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Abstract
Atomic clocks use atomic transitions as frequency references. The susceptibility of the atomic
transition to external fields limits clock stability and introduces systematic frequency shifts. Here, we
propose to realize an atomic clock that utilizes an entangled superposition of states ofmultiple atomic
species, where the reference frequency is a sumof the individual transition frequencies. The
superposition is selected such that the susceptibilities of the respective transitions, in individual
species, partially cancel leading to improved stability and a reduction in the corresponding systematic
shifts.We present and analyze two examples of such combinations. Thefirst uses the optical
quadrupole transitions in a 40Ca+–174Yb+ two-ion system. The second is a superposition of optical
quadrupole transitions in one 88Sr+ ion and three 202Hg+ ions. These combinations have reduced
susceptibility to externalmagnetic fields and blackbody radiation.

Atomic clocks are composed of threemain components. An electromagnetic oscillator, an atomic reference to
which the oscillator locks; i.e. a narrow atomic transition, and a frequency counter which translates the number
of oscillator periods to a time unit. The atomic reference is usually carefully chosen to have as little as possible
coupling to varying conditions in the environment which can lead to systematic frequency shifts. These
systematic shifts can be generally divided into two categories. Thefirst is due to the susceptibility of the atomic
transition to different kinds of environmental electromagnetic fields such as the ambientmagnetic field or
blackbody radiation [1–3]. The second kind of clock shifts are relativistic and emanate from the fact that the
atoms are not investigated in an inertial frame inwhich they are at rest. Here examples include second-order
Doppler shifts or the gravitational red-shift [4].While relativistic shifts relate to the proper time of the atoms, the
first kind however can be reduced not only by trying tominimize background electromagnetic fields, but also by
reducing the differential susceptibility of the clock transition to different electromagnetic perturbations. The
blackbody radiation shift, for example, can be reduced by choosing a particular atomic transitionwith a small
differential polarizability [1]. Alternatively, it was recently proposed to suppress blackbody radiation shift by
using two different atomic clocks and a frequency comb to generate a ‘synthetic’ frequencywhich is largely
insensitive to the presence of electric fields [5].

Reducing the susceptibility of atomic superpositions to electromagnetic perturbations has been the focus of
intensive research in the context of quantum computing.Here, themotivation is to improve the coherence of
multi-qubit superpositions for the purpose ofmetrology. One of themost successfulmethods for prolonging the
coherence times of superpositions is the use of decoherence-free subspaces [6]. In this approach entangled
superpositions of different states have reduced susceptibility to noise, leading tomulti-second coherence
times [7, 8].

We propose to use several atomic transitions in different species, each tickingwith it own environmentally-
sensitive frequency. These transitions are chosen such that their susceptibilities compensate each other in an
entangled superposition leading to significantly reduced sensitivity to environmental fields. The idea of
combining differentmaterials with opposite susceptibilities in clocks dates back to thework of JohnHarrison in
the eighteenth century [9]. Harrison revolutionized the fields of timekeeping and navigation by building a
marine chronometer based on a bi-metallic balance spring to compensate for temperature variations of the
spring constant.
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The phase of amulti-species entangled statewill evolve at a frequencywhich is a linear sumof the different
frequencies of individual transitions. It is thus possible to construct an atomic clock superposition that will
evolve at a frequency of an ultra-violet transition, however, no ultra-violet laser will be involved in the clock
operation. Instead, the superposition phasewould be compared to the linear sumof frequencies of the clock
lasers of the different transitions using an optical frequency comb. Figure 1(A) shows a schematics of our
method. Inquiry the phase of the two-species superposition serves as a ‘mechanical differential’ in analogywith
the device that is used in vehicles which allows the twowheels to rotate at different frequencies while keeping the
average rotation frequency fixed.

Maximally entangledmulti-atom states can, in principle, be used to surpass the frequency estimation
accuracy attainable with uncorrelated atoms (standard quantum limit) and reach theHeisenberg limit [10].
However, as pointed byHuelga et al [11], in practice, clock stability is ultimately limited by the finite coherence
time of the system. For uncorrelatedMarkovian noise the two cases will give the same result. Nevertheless, in the
some cases of correlated noise, one can sill gain by cleverly engineering the proper entangled state [7, 12, 13].

1. The combination clock

Webegin by describing our general scheme and discuss in detail the quantumprotocol that can be used in the
case of a two-ion combination clock .Our scheme is a generalization of the Ramsey spectroscopymethod similar
to the case of identical ions in amaximally entangled state [14, 15].

AnN-ion,multi-species, atomic register is prepared in a superposition of two states

G Ee t1

2
iY = ñ + ñW(∣ ∣ ).Where G fi

N
i
k m,ñ =  ñ∣ ∣ and E si

N
i
k m,ñ =  ñ¢∣ ∣ are tensor products of states in the

ground and excited statemanifolds of the different ions. Here s and f can be either the ground or excited states of
the clock transition in ion i of species k, and m m, ¢( ) are the quantumnumbers of the exact state in the ground or
excited statesmanifolds of the transition (e.g. Zeeman or hyperfine state). The clock frequency is

i
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definition i
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k m, ñ∣ is the ground

Figure 1. (A) Schematic illustration of a two-species combination clock. The clock operates using the two clock lasers of the individual
transitions. An optical frequency comb is used to compare the phase of the frequency sumof the two lasers to that of an entangled
superposition. (B)The quantum circuit of gates for preparation of the clock entangled state and thefinal parity check allowing for
clock interrogation.
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state of the clock transition. The total frequency is thus a linear sumof the clock transition frequencies of all the
ions in theCoulomb crystal.

After an interrogation time t=τ the phase between the atomic superposition and corresponding linear sum
of local oscillators (i.e. clock lasers), δτ, is obtained in the followingway. Aπ/2 carrier pulse is applied to all ions
in the crystal with their corresponding clock lasers followed by state detection and parity analysis [7]. The parity
measurement result (i.e. the probability tomeasure an even number of ions in the excited stateminus the
probability tomeasure odd number)will be given by P cos dt= . A following change to the frequency of one of
the clock lasers can lock the linear sumof frequencies to the entangled superposition.

Comparingwith the case of a single clock-ion species, the use ofmulti ion-species increases experimental
complexity due to the need of having a set of all the lasers, including narrow-linewidth clock lasers, that are
necessary for each of the ion-species. On the other hand, some of the technical aspects such as single-ion
addressing and detection are simplified owing to the spectral distinguishably between species. Comparingwith
logic spectroscopy schemes [16, 17], the combination clock does not involvemotion-sensitive operations after
the initial preparation stage.

The experimental sequence for the specific example of a two species two-ion crystal is depicted infigure 1(B).
The entanglement of two different ion species was recently demonstrated [18, 19]. As a simple example, we begin
with the two ions in the ground state of their internal state g g,A Bñ ñ∣ ∣ as well as in the ground state of one of their
normalmodes ofmotion 0ñ∣ . After applying a blue-sidebandπ/2-pulse to ionA, we entangled the internal state
of ionAwith themotion of the two-ion crystal. Next we apply a red-sideband (RSB)π-pulse on ionBwhich
entangles the internal states of the ionswhile disentangling the internal states frommotion. In the rotating-
framewith respect to the sumof atomic transition frequenciesωA+ωB, the resulting state is

g g g g e g

g g e e
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Here tA Btot 0 intf f d d= + +( ) with A B,d as the detunings of the two lasers from their corresponding atomic
transitions andf0 is a constant phase for zero interrogation time resulting from finite pulse times, light shifts,
etc. The two-ion entangled state acquires a phasewhich is the sumof the two transition frequencies times the
interrogation time τ. This phase difference with respect to the sumof both clock laser frequencies ismeasured by
aπ/2 carrier pulse on each ionwith its own clock laser, followed by state detection and parity analysis. In the case
ofmore than two ions, the procedure to generate the desired initial state will requiremulti-ion entangling gates
like theMølmer–Sørensen gate [20]. The rest of the schemewould follow the same lines as described above.

The combined two-ion clock is equivalent to a single atomwithω0=ωA+ωB andwithmeasured error
signal δ=δA+δB. Oneway to experimentally retrieve the stable clock frequency is by sum frequency
generation using a nonlinear crystal where the two lasers are independently stabilized to cavities. Here, in
principle, it is enough to feedback on only one of the lasers whilemaking sure that both are sufficiently close to
resonance. Amore practical way is toworkwith correlated lasers whichmay be derived froma frequency comb.
In this case we canwrite the two lasers frequencies as NA Rw w= · and MB Rw w= · whereN andM are integers
andωR is the comb repetition rate. Here the comboffset frequency is assumed to be set to zero. The error signal
from the experimental interrogation n mR0d d= +( ) is then fed-back to stabilizeωR to the value that locks
δ=0. The extension of the locking of the comb to the linear sum in the case ofmore than two species is
straightforward.

Belowwe analyze two examples of combinationswhich involve two optical transitions that have opposite
sign in their differential scalar polarizabilities such that the BBR shift is considerably reduced. This is one of the
more difficult systematic shifts tomitigate because, for a given polarizability, it requires the evaluation of the
BBRfields with high accuracy. As shown below, other differential shifts due to electromagneticmoments can be
either reduced (e.g.first-order Zeeman) or enhanced (e.g. electric quadrupole shifts (QSs)). It should be
mentioned that thismethod is not limited to the combination of optical transitions only. It is also possible to
combine optical clock transitionswith amicrowave hyperfine transition in an entangled superposition.Here the
resulting effective clock frequency is very similar to that of the optical component, however themagnetic
susceptibility of the combination superposition can be controlledwhenworking at a highmagnetic field
between the Zeeman and Paschen–Back regime. In this regime the effective g-factor of the hyperfine transition
can be smoothly tuned by themagnetic field to null the superposition first-ordermagnetic susceptibility.

We note that the use of entangled states is not always necessary. Inmany cases one can start with non-
entangled states which have a significant overlapwith the desired entangled state. If the part orthogonal to the
desired clock superposition dephases quickly it will yield no parity signal. In this case, themeasurement of parity
will yield the same information as before, however at the cost of lower contrast and thus lower signal-to-noise
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ratio [21]. The advantage herewould be the lower technical complexity as an entangling operationwill not be
necessary.

2. 40Ca+–174Yb+ combination clock

Thefirst combination clockwe examine is composed of the electric quadrupole transition S4 1 2  D3 3 2 in 40

Ca+ and the same electric quadrupole transition; S6 1 2  D5 ;3 2 in 174Yb+. This seems like a particularly nice
combination since the two transitions are driven using fairly accessible wavelengths of 732 and 436 nm
correspondingly; while the effective frequency at which this clock superposition rotates corresponds to an
effective wavelength of 273 nm (1090 THz) and lifetime of≈50ms limited by the Yb+ transition. This effective
wavelength is very close to that of the 27Al+ optical clock (267 nm)with the advantage that noUV light has to be
used in order to drive this transition. Furthermore themagneticmoments of these two transitions are the same
towithin a fractional difference of 10−3, so superpositions with states containing an equal number of states with
opposite projections along themagnetic field direction can have almost zeromagnetic susceptibility. Butmost
importantly, the differential static polarizability of these two transitions are very similar inmagnitude but have
opposite signs [22] and therefore a superposition of the two species can have a significantly smaller susceptibility
to blackbody radiation. Up to normalization, the specific superpositionwe consider here is

S S D DCa; Yb; Ca; Yb; . 21
2
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2
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2

, 1
2
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2
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2
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2
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ñ ñ + ñ ñ- -∣ ∣ ∣ ∣ ( )

Below is an analysis of the different systematic shifts for this combination clock.

2.1. First-order Zeeman
Thefirst-order Zeeman shift due to a uniformmagnetic field for this superposition is almost zero as both
superposition parts have a total zeromagneticmoment, up to a small (≈10−3) difference between the bound
electron g-factor in the two cases.Magnetic-field gradients, however, will still contribute afirst-order sensitivity
tomagnetic field.Here themagnetic field gradient can bemeasured, and subsequently nulled, by preparing the
superposition
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Here aswell, the different g-factors need to be taken into account or the same specie should be used for this
procedure. A similar superposition has been previously used to estimate and compensatemagnetic field
gradients to the 20mHz level [8]which translates into a fractional uncertainty of 2×10−17. One can further
improve on this uncertainty by interlacing experiments inwhich the spin direction of both ions is reversed, thus
time-averaging out the gradient effect in the samemanner thatfirst-order Zeeman shift is commonly averaged
over [23].

2.2. Second order Zeeman
Other optical clocks such as 171Yb+ benefit from the possibility of a clock transitionwhich isfirst-order
insensitive to themagnetic field. Inmost of these cases this happens due to the hyperfine interaction between the
electron and the nucleus. Thisfirst-order insensitivity then comes at the expense of a relatively large second-
order Zeeman shift (typically 103 ormore larger than in the first-order sensitive case). Here, since thefirst-order
insensitivity results from careful engineering of the clock superposition, the clock superposition amplitudes do
not depend on themagnetic field value. A change in themagnetic fieldwill not result in a change of themagnetic
moment of the superposition states and hence no second order Zeeman shift. The small second order Zeeman
shift will be, as infirst-order sensitive clocks, due to thefine-structure (FS) coupling in each of the transitions.
The order of the second order Zeemanwill be

f
g mB

h E
, 4M2

B
2

FS

m
D »

D
( )

( )

where g is the electron dimensionlessmagneticmoment,μB is Bohrmagneton,B is themagnetic field, h is
Plank’s constant andΔEFS is the FS splitting in theDmanifold. The FS splitting in Ca+ isΔEFS/h=1.82 THz
and in Yb+ it isΔEFS/h=42 THz. Thismeans that the second order Zeemanwill be dominated by Ca+.
Working at afield of 10−4 Twe get
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One canmeasure the averagemagnetic field by preparing the superposition

S S S SCa; Yb; Ca; Yb; . 61
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Here it is likely that themagnetic fieldwill bemeasuredwith at least 10−3 accuracy, allowing for a clock frequency
error as low as 2mHzwhich translates into a fractional uncertainty below 2 10 18´ - .

2.3. ElectricQS
TheQS of this clock superpositionwill be due to the quadrupolemoment of theD level of both ions since the S
orbital has no electric quadrupolemoment. TheQS of D m, j3

2
ñ∣ level is given by [24]
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Here, D, 3

2
Q( ) is the D3

2
level quadrupolemoment andβ is the angle between the quantization axis set by the

magnetic field and the quadrupole axis set by the trap geometry, wherewe assume full radial (cylindrical)
symmetry. In the case of two ions in the trap, the equilibriumpositions of the ions are±z0, symmetrically
positioned around the potentialminimumalong the trap axial direction. This results in an electric field gradient
that is twice larger than the case of a single ion.

Using 1000 V mmE

z
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This result is rather large due to the constructive addition of the entangled superposition and the position of the
ions in the trap. In order to calibrate theQS one can place the ions in the superposition
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Which, in the absence ofmagneticmoment evolves solely due to theQS [7]. In this case theQSwill be factor of
two larger as comparedwith that of the clock superposition above.Here a value ofβ can be chosen tominimize
(null) theQS.Moreover theQS can be eliminated by averaging over differentmagnetic sub-levels [3]. For the
case of theD3/2 level, only themj=1/2 andmj=3/2 states are required.

2.4. Blackbody radiation shift
The blackbody shift is due to the scalar differential polarizability of the clock transition;Δαs. The blackbody
radiation creates a varying electric field at the ion position Erms. The shift of the clock transition is given by

E
1

2
1 . 10srms

2 a hDW = D +( ) ( )

Here saD is the differential static polarizability between the two clock transition states. The dynamic correction
factor η takes into account the effect of BBRfields not being static but rather peaked at around 10 μm (30 THz) at
300K. This dynamic correction factor is typically small ( 10 to 101 2» - - ) andwewill therefore neglect it in the
following. The effective differential static polarizability of the superposition above (for the purpose of frequency
shift calculation)will therefore be the sumof the two polarizabilities of the two transitions involved.

The differential polarizability for the above S D4 31 2 3 2 transition in Ca+ is a44 1s o
3aD = - ( )

73 2 10 Jm V41 2 2- ´ - -[ ( ) ] [2, 25]. This value is similar to the Ca+ S D4 31 2 5 2 clock transitionwhich is
investigated as an optical clock in several labs [26–29]. The corresponding differential polarizability on the same
clock transition in Yb+ is a36 2s o

3aD = ( ) 59 3 10 Jm V41 2 2´ - -[ ( ) ] [30]. The differential polarizability of the
Ca+- Yb+ combination clock is a8 2s o

3aD = - ( ) 14 4 10 Jm V41 2 2- ´ - -[ ( ) ]. This is a significant reduction in
the expected BBR shift by around a factor of 5. The expected shift to the clock transition atT=300K is 70 (20)
mHz corresponding to a fractional frequency shift of 7(2)×10−17.With bettermeasurement of the this
polarizability and a 5% accuracy in estimating the BBRfield power, the BBRuncertainty of this clockwill be in
the 10−18 range.

2.5. Second order Stark shift due to trapfields
Trapfields will induce frequency changes due to the differential polarizability of the transition. Trapfields are
mostly due to uncompensatedmicromotion or inherentmicromotion that results from ion thermalmotion in
the pseudo-potential. Here, since the trap fields have awell-defined direction both the scalar and the tensor part
of the differential polarizability will play a role.

To the extent that the trap rffields are identical on both ions then the scalar polarizability of the transition is
suppressed by the same factor that ismentioned in the BBR section. A difference in the rf amplitude the two ions
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experience is likely. Firstly, any stray field orthogonal to the trap axis will tilt the two ion crystal and displace the
ions into different rf regions. This is because the radial pseudo-potential depends onmass and therefore the two
ions experience different radial restoring forces. Secondly, any inhomogeneous axial rffields will lead to a
difference too.However, with theminimization ofmicromotion this residual shift should be at least as small as
in the case of each of the two clocks when operated on a single ion.

The tensor polarizability of Ca+ is 27.0 4 10 Jm V41 2 2- ´ - -( ) [2]. The tensor polarizability of Yb+ is
136 22 10 Jm V41 2 2- ´ - -( ) [31]. Therefore, the combined tensor polarizability of this clock transition is
163 22 10 Jm V41 2 2- ´ -( ) . The amplitude of rffields that the ions experience can beminimized to the 10 Vm–1

level. The order ofmagnitude of tensor shifts expected is therefore in the few s10 Hzm¢ corresponding to
fractional uncertainty in the 10−19 level. Furthermore, the tensor shift depend on them level andmagnetic field
direction, here the projection of the electricfield, rather than the electric field gradient along themagnetic field
direction is used. Thismeans that the same average ofmeasurements along differentmagnetic field directions or
differentm levels that nulls theQSwill null the tensor polarizability contribution as well.

3. 88Sr+–3× 202Hg+ combination clock

The second combinationwe look into here ismotivated primarily by the desire to reduce BBR shifts asmuch as
possible by reducing the combination differential scalar polarizability. The differential polarizability

47.938 71 10 Jm Vs
41 2 2aD = - ´ - -( ) [22] of the S D1 2 5 2 electric quadrupole transition at 674 nm in 88

Sr+ is about 3 times larger and opposite in sign than the differential polarizability 15 10 Jm Vs
41 2 2aD = ´ - -

[22] of the same transition in 202Hg+ at 282 nm. Thus, a superposition of a single 88Sr+ and three 202Hg+ ions
would significantly reduceΔαs to 3 10 Jm V41 2 2»- ´ - - .
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The effective frequency at which this superposition rotates is 82 nm (3634 THz)—deep in the extremeUV. The
expected shift to the clock transition atT=300K is below 20mHz corresponding to a fractional frequency
shift of 5×10−18.With bettermeasurement of the differential polarizability and 10%accuracy in estimating
the BBRfield power, the BBRuncertainty of this clockwill be in the 10−19 range.

The rest of the systematic shift analysis here is rather similar to the one presented above for the 40Ca+– 174

Yb+ combination clock. In short: thefirst-order Zeeman shift due to a uniformmagnetic field for this
superposition is canceled as both superposition parts have a totalmagneticmoment close to zero (up to the
possible difference in the g-factors on the order of 10−3).Moreover, with this particular spatial ordering of spin
states, the sensitivity tomagnetic field gradients will be suppressed aswell and only second order spatial
magnetic field variationwould cause a shift. The FS splitting in Hg+ isΔEFS/h=451 THz and in Sr+ it is
ΔEFS/h=8.4 THz and therefore second order Zeeman shifts will be dominated largely by Sr+ and can
therefore be estimated using equation (4) to be f 0.2 HzM2D » . Here as well, an entangled superposition can be
used tomeasure the averagemagnetic field on the clock array. Evaluating it at the 10−3 level, leads to a systematic
shift of the order of 2×10−19. TheQS in this case will be rather large due to the large crystal and is estimate to be
around 5 kHz for the same conditions considered above.

In conclusion, we propose and analyze the use of entangled states composed ofmulti ion-species for
realizing an optical clockwith reduced systematic shifts and improved stability. As concrete examples we
proposed two different combinations. A 40Ca+– 174Yb+ two ions clock and a 88Sr+–3× 202Hg+ four-ion
crystal. Both these examples are expected to operate with a significantly reduced BBR shift. Our approach opens
a newdimension to choosing suitable atomic clock references. Instead ofmerely scanning the periodic table for a
suitable transition in different atomic species, we propose to search for the suitable linear combination of
transitions, in different species whichwould have the lowest susceptibilities to environmental conditions.
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