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We propose an entanglement protocol where ions illuminated by optical tweezers serve as control qubits.
We experimentally demonstrate this proposal with a controlled Mölmer-Sörensen operation on a three-ion
chain, analogous to the canonical Toffoli gate. Our demonstration features cases in which the control qubit
was in one of its logical basis states, and not in their superposition, due to dephasing by tweezer beam
intensity fluctuations. Finally, we discuss how our protocol generalizes to a broad class of unitary
operations and larger qubit systems, enabling a single-pulse implementation of n-controlled unitaries.
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Introduction—At the core of any quantum computing
(QC) platform is a mechanism for generating entanglement
between qubits based upon their shared degrees of freedom.
In trapped-ion quantum processors, entanglement is typi-
cally mediated by the ions’ collective motional modes
[1–5]. This approach has yielded high-fidelity entangling
gates [6–10], and has motivated efforts to find new ways of
interacting with the ions’ motional spectrum that optimize
gate performance [11–17].
Some methods focus on producing multiqubit entangling

gates, which may be highly beneficial in compiling quan-
tum circuits [18–21]. A particularly valuable family of
multiqubit operations consists of entangling unitaries that
are conditioned on the state of a control qubit, such as the
Toffoli gate. These controlled entanglement operations
are ubiquitous in quantum algorithms, such as Grover’s
algorithm [22] or quantum phase estimation [23]. However,
they are often challenging to implement efficiently using
standard two-qubit gate decompositions or other multi-
qubit gate methods, which typically result in Ising-type
Hamiltonians [19,24–26]. For example, an n-controlled
Toffoli gate has been shown to require Oðn2Þ CNOT gates
[or OðnÞ CNOTs when using one or more ancilla qubits]—
demanding a substantial overhead in circuit depth [18,27].
In this Letter, we demonstrate a method for realizing

controlled unitary operations using a single pulse by
leveraging state-dependent optical tweezer potentials. An
optical tweezer focused at the position of a trapped ion
creates a local confining potential, which modifies the
motional mode spectrum. Crucially the effect of the optical
tweezer potential depends on the ion’s electronic state,
enabling qubit-state-dependent shifts in the motional mode
frequencies. We use this mechanism as the basis for driving
controlled entanglement operations.
The integration of local optical potentials into trapped-

ion platforms is an emerging area of interest, with recent

theoretical proposals exploring their use for motional mode
engineering [28,29], entangling gate implementations
[30–32], and scalable quantum computing architectures
[31,33,34]. To our knowledge, this Letter presents the first
experimental realization of an entangling gate mediated by
an optical tweezer in a trapped-ion system.
Controlled entanglement gate—We consider a linear

chain of three trapped 40Caþ ions, where qubit states are
encoded in the ions’ jS1=2; mJ ¼ þ1=2i and jD5=2; mJ ¼
þ3=2i electronic states, denoted correspondingly by jSi and
jDi. We furthermore consider an ion in the chain that is
illuminated by a tightly focused optical tweezer beam, with a
wavelength red-detuned near the S1

2
→ P1

2
dipole transition.

The optical tweezer generates a dipole potential that
corresponds to the induced light shift on the electronic
levels. When the ion illuminated by the optical tweezer
(hereafter referred to as the tweezed ion) is populated in the
S1

2
level, it experiences a confining optical potential (o.p.)

with frequency [35]

ωo:p: ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
ℏωLS

mw2
0

s
: ð1Þ

Here, ωLS denotes the induced light shift, which depends
on the optical intensity and the electronic state of the ion,m
is the ion’s mass, and w0 is the beam waist. The effect of the
optical potential is to increase the energy of each motional
mode in accordance with both the intensity of the tweezer
beam and the participation of the tweezed ion in the
given mode.
Here we are primarily interested in the low intensity

regime, where the strength of the optical potential is far
below that of the rf electronic trap. In this regime, the shift
of a given motional mode frequency, which we denote as
Δνm for mode index m, is typically linear with the applied
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optical intensity. A derivation of the ions’ motional mode
frequencies and vectors in the presence of optical potentials
is given in Supplemental Material (SM) [36].
By contrast to the ground state, the induced light shift on

the D5
2
manifold is negligible. Correspondingly, when the

ion is populated in the jDi state, it does not experience an
optical potential and the motional modes are unaffected. In
this way, the motional spectrum of the trapped-ion chain is
dependent on the qubit state of the tweezed ion.
To drive the gate we make use of the well-known

Mølmer-Sørensen (MS) protocol [2,3]. The MS gate is gen-
erated by driving the qubits with a global bichromatic laser
field, containing the two frequencies, ωL;�¼ω0�ðνmþδÞ,
where ω0 is the qubits’ transition frequency, νm the
frequency of the mth motional mode of the trap, and δ
is the gate detuning. The strength of the driving field is
given by the Rabi frequency, Ω. The gate is operated in the
adiabatic regime, δ ≪ ν, such that all other modes of
motion remain decoupled. This drive acts to generate a
spin-dependent force that mediates interactions between
the qubits. For a gate duration, τg ¼ 2π=δ, the qubit and
motional degrees of freedom decouple, and the qubits
undergo a correlated σx ⊗ σx (denoted as XX) rotation with
an entanglement phase, Φ ∝ ðΩ2=δÞτg.
Combining this with our mechanism for a qubit-state

dependent motional shift, we design an entangling gate
that is controlled by the state of the tweezed ion.
Specifically, the gate detuning depends on the motional
shift, δ ¼ δ0 þ Δνm, where δ0 is the value of the detuning
in absence of a motional shift. If the tweezed ion qubit is in
the jDi state we have δ ¼ δ0; whereas if it is in jSi state
then δ ¼ δ0 þ Δνm. The relevant frequencies describing
the gate drive are illustrated schematically in Fig. 1(a)

(depicted here for the blue sideband and following sym-
metrically for the red sideband).
We assume that the light shift on the tweezed ion is far

larger than the Rabi frequency of the driving field
(ωLS ≫ Ω). Therefore, regardless of its quantum state,
the tweezed ion itself does not participate in the gate
dynamics as the driving field, ωL;�, is far off resonant with
its light-shifted S1

2
→ D5

2
transition frequency. Finally, we

consider the layout of Fig. 1(b) where the central ion
(corresponding to qubit 2) is tweezed. The nontweezed ions
(corresponding to qubits 1 and 3) participate equally in the
chosen motional mode, as will be the case in the demon-
stration discussed below.
The dynamics of the nontweezed ions follow the MS

unitary evolution [3], such that at integer multiples of the
gate time, T ¼ nτg, qubits 1 and 3 evolve with the unitary

operator U1;3 ¼ eiΦmJ2x, where Jx ¼ ½ðX1 þ X2Þ=2�, and the
entanglement phase is expressed as

Φm ¼ η2mΩ2T
δ

; ð2Þ

with ηm the Lamb-Dicke (LD) parameter associated with
the mth mode of motion and Ω the Rabi frequency of the
gate drive.
Clearly, the unitary dynamics can be modified by tuning

the value of δ via the motional shift. As an example for the
utility of this protocol, we consider the special case where
the motional shift is configured to exactly equal the
detuning from the natural mode frequency Δνm ¼ δ0.
Then choosing a gate time of T ¼ 2τg ¼ ð4π=δ0Þ and
setting the Rabi frequency as Ω ¼ ðδ0=2ηmÞ, the entangle-
ment phase is given by

Φm ¼
�
π; if ion 2 in jDi
π
2
; if ion 2 in jSi : ð3Þ

Equation (3) shows that if the tweezed ion is in the jDi
state, the gate drive simply results in a bit-flip of qubits 1
and 3, i.e., U1;3 ↦ eiπJ

2
x ¼ X1X3; whereas if the tweezed

ion is in the jSi state, the result is a fully entangling unitary,
U1;3 ↦ eiðπ=2ÞJ2x ¼ ð1= ffiffiffi

2
p ÞðI þ iX1X3Þ. At this point it is

possible to perform an additional X rotation on qubits 1 and
3, resulting in the controlled-MS (CMS) gate, represented
in circuit notation in Fig. 1(c):

UCMS ¼ e−i
π
8
ðI2−Z2ÞX1X3 : ð4Þ

Evidently, this protocol enables controlled fully-entan-
gling operations, analogous to the controlled-CNOT (i.e.
Toffoli) gate.
Gate implementation—We demonstrated the controlled

entanglement protocol described above in a chain of three
ions. The central ion is illuminated by an optical tweezer
with a nearly Gaussian beam profile and a waist of

(a) (b)

(c)

FIG. 1. (a) Spectral picture for the optical tweezer-controlled
entanglement gate. Following the Mølmer-Sørensen (MS) pro-
tocol, the gate drive laser (red) is detuned by δ0 from the natural
mode frequency (solid blue). The detuning from the shifted mode
frequency (dashed blue) is then δ0 þ Δνm. The motional mode
shift occurs only when the tweezed ion is in the jSi state.
(b) Schematic of the physical implementation, where the central
ion (qubit 2) is illuminated by an optical tweezer and the outer
ions (qubits 2 and 3) undergo MS dynamics. (c) Setting Δνm ¼
δ0 yields a controlled fully entangling MS gate.
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w0 ≈ 1 μm. The wavelength of the optical tweezer is
400 nm, detuned from the ions’ S1

2
→ P1

2
dipole transition

at 397 nm. Low-intensity individual addressing beams (at
400 nm) on the outer ions are used for light-shift crosstalk
compensation and state initialization. Further details of
these protocols, as well as of the experimental system, are
provided in SM [36].
The gate driving field, controlling the ions’ S1

2
↔ D5

2

transition, is a narrow linewidth laser at 729 nm. It
propagates along the trap axis as a global beam, delivering
nearly uniform intensity to all ions. The axial center-of-
mass (c.m.) mode frequency is set to ν1 ¼ ð2πÞ 360 kHz,
with higher modes at ν2 ¼ ð2πÞ 624 kHz, and ν3 ¼
ð2πÞ 866 kHz respectively. The gate is driven on the third
(i.e., zig-zag) mode due to its low heating rate (<1 quanta
per second) and high participation of the central ion. We
use relatively low axial trap frequencies to keep the ions
well separated and to allow for modest light shifts to
produce a large effect, though this comes at the cost of
elevated heating rates.
A crucial parameter is the value of the motional

frequency shift, which sets the gate time and is tunable
via the power in the optical tweezer beam. We generated a
motional shift of ð2πÞ 4.0ð1Þ kHz, corresponding to a gate
time of T ¼ 500 μs, and resulting in a light shift of
ð2πÞ 10.4ð2Þ MHz on the tweezed ion (requiring roughly
1 mW of input optical power).
The main experimental challenge caused by the large

light shift is maintaining the phase of the optical qubit
encoded in the tweezed ion. Intensity fluctuations of the
optical tweezer beam result in Pauli-Z noise on the control
qubit causing its quantum state to dephase faster than the
timescale of the gate. We note that such fluctuations also
produce motional frequency noise; however, this effect is
much weaker than qubit dephasing.
We observed intensity noise on the optical tweezer

(dominated by beam pointing fluctuations) at the 1%–
10% level. This implies a qubit dephasing noise amplitude
of up to ∼1 MHz—over 2 orders of magnitude faster than
the gate. Because of this strong dephasing channel, we limit
our current experiment to cases where the control qubit ion
is initialized in one of the basis states. Ultimately in order
for the gate to be practical, it must preserve an arbitrary
superposition of the control qubit. Several routes exist to
overcome this limitation: technical improvements to the
optical system can strongly suppress beam-pointing fluc-
tuations, while active error-suppression strategies such as
dynamical decoupling can be incorporated into the gate
sequence. Furthermore the control qubit can be encoded in
a decoherence-free subspace that is resilient to global light
shift noise resulting from common beam intensity fluctua-
tions. These approaches suggest a clear path toward
realizing a fully coherent version of the gate protocol;
we discuss them in greater detail in SM [36]. Nevertheless,
our present result demonstrates the validity of using

qubit-state-dependent motional shifts to implement con-
trolled entanglement operations.
Results and analysis—We run our gate protocol with two

different initial states, which we label cases “D” and “S,”
respectively: jψDð0Þi ¼ jSDSi and jψSð0Þi ¼ jSSSi. We
aim to see that the state of the central ion influences the gate
dynamics; in particular, when the central ion is in the jSi
state, the gate detuning should effectively double. At the gate
time, T, the state of the outer ions in each case should be
jψDðTÞi ¼ jDDi and jψSðTÞi ¼ ð1= ffiffiffi

2
p ÞðjSSi þ ijDDiÞ.

As mentioned above, in either case the state of the central
ion is unaffected by the gate as its qubit frequency is far off
resonant with the driving field.
The measured gate dynamics for both choices of initial

state, as well as a fit to a numerical simulation, are shown in
Fig. 2. The gate detuning extracted from the fit in each case
is δD ¼ ð2πÞ 4.05ð2Þ kHz and δS ¼ ð2πÞ 8.20ð5Þ kHz,
respectively, thus verifying that the optical potential affects
the gate dynamics in the expected way. The state fidelities
in case D and S are measured, respectively, to be FD ¼
93.5ð9Þ% and FS ¼ 85ð1Þ%. Consistent with standard
practice for characterizing MS gates [42], fidelities are
extracted from measurements starting in the jSSi state
through analysis of populations and, in case S, the contrast
of a parity measurement following the gate (see SM [36]).
The observed fidelities are limited by technical noise

sources—primarily fluctuations in the gate-drive laser inten-
sity, trap-frequency noise, high initial temperature of the
axial c.m. mode, and errors in the motional shift (case S).
Further discussion of the impact of these effects on gate
fidelity is provided in SM [36]. Importantly, comparable
performance to the gate of caseD is obtained using a standard
MS gate without the optical tweezer for the same gate time
and trap frequency—suggesting that the presence of the
optical tweezer itself does not significantly impact gate
fidelity.
Generalizing the method—We note that our method can

be generalized to produce a larger family of conditional
unitary operations. This is done by adding degrees of
freedom to control the pulse shape of the gate driving field.
For example, instead of applying a bichromatic field as in
the MS protocol, we may apply several laser tones as is
typically done for multimode entanglement gates [16]. In
that scheme, multiple laser tones are applied within the
range of motional mode frequencies of the ion chain. By
varying the amplitude in each tone, one can control the
entanglement phase accumulated in each motional mode
and thereby implement a variety of XX-type unitaries.
In our case of a three-ion chain, we consider an effective

two-mode system described by the natural and shifted
mode frequencies. While both describe the same vibra-
tional mode, we may treat this analogously to a multimode
problem (see also Ref. [32]). Multiple laser tones would be
interspersed around both frequencies—allowing us to
control the entanglement phase accumulated in each mode.
One possible choice is to find a gate drive spectrum that
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enforces zero phase in the unshifted mode, realizing the
identity operator, and an arbitrary value in the shifted mode.
This produces a controlled-MS unitary with arbitrary angle
[generalized from the case of Φ ¼ ðπ=2Þ discussed above].
In addition to enabling awide variety of unitary operations

for the three-ion case, our gate protocol can also be extended
to larger qubit systems. Specifically the gate can be gener-
alized to a chain of nþ 2 ions where n of those ions are
illuminated by optical tweezers. Here we assume this gate is
performed on the c.m. mode such that each ion participates
equally in the motional mode. To a very good approximation
(for low optical tweezer intensities considered here), the total
c.m. mode frequency shift depends solely on the number of
tweezed ions in the jSi state—not on their index within the

chain.We therefore get nþ 1 different mode configurations.
Coupling to other non-c.m. modes of the ion chain can be
neglected; for a harmonic axial potential, the next-highest-
frequency mode is a factor of

ffiffiffi
3

p
higher than the c.m.

regardless of n. We note that this approach requires low axial
heating rates; alternatively, one could consider working with
the radial c.m. mode.
Following the same logic as for the multimode gates

mentioned above, one could enforce zero entanglement
phase in each effective mode aside from one (e.g., the last
mode corresponding to all tweezed ions in jSi) which
receives a phase of ðπ=2Þ. This results in an n-controlled
MS gate, depicted in circuit notation in Fig. 3(a). We
simulate this operation (optimally realizing the desired

FIG. 3. Extension of the optical tweezer-controlled gate method to larger qubits systems. (a) Circuit diagram for an n-controlled MS
gate. (b) Calculated drive spectrum to implement the gate in (a), involving n ¼ 10 ions illuminated by optical tweezers as well as 2
nontweezed ions. The gate drive tones (red) straddle an effective mode spectrum, which contains the natural c.m. mode and n shifted
frequencies (blue solid and dashed colored lines respectively). The natural c.m. mode (dark blue), as well as the fourth and tenth shifted
modes (teal and green respectively), are highlighted. (c) Phase space trajectories of the highlighted modes (for the jSSi state of the two
target qubits).

FIG. 2. Gate dynamics for the outer ions in a three-ion chain, controlled by the qubit state of the central ion that is illuminated by
an optical tweezer. Shown here are two gates driven with the same laser detuning δ0 ¼ ð2πÞ 4 kHz and Rabi frequency
Ω ¼ ðδ0=2ηmÞ ¼ ð2πÞ 47.4 kHz, but two different choices of initial state: (a) jψAð0Þi ¼ jSDSi and (b) jψBð0Þi ¼ jSSSi. The motional
frequency shift due to the optical tweezer potential is tuned to match the gate detuning, 4 kHz. When the central ion is in jSi state, the
effective detuning doubles resulting in qualitatively different dynamics. At the gate time T ¼ ð4π=δ0Þ, the gate results in either (a) the
nonentangling unitary U1;3 ¼ X1X3, or (b) the fully entangling unitary U1;3 ¼ ð1= ffiffiffi

2
p ÞðI þ iX1X3Þ.
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entanglement while also imposing phase-space closure
according to the procedure of [16]) for n ¼ 10 using
realistic experimental parameters, and show the resulting
gate drive spectrum in Fig. 3(b). Here the solid blue and
dashed colored lines correspond, respectively, to the natural
c.m. frequency and each possible shifted mode frequency.
The red lines correspond to tones of the laser drive, and
their height denotes the Rabi frequency (i.e., laser power)
associated with each tone. The phase-space trajectories
αjðtÞ of three highlighted modes during the gate (see SM
[36]) are shown in Fig. 3(c). Trajectories of each mode, as
well as their respective displacements over time, are shown
in SM [36].
In this calculated example, the gate time is 644 μs—

comparable to the demonstrated three-ion case. The total
Rabi frequency required for the gate is Ω ¼ ð2πÞ 120 kHz;
as is the case for MS, the Rabi frequency is expected to
scale as the square root of the chain size. The required
optical tweezer intensity, in order to achieve the same
motional shift, also increases with chain size. In this case, a
4 kHz shift per tweezed ion requires a ð2πÞ 20 MHz
light shift.
Notably the gate time in this method does not scalewith n.

In fact, the minimum gate time in the multimode case
corresponds to the frequency splitting between the different
shiftedmodes [17]; therefore, in our case, the gate timewould
scale inverselywith the frequency shiftT ∼ ð1=ΔνmÞ regard-
less of the number of ions. Furthermore (as mentioned above
and described in SM [36]), dynamical decoupling pulses can
be straightforwardly incorporated into the gate tomitigate the
effects of optical tweezer intensity noise. The required
number of such pulses per control qubit depends only on
the noise spectrum and does not scale with n. Since these
pulses are fast and can be applied in parallel to all control
qubits, the relative overhead compared to the entangling gate
time remains minimal.
The n-controlled MS operator discussed here is equiv-

alent (up to single qubit rotations) to an (n − 1)-controlled
Toffoli gate, and requires only a single driving pulse.
Conclusion and outlook—We have described and dem-

onstrated a protocol for controlled entanglement operations,
making use of state-dependent optical tweezer potentials on
trapped-ion qubits. We have shown how the protocol can
naturally be extended to drive multiply-controlled unitaries,
with a gate time that is independent of system size. In
particular, this enables an efficient implementation of multi-
ply-controlled Toffoli gates, which could be highly useful in
many quantum computing applications.
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