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The Mpemba effect is a counter-intuitive phenomena in which a hot system reaches a cold
temperature faster than a colder system, under otherwise identical conditions. Here we propose
a quantum analog of the Mpemba effect, on the simplest quantum system, a qubit. Specifically, we
show it exhibits an inverse effect, in which a cold qubit reaches a hot temperature faster than a hot
qubit. Furthermore, in our system a cold qubit can heat up exponentially faster, manifesting the
strong version of the effect. This occurs only for sufficiently coherent systems, making this effect
quantum mechanical, i.e. due to interference effects. We experimentally demonstrate our findings
on a single 88Sr+ trapped ion qubit.

Physical systems undergoing relaxation can exhibit
a wide range of rich and non-trivial phenomena. A
prominent example is the Mpemba effect (ME) [1, 2],
in which an initially hot system cools down faster than
a colder, otherwise identical, system. Some systems
manifest a stronger version of this effect [3], in which
the hotter systems relaxes exponentially faster. The
ME has been experimentally demonstrated in various
classical systems, e.g. water [2], Clathrate hydrates [4],
magnetic alloys [5], colloids diffusing in a potential [6] and
a few others [7–9]. An inverse-ME, in which an initially
colder system heats up faster than a warmer system,
has been predicted [10, 11] and recently measured [12].
Much theoretical insight was gained on this effect in
recent years, using various theoretical methods [13–23]
and numerical results [24–27].

Quantum versions of the ME have been recently
proposed [28–33], including its extensions in terms
of relaxation of entanglement asymmetry in quantum
spin-systems [34]. The latter has been recently
demonstrated using trapped-ions [35].

Here we propose and experimentally demonstrate the
existence of an inverse-ME in the simplest quantum
system - a single qubit. We consider a coherently
driven qubit that is coupled to a thermal Markovian
bath, causing decoherence of the qubit and its eventual
relaxation to a non-equilibrium steady state. Our only
assumption on the qubit-bath coupling is that the qubit’s
decoherence rate is monotonically increasing with the
bath’s temperature. This occurs, e.g., for a black-body
photon-emitting bath, such that the emission rate of
photons at resonance with the qubit’s transition energy
increases with temperature. Our analysis shows that
a strong inverse-ME can occur, however, only for a
sufficiently coherent qubit, making this effect quantum
mechanical, i.e. due to interference.

We demonstrate the inverse-ME experimentally by
implementing it on the Zeeman qubit, defined on a single
trapped 88Sr+ ion. Figure 1 shows our model and the
corresponding implementation on the ion’s energy levels,
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Figure 1. Top left: The modeled quantum system exhibiting
an inverse Mpemba-effect. A thermal source of photons (fire)
is coupled to coherently driven qubit (blue), causing it to
relax to a steady state. Bottom left: The resulting coupling
between the qubit’s levels, |↓⟩ and |↑⟩, with a coherent drive
(green) and decoherence terms causing decay (γdecay) and
dephasing (γdephase). Right: The qubit is mapped to the 5S 1

2

levels of the Zeeman ground state manifold of a trapped 88Sr+

ion. Coherent (green) and incoherent (purple) evolution
is generated sequentially (pulse schemes), by using various
additional atomic transitions, detailed below.

detailed further below.
The qubit’s dynamics is given by the

Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)
equation, ∂tρ = L [ρ], with L a Lindblad super-operator,
acting on ρ ∈ C2×2, the density matrix representing a
statistical ensemble of a single qubit. Specifically, the
operation of the super-operator is given by (ℏ = 1),

L [ρ] = − iΩ

2
[σx, ρ] + γdecayL|↑⟩⟨↓| [ρ] + γdephaseL|↑⟩⟨↑| [ρ] ,

(1)

with Ω the rate of the coherent driving of the qubit, set by
the x-Pauli matrix, σx. Open Markovian dynamics are
generated by LA [ρ] ≡ AρA† − 1

2

{
A†A, ρ

}
. We consider

decoherence due to decay (dephasing), generated by |↓⟩⟨↑|
(|↑⟩⟨↑|), with rates,

γdecay = αγ (T ) , γdephase = (1− α) γ (T ) , (2)
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Figure 2. Left: Steady state locus. We measure the qubit’s
steady-state position (points) on the y-z plane of the Bloch
sphere (black line) at different temperatures and compute the
corresponding α’s (see the main text). Our data-sets (points)
are fitted yielding α = 0.21 ± 0.03 (orange), α = 0.51 ± 0.04
(cyan) and α = 0.94±0.07 (blue), used hereafter. The steady
state locus corresponding to the latter is presented in color,
showing values of γ′ (log-scale). Right: Coefficient of the
slow-decaying eigenstate, a−, as a function of γ′

i , for γ′
f = 15

(red star). The coefficient shows a non-monotonic behaviour,
implying the existence of a ME. Furthermore, the curve is
shown to vanish at γ′

i = 0.07 ̸= γ′
f , proving the existence of a

strong-ME. The highlighted circles correspond to the initial
states shown in Fig. 3 (with matching colors).

where 0 ≤ α ≤ 1, is the relative occurrence of
decay. The overall temperature-dependent decoherence
rate due to coupling to the bath, γ (T ), is assumed to
be monotonically increasing with T , such that we can
characterize the bath by T or γ interchangeably.
The dynamics is conveniently analyzed using the Bloch

vector, r⃗ = (x, y, z), with ρ = 1/2 (1 + r⃗ · σ⃗) (see the
Supplemental Material (SM) [36]). Since the system is
driven, its fixed points correspond to non-equilibrium
steady states that do not obey detailed balance, e.g.
the qubit continuously scatters photons. The collection
of steady-states, r⃗ ss (γ), form a right-half of an ellipse
in the y − z plane, with its center at (0, 0,−1/2) and

semiaxes (ry, rz) =
(√

α/2, 1/2
)
, shown in Fig. 2 (left).

Each point on this curve, known as the steady state locus,
corresponds to a steady state at a given γ′ ≡ γ/Ω, with
γ′ → 0 (∞) corresponding to the center (south-pole) of
the Bloch sphere.

Consider the relaxation path of an initial condition
given by the steady state solution of a cold temperature,
r⃗ ss (γi), when coupled to a hot bath characterized by γf.
The solution of Eq. (1) is then given by,

r⃗ (t; γi, γf) = r⃗ ss (γf)+
∑

n∈{+,−,x}

an (γi, γf) v⃗n (γf) e
λn(γf)t,

(3)
where v⃗n (γf) are the relaxation modes of the system,
λn (γf) their rates, and an (γi, γf) the corresponding
coefficients, determined by the initial and final
temperatures [36].

We note that the x-coordinate has a stable fixed
point at x∗ = 0, making the x-direction trivially vanish
throughout the system’s evolution.

The decay rates in the y−z plane are given by the real

part Re [λ±], with

λ± = −γ′
f

(
α+ 1/2 ±

√
(α− 1/2)

2 − 1/γ
′2
f

)
. (4)

The ME can exist only when Re [λ±] are distinct,
allowing for a slow and fast relaxation modes. This
occurs for final temperatures γ′

f > γ′
b, with the

bifurcation point γ′
b ≡ |α− 1/2|−1

.
The relaxation at long times is determined by the

slowest relaxation mode, λ−, and its coefficient, a−,
which clearly vanishes for γi = γf. Fixing γ′

f , one might
expect a− to be monotonic in the range, 0 ≤ γ′

i ≤ γ′
f .

However, for an inverse-ME to take place, a cold system
must reach the steady state faster than a hotter one, i.e.
|a−| is smaller for a cold system, compared to a hotter
system. It is therefore the non-monotonic behavior of
a− as a function of γi which enables the existence of the
ME [3]. Indeed, the coefficient a− (γi, γf) (full expression
in the SM [36]) displays such a behavior, implying the
existence of an inverse-ME. An example with γ′

f = 15 is
plotted in Fig. 2 (right).
A strong-ME occurs in the special case in which a−

vanishes at an initial temperature, γi,SME ̸= γf. In that
case, the relaxation time is determined by the fast rate,
λ+, and as a result, it is exponentially faster [3]. In other
words, defining the distance to steady state, dγi

ss (t) ≡
|r⃗ (t; γi, γf)− r⃗ ss (γf)|, then d

γi ̸=γi,SME
ss (t) /d

γi,SME
ss (t) is

asymptotically exponentially increasing in time.
Here, a− vanishes at γ′

i,SME =

γ′
f

(
(α− 1/2)−

√
(α− 1/2)

2 − γ
′−2
f

)
. For example,

for γ′
f = 15, a− vanishes at γ′

i,SME ≈ 0.07 as seen
in Fig. 2 (right). The strong-ME in this system is
experimentally optimal to achieve the most pronounced
signal (see the SM [36]). Indeed, in our experimental
demonstrations we make use of values γi ≈ γi,SME. We
mathematically prove the strong-ME can only appear
in a heating process, i.e. as an inverse-ME (see the
SM [36]).
Since γ′

i,SME > 0, the required α for a strong-ME is
bounded by α > 1/2 + 1/γ′

f ≥ 1/2. When α satisfies
this condition, there exists a strong-ME for every final
temperature above the bifurcation point, at γ′

i,SME.
Thus, an exponentially faster relaxation occurs only in a
coherent enough system, i.e. with a low excess dephasing
on top of that induced by the decay channel. Specifically,
a classical bit, with no coherence between its two states,
cannot exhibit this strong effect.

This model describes, for example, a single trapped
88Sr+ ion qubit in a small-scale quantum computer [37].
Specifically we encode the |↓⟩ (|↑⟩) qubit state on
the 5S 1

2 ,−
1
2
(5S 1

2 ,
1
2
) state in the Zeeman ground state

manifold, shown in Fig. 1 (right). The two states
are coherently coupled with a magnetic field (green),
oscillating at the Zeeman splitting frequency in the 5S 1

2
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manifold, generating the qubit’s Hamiltonian, H = Ωσx,
with Ω the field’s Rabi frequency.

As shown in Fig. 1, we combine the coherent and open
dynamics in discrete steps, by interlacing small durations
of coherent (green pulse) and open Markovian evolution
(purple pulse), i.e. by trotterization. Markovian open
dynamics are generated by coupling the qubit levels via
fast decaying states [38]. Control over α is gained
by making use of sequential cascade of pulses and
transitions.

Specifically we use a narrow linewidth laser at 674
nm [39] (red) in order to selectively couple the |↑⟩ state
to the

∣∣∣4D 5
2 ,

5
2

〉
state in the 4D 5

2
metastable manifold.

An additional laser at 1033 nm (pink) couples the 4D 5
2

manifold to the short-lived 5P 3
2
. Due to selection rules,

only the
∣∣∣5P 3

2 ,
3
2

〉
state is populated, which quickly decays

back to the |↑⟩ state (blue), resulting in full dephasing,
i.e. α = 0. By using an additional π-pulse in the 4D 5

2

manifold (grey), between the 674 nm and the 1033 nm

pulses, we map the
∣∣∣4D 5

2 ,
5
2

〉
state to the

∣∣∣4D 5
2 ,−

5
2

〉
,

which will ultimately decay to the |↓⟩ state, yielding
α ≈ 1.

We demonstrate this control experimentally by
initializing the system to the |↑⟩ state and letting it relax
to a steady state under n = 100 repetitions of interlaced
dynamics, analogous to a decay time of 7γ−1

f . After this
evolution we perform state tomography to determine the
location of the steady state on the Bloch sphere. Figure 2
(left) shows the measured steady states for various values
of γ′, forming the elliptically shaped steady state locus
(blue points), with a fitted value of α = 0.94 ± 0.07
(gradient line).

Intermediate values of α can be formed by replacing
the π-pulse in the 4D 5

2
manifold (grey) with, e.g., a

π/2-pulse or a π/5-pulse, yielding a thinner steady state
loci, fitted as α = 0.51± 0.04 and α = 0.21± 0.03, (cyan
and orange) respectively.

A canonical experimental protocol for measuring the
ME, comprises letting the system relax to the steady
state r⃗ ss (γ′

i), then quenching it to a final temperature,
γ′
f , while performing tomography of the relaxation

dynamics to r⃗ ss (γ′
f). The measurements are then used

to obtain the Euclidean-distance on the Bloch sphere
from the final steady state, dss (t). This protocol raises
a technical challenge, namely, the relaxation time to
an initial cold system, with γ′

i ≪ 1, requires a long
evolution duration, which may surpass the system’s
natural coherence time, leading to an effectively reduced
and uncontrolled value of α.
We mitigate this challenge by measuring the ME

using two complementary techniques: performing the
experimental protocol with large trotter steps, thus
reducing the total duration of an experiment, or by
effectively preparing the qubit in the initial state,

Figure 3. The inverse-ME is demonstrated by relaxing qubits
to a steady states at various initial temperatures, γ′

i (color)
and tracking their relaxation as a function of time (horizontal)
to a final steady state at a fixed temperature, γ′

f = 15 > γ′
i and

α = 0.94. We consider the qubit’s Euclidean-distance to the
final steady state, dss (t) (vertical). We highlight the distances
of an initially cold (thick blue) and hot (thick cyan) systems,
dCss and dHss, respectively, and analyze them further. The insets
show dCss − dHss. Error bars (shaded regions) correspond to
±2σ confidence intervals due to quantum shot-noise. Top:
dss exhibits oscillations, not captured by the model above,
which occur due to the relatively large time steps used in
the digital evolution. Bottom: Post-processing the same
data by polynomial smoothing reproduces the inverse-ME.
Specifically, dCss > dHss at t = 0, however their values cross at
t ≈ 2γ−1

f , after which dCss < dHss , seen as well in the inset as a
negative value, beyond the error bars.

r⃗ ss (γ′
i), thus circumventing the long initial relaxation

time.

The results obtained by the former technique, large
trotter steps, are shown in Fig. 3. Specifically we
evolve the system to t = 4γ−1

f in 14 trotter-steps
(horizontal) and present dss (t) (vertical) for various γ

′
i ’s

(color). These steps form a less accurate approximation
of the continuous model. Indeed, Fig. 3 (top) exhibits
oscillations which are common to non-adiabatic digitized
evolution. We highlight an initially cold system, γC

i

(blue) and an initially hot system, γH
i (cyan), which

are analyzed in further detail. Specifically the inset
shows the distance between these two systems during
relaxation, dCss (t) − dHss (t), which similarly exhibits
oscillations.

We compensate for the oscillations by employing
simple polynomial-smoothing of the data, shown in Fig.
3 (bottom). This demonstrate an inverse-ME, as the
curves of the cold and hot systems cross, with the
cold system reaching the steady state before the hot
system. Indeed, the inset shows that dCss (0)−dHss (0) > 0,
indicating the cold system is initially at a larger distance
from steady state. However, during the relaxation we
observe a crossing time tcross after which dCss (t)−dHss (t) <
0, beyond ±2σ error bars due to quantum shot noise.

Next, we directly prepare the qubit at an initial
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Figure 4. The inverse-ME realized with initial state
preperation. The qubit’s distance to the final steady state,
dss (t), is shown for qubits initialized at different temperatures
(color) and quenched to γ′

f = 100 and α = 0.94. We
highlight dCss (thick dark blue) and dHss (thick light blue),
initially cold and hot systems, respectively, and present their
±2σ confidence intervals (shaded regions). As shown, the
hot qubit starts closer to the final steady state. However, at
tcross ≈ 0.6γ−1

f (vertical grey) the cold system surpasses the
hot system and relaxes first, manifesting the inverse Mpemba
effect. Inset: dCss (t) − dHss (t) highlighting the crossing of the
two systems, beyond the confidence intervals.

steady state. To do so we write the initial steady
state density matrix, ρssi , as a linear combination of two
pure-state density matrices. Then, the evolution of ρssi
is equivalent to the same linear combination of evolved
pure states. Specifically, here the steady states are all
of the form, ρssi = 1−p

2 |+θ⟩⟨+θ| + 1+p
2 |−θ⟩⟨−θ|, with

θ and p representing the direction and distance of the
steady state from the Bloch sphere origin and |±θ⟩ ≡
exp

[
− i

2

(
θ ± π

2

)
σx

]
|↑⟩ (see the SM [36]). An observable

stemming from the evolution of ρssi , is recovered by
measuring the same observable on the evolution of |±θ⟩,
and using a weighted linear combination of the measured
observables, with weights (1∓ p) /2.
Figure 4 shows the dynamics of system initialized at

steady states with respect to various γ′
i ’s, and tracks their

evolution as a function of time (horizontal) towards a
fixed γ′

f = 100 > γ′
i . Similarly to Fig. 3, we show the

distance to the final steady state, dss, and highlight an
initially cold (dark blue) and hot (light blue) systems.
As above, dCss (0) > dHss (0), indicating the cold system
is initially at a larger distance from steady state, yet
during the relaxation we observe a crossing time tcross
after which dCss (t) < dWss (t), beyond ±2σ error bars due
to quantum shot noise. This is also reflected in the inset
which shows dCss − dHss (vertical) initially positive and at
later times negative, beyond the error bars.

In conclusion, we have proposed and experimentally
demonstrated the inverse ME on as single qubit.
Furthermore, we have proven that a strong, i.e.
exponentially faster relaxation, ME exists only for a
sufficiently coherent qubit. As our findings pertain the

simplest quantum system, one expects to find the ME in
larger quantum systems, such as quantum computers, in
which maintaining a low temperature for long times is
crucial.
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Supplemental Material

1. ANALYTIC SOLUTION OF THE LINDBLAD EQUATION

We provide additional information concerning the solution of the qubit’s dynamics. The Lindbladian in the main
text can be transformed, using the Kronecker product, into a linear form: ∂tρ⃗ = L̂ρ⃗, where ρ⃗ is a column vector and
L̂ is a 4× 4 matrix. For our model, given in Eq. (1) of the main text, we obtain

L̂ (Ω, γ, α) =


−2αγ − iΩ

2
iΩ
2 0

− iΩ
2 −γ 0 iΩ

2
iΩ
2 0 −γ − iΩ

2

2αγ iΩ
2 − iΩ

2 0

 , (5)

such that the equation of motion reads,
ρ̇11 = −2αγρ11 +

iΩ
2 (ρ12 − ρ21) ,

ρ̇21 = iΩ
2 (ρ22 − ρ11)− γρ21 ,

ρ̇12 = iΩ
2 (ρ11 − ρ22)− γρ12 ,

ρ̇22 = 2αγρ11 +
iΩ
2 (ρ21 − ρ12) .

(6)

Since ρ = ρ† and Tr [ρ] = 1, the state of a single qubit can be equivalently written in the Bloch vector representation:

r⃗ = (ρ12 + ρ21, i (ρ12 − ρ21) , ρ11 − ρ22) ≡ (x, y, z) . (7)

Thus, the set of ordinary differential equations is ẋ = −γx ,
ẏ = −γy − Ωz ,
ż = −2αγ (1 + z) + Ωy .

(8)

The steady state solution of this system is given by:

x∗ = 0 , y∗ =
Ω/γ

1 + Ω2

2αγ2

, z∗ = − 1

1 + Ω2

2αγ2

, (9)

where the first coordinate, x, is decoupled from the dynamics with a stable fixed point (under the physical assumption
γ > 0). The remaining 2D first order differential equation for the y − z-coordinates is given by,

˙⃗r2 =

(
−γ −Ω
Ω −2αγ

)
r⃗2 +

(
0

−2αγ

)
, r⃗2 ≡

(
y
z

)
. (10)

Their steady state solution are written in terms of the dimensionless variable γ′ ≡ γ/Ω:

y∗ =
1

γ′
(
1 + 1

2αγ′2

) = −z∗

γ′ , z∗ = − 1

1 + 1
2αγ′2

= −γ′y∗ . (11)

These solutions, known as the steady state locus, form the right-half of an ellipse described by(√
2

α
y∗

)2

+ (2z∗ + 1)
2
= 1 . (12)

The θ and p representation, utilized in the main text for direct state preparation, can be derived by setting, y∗ =

p cos (θ) and z∗ = p sin (θ), yielding, p =
2αγ′

√
1+γ′2

1+2αγ′2 and θ = − arctan (γ′).

The homogeneous part of Eq. (10) can be solved by diagonalization. The corresponding eigenvalues are given in
Eq. (4) of the main text and are presented in Fig. 5. Since the rates are dictated by their real parts, there exists

a bifurcation point, γ′
b ≡ |α− 1/2|−1

. The strong ME exists only at final temperatures larger than the bifurcation
point (γf > γb), i.e. the point at which the degeneracy between eigenvalues breaks and there are distinct fast and
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bifurcation

Figure 5. The real part of the system’s eigenvalues over final temperature, for α = 1. The largest eigenvalue, corresponds to
the steady state, zeros. For H ∝ σx, the equation for x decouples and the set can be solved analytically. In our case, λx = −γf.
The last couple eigenvalues, λ±, correspond to the dynamics in the y − z plane and are therefore interesting. A ME can only
occur after the degeneracy is lifted.

slow relaxation modes.

The appropriate (normalized) eigenvectors are given by

v⃗± =
1

2α− 1

 1

γ′
f

(
α−1/2±

√
(α−1/2)2−1/γ

′2
f

)
1

 . (13)

The coefficients of these modes are given by an (γi, γf) ≡ u⃗n(γf) · r⃗ ss(γi), where u⃗n are left eigenvectors, i.e row
vectors satisfying the equation,

u⃗n

(
−γ −Ω
Ω −2αγ

)
= λnu⃗n. (14)

Explicitly, we obtain

a± =
α · (α− 1/2)√

(α− 1/2)
2 − 1/γ

′2
f (2α+ 1/γ

′2
f ) (2α+ 1/γ

′2
i )

(
γ

′

f

γ
′
i

− 1

)
×

[
4α

(
∓α± 1/2 +

√
(α− 1/2)

2 − 1/γ
′2
f

)
− 2

γ
′
iγ

′
f

(
∓α∓ 1/2 +

√
(α− 1/2)

2 − 1/γ
′2
f

)
± 2

γ
′2
f

]
. (15)

By inserting γi,SME given in the main text, a− indeed vanishes.

2. THE ABSENCE OF A STRONG DIRECT-ME

For a strong ME to exist, the coefficient of slow relaxation a− must vanish. Therefore, in the case of a strong
effect the dynamics is along the fast relaxation eigenvector, v⃗+, only. The fast relaxation eigenvector of a given final
temperature γ′

f must therefore intersect the steady state locus in an additional point, corresponding to the ideal initial
temperature γ′

i, SME.

For α > 1
2 , both entries of v+ are positive (See (13)), such that v+ points to the up-right direction. On the steady

state locus, the temperature is monotonic in z such that states located higher on the locus necessarily correspond to
lower temperatures. Moreover, since γ′

f > γ′
b for a ME to occur, and the crossing of the steady state locus with the

bifurcation-line of α > 1
2 is located in the southern-hemisphere of the locus (See Fig. 6), states located to the right

on the locus also correspond to lower temperatures. The implications are that all possible fast vectors point to lower
initial temperatures, relative to γ′

f . Accordingly, this system doesn’t exhibit a strong, direct, ME.

An explicit illustration of the orientation of v⃗+, with respect to the steady state locus of α = 1, is presented in
Fig. 7.
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Figure 6. The steady state loci in the y − z plane of the Bloch sphere, as given by Eq. (9), for different values of α, as a
function of temperature γ′ ∈ (0, 20]. The ME exists only at temperatures above γb, represented by circles at the crossing with
the bifurcation (purple dashed) line. We observe two bifurcation branches, however, only the lower one, crosses loci of α ≥ 1/2,
is valid for a strong ME.

3. THE EXISTENCE OF A STRONG INVERSE-ME

In the main text we prove the existence of a strong inverse-ME by a vanishing of the coefficient of the slow
relaxation mode, a−. As complementary proof to the existence of the strong ME, one simply tracks the evolution of
states, near the final steady state. In the long-time limit, fast relaxation modes have already decayed. Assuming a−
crosses zero continuously - it changes signs. Thus, states initialized before and after the zero-crossing will approach
the final steady state from opposite directions of v⃗− in the y − z plane. An example is shown in Fig. 8.

An experimental observation of the ME involves comparing the dynamics of a cold and hot initial states, dCSS (t)
and dHSS (t), respectively. Specifically, the inverse ME is demonstrated by showing that the initially colder system
reaches the final steady state faster, although it starts further away. Namely, at the beginning of the experiment
dCSS (t = 0) > dHSS (t = 0), whereas after some later time, tcross, the colder system surpasses the hotter such that the
distances are reversed, i.e. dCSS (t > tcross) < dHSS (t > tcross) .
Measuring dCSS (t) < dHSS (t) is inherently challenging, as the two quantities are exponentially decaying. The existence

of a strong-ME is helpful due to two reasons: Early onset of the crossing between the cold and hot distances from final
steady state, and maximal distance post-crossing. The former allows for short coherence-time of the experimental
apparatus and the latter requires less experimental repetitions. Both parameters are optimized at γi ∼ γi,SME.
Figure 9 shows this by fixing γ′

i,H = 0.77 and plotting the crossing time (left), as well as the maximal distance to
various choices of γ′

i,C after the two distances cross (right). Clearly, the minimal crossing time, as well as maximal
distance between the two decaying signals appear at γ′

i = γ′
i,SME (vertical gray).



9

vfictitious

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

vfast

Equi. Locus, α=1

Bifurcation point(γb=2)

{γfin}

{γinit}

possible γinit

possible γfin

Figure 7. The steady state locus for α = 1 (pink line), inside the Bloch sphere (grey line), and three kinds of key points. The
first is the bifurcation point, γ′

b (purple dot), which is always located in the southern-hemisphere of the locus. Since the strong
ME exists only at final temperatures above this point, the second kind is γ′

f > γ′
b (red dotted line). We show the fast relaxation

vector, v+, for various possible final temperatures (black lines). Each of these vectors intersects with the steady state locus at
a point corresponds to γ′

i, SME, which is the initial temperature for the strong effect. Blue dotted line: the appropriate possible
initial temperatures, for γf > γb. All possible initial temperatures are smaller then the bifurcation point, i.e. no strong direct
effect. In other words, the absence of a vector pointing to higher temperatures, e.g. purple line, refutes the existence of a strong
direct effect.

log(γ')
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Figure 8. Left: The dynamics of three initial states towards the same final steady-state γ′
f = 15 (red dot). In order to achieve

a strong ME for that final temperature, the corresponding initial temperature is γ′
SME,i ≈ 0.07. Since at γcold′

i ≈ 0.07 (blue
line) the coefficient of slow relaxation vanishes, it exhibits an exponentially faster relaxation, compared, for example, to a
colder γcolder′

i = 0.02 (purple line) and hotter γhot′
i ≈ 0.74 (green line) initial states. Right: The evolution of γcold

i is along
the direction of v+ only, and a zoom-in on the end of the process reveals how lower and higher initial temperatures approach
relaxation from opposite directions, along v−.
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Figure 9. Left: The crossing time of states initialized at γ′
i compared to γ′

i,h = 0.77, while relaxing to γ′
f = 15. Right: The

corresponding maximal distance, post-crossing. The peak indicates the initial state yielding the most pronounced effect, γ′
i,SME

(grey line), for which the effect is strong.
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