transverse (radial) modes are calculated by diagonalizing the matrix,

V radial
n,m =

{
eEn.n

d|n−m|3 n ̸= m

−2ζ (3) eEn.n

d − 1
2m
(
ω2
rad + ω2

o.t.pbn
)

n = m
, (9)

with 1
2mω2

rad the radial trapping potential generated by the RF trap, which in the analysis presented here is fixed at
ωrad = 3 MHz. Figures 4 and 5 of the main text are generated by computing and diagonalizing the matrices in Eqs.
(8) and (9).

The resulting transverse mode-matrix R, is the orthogonal matrix that diagonalizes the secular matrix in Eq. (9) and
is used in the main text to estimate crosstalk between segments. This is realized by considering the mode-dependent
qubit-qubit coupling (Eq. (5) of the main text),

J
(c,s),(c′,s′

b =

S∑
m=1

R
(c,s)
(b,m)R

(c′,s′)
(b,m) , (10)

Figure 9 highlights the resulting structure of the Jb’s for several bands, with the horizontal and vertical axes
representing ion indices within the ion-crystal (excluding BA barrier ions). Specifically the ‘zig-zag’, b = 0, band (left)
the COM, b = 34, band (right) and an intermediate, b = 17, band (middle). Couplings are shown in a symlog scale
(colors represent a logarithmic scale in both the positive and negative directions from the origin, with an interval
between ±10−6 that is linearly scaled). All of the presented coupling maps show considerable inter-cell coupling and
negligible crosstalk, i.e. coupling between ions in different segments, with nearest-neighbor segments constituting the
most relevant correction. Furthermore long-wavelength, i.e. high b, modes generate more crosstalk, as is also shown
in Fig. 5 of the main text.

B. Excitation rate calculations

In order to evaluate the excitation rate of a given axial mode of motion we recall Eq. (3) of the main text, i.e. in
presence of some electric field noise, δE(t, r), the excitation rate for a given motional mode is [11],
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FIG. 9. Band-dependent qubit-qubit coupling, Jb. Horizontal and vertical axes are indices of qubits within the entire ion-crystal
(excluding BA barrier ions). Couplings are shown in a symlog scale (colors represent a logarithmic scale in both the positive
and negative directions from the origin, with an interval between ±10−6 that is linearly scaled). The optical segmentation
generates a block-diagonal structure, that signifies strong coupling within each cell and negligible coupling between qubits in
different cells. Couplings due to three bands are shown, the ‘zig-zag’ b = 0 band (left), the COM b = 34 band (right) and an
intermediate band (center). Clearly crosstalk, seen as coupling outside of the diagonal blocks, is more relevant for high b, long
wavelength modes.

Γ(k) =
e2

4mℏωk
S
(k)
E (ωk), (11)

with ωk the frequency of mode k and S
(k)
E (ωk) the spectral density of the electric field noise, given by,

S
(k)
E (ωk) = 2

∑
i,j

ˆ
dτ⟨δEi

k (τ) δE
j
k (0)⟩e

−iωkτ . (12)

Here δEi
k (τ) is the projection of δE on the kth mode of motion at the position of ion i, i.e. δEi

k (t) = δE(t, ri)A
(i)
k

and ri is the position of the ith ion.
We assume that the leading order contribution to δE is spatially uniform and neglect all other contributions.

Furthermore, motivated by theoretical and experimental results we assume that S
(k)
E ∝ ω−α

k , with α here set to 1.

This considerably simplifies Γ(k) and enables us to obtain the total axial excitation rate shown in Eq. (4) of the
main text, up to a proportionality factor,

Γ ∝
∑
k

Γ(k) ∝
∑
k

e2

4mℏω2
k

∑
i,j

A
(i)
k A

(j)
k . (13)

Crucially, the effect of optical segmentation comes about spectrally in the formation of bands, such that the
summation on k in Eq. (13) can be decomposed as,

Γ ≈
B+C∑
b=1

e2

4mℏωb

S∑
s=1

∑
i,j

A
(i)
b,sA

(j)
b,s +O

(
BWb

∆ωb

)
, (14)

with A
(i)
b,s a re-arrangement of A according to the band structure and the error term due to the bandwidth of the

bands, BWb and the gap between bands, ∆ωb, which is assumed to be small. From a mode-structure point of view,
the optical segmentation comes about as an independent motion between adjacent cells (shown in Fig. 9), thus the
sum on s restricts i and j to the same cell, leading to a linear scaling with S.

C. Crosstalk mitigation method

We provide further details on our approach to mitigating crosstalk between cells in the optically-segmented ion-
crystal. In order to do so we recall some basic facts about the operation of the LSF method, which is discussed in
detail in Ref. [14]. We assume the ions are driven by local fields that, in the spectral domain, all have the same M
tone pairs, but can vary in the amplitude of each pair. Thus the drive is described by a set of vectors rn such that
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(rn)m is the amplitude of the mth tone pair that drives the nth ion. This choice of degrees of freedom allows to
generate a bi-partite multi-qubit entanglement operation of the form,

U = exp

(
N∑

n,m=1

φn,mσ(n)
x σ(m)

x

)
, (15)

with φn,m a completely controlled ‘target’ operation and σ
(n)
x a Pauli-x operator acting on the nth ion.

Indeed, generating U can be mapped to finding solutions (of the rn’s) to the quadratic constraints,

rTnAn,mrm = φn,m 1 ≤ n < m ≤ N, (16)

with An,m a set of real-valued M ×M symmetric matrices that quantify the coupling between ions n and m due to
the drive’s spectral components. Specifically these coupling matrices are given by,

An,m =

N∑
j=1

R
(n)
j R

(m)
j Aj , (17)

with Aj a set of real-valued M × M symmetric matrices that quantify the coupling between the drive’s spectral
components and mode j [12]. Typically we will be interested in solutions to small norm rn’s that satisfy Eq. (16),
which constitutes a NP-hard optimization problem.

In LSF we make use of a given non-trivial solution, rn = z for all n = 1, .., N , that generates the target φ
(0)
n,m = 0 for

all n and m, coined the zero-phase solution (ZPS). Then, solutions to other ‘full’ arbitrary targets can be efficiently
converted from z. Crucially the ZPS does not depend on the ion index, n, and thus can be found directly by
considering the Aj ’s (instead of the An,m’s), reducing the number of quadratic constraints that are required to be
satisfied.

We utilize these concepts and apply them to the optically-segmented ion-crystal. Generally we consider a ‘typical’
effective cell as an independent ion-crystal and find a ZPS for it. We then convert the ZPS to solutions to full targets,

which reflect the required operations on the different cells, i.e. U
(A,B)
s,n in Fig. 1 of the main text. By simply setting

these solutions as the drive of the optically segmented ion-crystal we obtain entanglement gates of the form of Eq.
(15), up to ∼ 10−2 infidelity, which arises mainly due to crosstalk between adjacent cells, but also due to using a
typical cell system (e.g. cells at the edge of the ion-crystal are slightly different than in the bulk).

To construct a typical cell system of the ion-crystal, we consider a fictitious system that has C+BB equally spaced
ions with corresponding transverse motional modes. The mode frequencies are constructed from the average frequency
of each band in the motional spectrum band structure of the segmented ion-crystal. The mode participation matrix
is constructed by similarly averaging the participation of each ion in each mode, partitioned to cells. The segmented
ion-crystal has S modes per band (and not a single mode), which needs to be taken in to account by the typical cell
system. Indeed we do so by writing our drive degrees of freedom in a way that is resilient to small inaccuracies in the
motional frequency [66, 74, 75].

This construction, along with other fixed system parameters such as the entanglement gate time, ion type etc., is
sufficient in order to construct Aj ’s and An,m’s of a typical cell, and to generate ZPS of it. We remark that we do not
make use of tones that lie within bands since these will generate a differential coupling between the different modes
within a band, and are not well approximated by the typical cell system.

We use LSF to convert the typical cell ZPS to different target cell solutions for the various cells, and obtain a set

of amplitudes, r
(0)
s,c corresponding to the drive of qubit c in cell s. The qubit-qubit coupling between ions c (c′) in

cell s (s′), ‘inherited’ from the typical LSF solution, can be evaluated as, φ
(i)
(s,c),(s′,c′) =

(
r
(i)
s,c

)T
A(s,c),(s′,c′)r

(i)
s′,c′ , with

designating the LSF solution as i = 0.

The resulting couplings are compared to the intended target, ∆φ
(i)
(s,c),(s′,c′) = φ

(i)
(s,c),(s′,c′) − φt

(s,c),(s′,c′), with the ‘t’

inscription referring to the required ideal target dictated by the intended unitary operator, such that, φt
(s,c),(s′ ̸=s,c′) = 0.

Nearest-neighbor cell crosstalk errors are given by, ∆φ
(i)
(s,c),(s±1,c′), and target inaccuracies are given by, ∆φ

(i)
(s,c),(s,c′).

Since the total infidelity is small, crosstalk and target inaccuracies can be mitigated by linearizing the quadratic
constraints in Eq. (16) and iteratively improving the resulting fidelity. Specifically we consider an iteration of the

form r
(i+1)
s,c = r

(i)
s,c + δ

(i+1)
s,c , starting from i = 0. We construct a set of linear equations for the correction δ(i+1). In

order to make this technique scalable we want to avoid considering all N ions in the ion-crystal in the same set of
linear equations. This is made possible by that fact that crosstalk is dominated by coupling to nearest-neighbor cells
(see Fig. 5 in the main text and Fig. 9).
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Specifically we focus on two adjacent ‘target’ cells, s and s+ 1, and derive linear equations for them. These are,(
δ(i+1)
s,c

)T
A(s,c),(s,c′)r

(i)
s,c′ +

(
δ
(i+1)
s,c′

)T
A(s,c),(s,c′)r

(i)
s,c = ∆φ

(i)
(s,c),(s,c′) (18)(

δ
(i+1)
s+1,c

)T
A(s+1,c),(s+1,c′)r

(i)
s+1,c′ +

(
δ
(i+1)
s+1,c′

)T
A(s+1,c),(s+1,c′)r

(i)
s+1,c = ∆φ

(i)
(s+1,c),(s+1,c′) (19)(

δ(i+1)
s,c

)T
A(s,c),(s+1,c′)r

(i)
s+1,c′ +

(
δ
(i+1)
s+1,c′

)T
A(s,c),(s+1,c′)r

(i)
s,c = ∆φ

(i)
(s,c),(s+1,c′) (20)(

δ(i+1)
s,c

)T
A(s,c),(s−1,c′)r

(i)
s−1,c′ = ∆φ

(i)
(s,c),(s−1,c′) (21)(

δ
(i+1)
s+1,c

)T
A(s+1,c),(s+2,c′)r

(i)
s+2,c′ = ∆φ

(i)
(s+1,c),(s+2,c′). (22)

with c, c′ = 1, .., C. The first (second) row accounts for inaccuracies of the target implemented on cell s (s + 1), the
third row accounts for crosstalk between cells s and s + 1, and the forth (fifth) row accounts for crosstalk between
cell s (s+ 1) and cell s− 1 (s+ 2). The choice to correct the drive of two adjacent cells simultaneously is since this
construction allows crosstalk between cells s and s+1 to be mitigated simultaneously by both δs,c and δs+1,c′ , which
has been found to be more efficient than the correction of the crosstalk with control over a single qubit drive, e.g. the
terms in the fourth and fifth rows.

Crucially all of these terms result in C (C − 1)+3C2 linear constraints, and are independent of the total number of
segments. Moreover iterative optimizations can be performed by considering independent blocks of 4 adjacent cells,
that can be efficiently parallelized and interlaced. We remark that an additional linear constraint can be added in
order to minimize the amplitude of the rn’s [14].

We perform f optimization iterations, until convergence of the solution, or until meeting a fidelity criteria. We
use the resulting solutions and benchmark the expected fidelity of the corresponding entanglement operations. The
resulting infidelity is evaluated, in leading order, as,

I = Ishort + Ilong + Imotion (23)

Ishort = 2

S∑
s=1

C+BB∑
c,c′=1

(∣∣∣∆φ
(f)
(s,c),(s,c′)

∣∣∣2 + ∣∣∣∆φ
(f)
(s,c),(s+1,c′)

∣∣∣2 + ∣∣∣∆φ
(f)
(s,c),(s−1,c′)

∣∣∣2) (24)

Ilong = 2

S∑
s=1

S∑
s′ ̸=s,s±1

C+BB∑
c,c′=1

∣∣∣∆φ
(f)
(s,c),(s′,c′)

∣∣∣2 (25)

Imotion =

N∑
j=1

N∑
n=1

∣∣∣α(n)
j

∣∣∣ , (26)

with Ishort representing the residual unwanted coupling between qubits that is accounted for by our mitigation itera-
tions, Ilong representing the residual unwanted coupling between qubits that is not accounted for by our mitigation,

and Imotion accounting for unwanted residual displacement of the j = 1, ..., N motional modes. Here α
(n)
j is the

displacement of mode j due to ion n and is thus linearly related to the rns and can be easily evaluated [12, 14].
While we are not directly controlling and minimizing the latter term in our optimization iterations, the resilience to
motional frequency errors of the typical cell, discussed above, ensures that it remains small.

D. Crosstalk and power analysis

We analyze the dependence of the crosstalk, in its mode-structure dependent formulation, εJ,b in Eq. (6) of the
main text, on the choice of the number of barrier ions per cell, BA, and on the optical confining power used per barrier
ion, ωo.t.p/ωrad. The comparison to the radial RF trapping frequency, ωrad, is a natural scale for analyzing crosstalk
in entanglement operations that utilize transverse modes of motion.

Figure 10 (left) shows the mean crosstalk averaged over all bulk-bands, ⟨εJ,b⟩b (color), for a segmented ion-crystal
made of S = 4 segments, each containing C = 32 computational qubits and B (horizontal axis) barrier ions, such
that each barrier ion is illuminated by an optical confining potential with a trapping frequency ωo.t.p (vertical axis).
Clearly, as the optical trapping frequency decreases the mean crosstalk increases, and passes the perturbative limit,
set here to 0.1 (white dashed). We also present constant lines of the expression, P = Bω2

o.t.p/ω
2
rad, as it is proportional

to the total required optical power per-cell (colored lines, see value of P in the legend).
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FIG. 10. Crosstalk dependence on ωo.t.p and B. Left: Mean crosstalk (colored regions) for varying number of barrier ions
(horizontal axis) and varying optical confinement, ωo.t.p, per barrier ions, given in units of the RF radial trapping, ωrad (vertical
axis). We observe that a perturbative crosstalk, set for values below 0.1 (area above white dashed line), is generated by setting
ωo.t.p ≥ 0.75ωrad, almost regardless of B. Nevertheless increasing B is helpful in reducing the crosstalk. The total optical
power per cell is proportional to P = Bω2

o.t.p/ω
2
rad (colored lines, with the values of P in the legend). Right: Estimation of

band-dependent crosstalk, εJ,b, based on mode structure analysis in an ion-crystal with cell size of C = 32 qubits and S = 4
segments, and a varying number of barrier ions, BA = BB (color). In general the addition of barrier ions decreases the overall
crosstalk in the system. Limiting cases are found for BA = 1, 2 in which some of the collective modes do not involve the barrier
ions, resulting in a non-typical crosstalk structure. Clearly for BA ≥ 3 this behavior is suppressed. The mean crosstalk of the
curves with of 1 ≤ B ≤ 5 at ωo.t.p = ωrad are correspondingly shown in the left.

Figure 10 (right) shows εJ,b for C = 32, S = 4 and various values of BA, between 1 and 14 (color), such that for all
BA barrier ions ωo.t.p/ωrad = 1. The curves show expected crosstalk due to b = 1, .., C + BB bands, with BB = BA,
similarly to the inset of Fig. 5. The high-index cell bands are typically the main contributors to the crosstalk as they
correspond to long-wavelength excitations of the cells, analogues to low-order oscillating multipoles, thus having a
stronger coupling to adjacent cells. Clearly, a larger barrier reduces the overall crosstalk. Nevertheless, the curves do
not show a monotonic behavior, which is especially obvious with BA = 1 (blue) and BA = 2 (orange), which exhibit
resonant-like features. These resonances are likely due to the modes of motion in which the barrier-ions only weakly
participate and therefore cannot isolate the motion of ions within a single cell. For BA ≥ 3 this effect is generally
suppressed, leading to only a residual distance-dependent Coulomb interaction between the cells. Furthermore, since
our crosstalk mitigation technique relies on linearization, we have to work in the perturbative crosstalk regime, which
is already shown to apply at BA ≥ 2, motivating our choices in the main text.
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