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Single-ion quantum lock-in amplifier

Shlomi Kotler', Nitzan Akerman', Yinnon Glickman', Anna Keselman' & Roee Ozeri'

Quantum metrology' uses tools from quantum information science to
improve measurement signal-to-noise ratios. The challenge is to
increase sensitivity while reducing susceptibility to noise, tasks that
are often in conflict. Lock-in measurement is a detection scheme
designed to overcome this difficulty by spectrally separating signal
from noise. Here we report on the implementation of a quantum ana-
logue to the classical lock-in amplifier. All the lock-in operations—
modulation, detection and mixing—are performed through the
application of non-commuting quantum operators to the electronic
spin state of a single, trapped Sr™ ion. We significantly increase its
sensitivity to external fields while extending phase coherence by three
orders of magnitude, to more than one second. Using this technique,
we measure frequency shifts with a sensitivity of 0.42 HzHz *
(corresponding to a magnetic field measurement sensitivity of
15pTHz '), obtaining an uncertainty of less than 10 mHz
(350T) after 3,720 seconds of averaging. These sensitivities are
limited by quantum projection noise and improve on other single-
spin probe technologies™ by two orders of magnitude. Our reported
sensitivity is sufficient for the measurement of parity non-
conservation®, as well as the detection of the magnetic field of a single
electronic spin one micrometre from an ion detector with nano-
metre resolution. As a first application, we perform light shift spec-
troscopy of a narrow optical quadrupole transition. Finally, we
emphasize that the quantum lock-in technique is generic and can
potentially enhance the sensitivity of any quantum sensor.

Quantum probes with unprecedented sensitivities are advancing the
field of metrology. In particular, cold, trapped ions are well isolated
from their environment and their internal states and motion can be
controlled with high fidelity, thus enabling researchers to use them as
excellent probes®®.

Achieving a high signal-to-noise ratio involves demands—decreasing
the effect of noise on the probe while enhancing its response to the
measured signal—that are often in conflict. The problem arises if the
noise and the signal couple to the probe through the same physical
channel. Quantum metrology uses methods from quantum coherent
control to address this difficulty. As an example, entangled states that
are invariant under certain noise mechanisms have been engineered
with trapped ions and have demonstrated long coherence times’™’.
Other entangled states have been similarly engineered to enhance the
measurement sensitivity of trapped ions'*'". Whether or not the mea-
surement signal-to-noise ratio improves depends on the commutativity
of the noise and signal operators as well as on the noise bandwidth'>"'*.

A different approach to noise reduction is based on spectrally separat-
ing a quantum system from its noise environment. Such time-dynamical
noise decoupling has been demonstrated using trapped-ion quantum
bits, among other systems, and has been optimized to match different
noise profiles'>'°. In fact, it was shown that the decoherence rate of
these modulated systems can be used to extract information about their
noise spectrum'®'®, A natural extension to spectral characterization is
the measurement of oscillating signals. Dynamical manipulation can
therefore be used to decouple a quantum probe from noise while
enhancing its sensitivity to alternating signals.

In the past few years, dynamical decoupling methods have been
used to improve on the signal-to-noise ratio of a.c. magnetometry

using nitrogen-vacancy centres'***. Indeed, significant enhancement
of sensitivity was achieved using a few tens of modulation pulses™.
However, owing to the particular decoherence mechanism in nitrogen-
vacancy centres, their best reported magnetic field measurement sensi-
tivity, of 4 n'T Hz ™ "/%, was achieved using a single echo pulse’.

In this work, we show that a quantum probe, time evolving under
non-commuting noise, signal and modulation operators, is equivalent
to a lock-in amplifier. We take full advantage of the quantum lock-in
method, with up to 650 modulation pulses, using a single trapped **Sr*
ion. The lock-in method provides a 30-fold improvement in fre-
quency-shift measurement sensitivity. We demonstrate a record sensi-
tivity for a single-spin detector*®, of 15pT Hz '* (0.42HzHz %),
reaching a measurement uncertainty ofless than 10 mHz (350 fT') after
3,720 s of averaging.

Classical lock-in amplifiers are detectors that can extract a signal
with a known carrier frequency from an extremely noisy environment.
Schematically, if noise, N(f), adds to a physical observable, S, oscil-
lating at a frequency f,,, the total signal measured by the detector is
M(t) = m[Socos(2nfint + @) + N(t)]. Here my sets the detector mea-
surement units and ¢ is a constant phase. A signal proportional to S is
obtained by a mix-down process: M(f) is multiplied by either
sin(2mfi,t) or cos(2mf,t) and the two results are integrated over an
integration window, T:

T
Tock-in = %J dt M(t)cos(2mfint)
1 ) (1)
Quein =7 | 40 sin 2nfo)
The signal S, is proportional to (Iﬁ)ck_in—&-leock_m)l/ 2. The constant
phase ¢ can be extracted from tan(¢) = — Qjoc-in/Llock in- NOise spectral
components with frequencies far from f;,, will be averaged out in the
integration. Therefore, by choosing f,,, outside the noise bandwidth, the
measurement signal-to-noise ratio can be significantly improved.
The main obstacle in realizing quantum lock-in dynamics is finding
a quantum analogue to signal multiplication, which is essential for the
mix-down process. In a classical apparatus this is achieved using a
nonlinear device with an output that is proportional to the instant-
aneous product of its inputs. Nonlinear dynamics of the wavefunction
cannot be introduced directly, owing to the linearity of Schrédinger’s
equation. Nevertheless, wavefunction dynamics will be proportional to
a product of Hamiltonian terms if the total Hamiltonian does not
commute with itself at different times. Operator non-commutativity
therefore has an important role in the quantum mix-down process.
To show this in more detail, we turn to the case of a two-level
quantum probe, with states |T) and ||). We assume that the probe is
coupled both to a signal, S(), and noise, N(t), by Hiy =M(t)6,/2,
where M(t) = S(t) + N(t) and 6y, 6, and 6, are the Pauli operators.
For alock-in measurement, S(f) is modulated: S(f) = Sycos(2nfi,t + @).
The probe is initialized to [1/,) = (|1)+|]))/v/2. In a Bloch sphere
picture, this state is represented by a vector along the x axis. Under H;,,
the superposition phase (the angle between the Bloch vector and the x
axis) is oscillating back and forth as a result of the signal and is ran-
domly varying owing to the effect of noise. To implement a lock-in
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measurement, we mix the probe phase with an oscillating signal by
adding to H;, an oscillating term that does not commute with &:
H=(M(t)6.+Q(1)6,)/2. If Q(1) is periodic and synchronized with
S(t), then the phase accumulated owing to S(f) coherently adds up
whereas the random phase accumulated owing to N(t) is averaged
away. The probe superposition is characterized by the probability of
finding the probe in the |T) state, P;, and the superposition relative
phase, @1oc.in- By measuring both at time T, we extract the quantum
lock-in signal:

1 (" 1
Plockein = %J dt M(#) cos (%J dr’ Q(t’))
0 0
o o ()
1—2P;=— [ dt M(t) sin <7J dr .Q(t’))
hJo h Jo
Equation (2), where /1 is Planck’s constant divided by 27, resembles the
classical lock-in output in equation (1). Specifically, for a constant
Q(t) = Q,, the lock-in outputs ¢oc in and 1 — 2P; faithfully represent
the two signal quadratures. Here, instead of reading out a classical
parameter, the quantum lock-in read-out requires repetitive quantum
projection measurements. We note that the two signal components
can be interchanged through single quantum bit rotations. A full
derivation and discussion of equation (2) can be found in
Supplementary Information.

In our experiment, we use the two spin states of the electronic
ground level of a single **Sr™ ion, |1} = |55, J = 1/2, M; = 1/2) and
[1) =581 J=1/2, M;=—1/2), as a two-level quantum probe
(Fig. 1a). Here ] is the total electron angular momentum quantum
number and M; is its projection along the magnetic field axis. Set-up
details can be found in Supplementary Information. An energy differ-
ence of 5.72MHz between the probe states is determined by an
external d.c. magnetic field. We are able to perform all possible spin
rotations by pulsing a resonant radio-frequency magnetic field and
tuning the pulse duration and the radio-frequency field phase, ¢.y.
State initialization and measurement are performed by optical pump-
ing and state-selective fluorescence, respectively. Because the probe
states are first-order sensitive to magnetic fields, the main noise mech-
anism is magnetic field noise, with dominant spectral contributions at
the 50-Hz line and its harmonics. Examples for signals that we can
measure are modulated magnetic or light fields, respectively measured
through their resulting Zeeman or light shifts.

Thelock-in sequence is depicted in Fig. 1b. Following optical pump-
ing, a /2 rotation initializes the ion probe to |t/,) = (|1) +]1))/v/2.
To modulate the ion probe, we apply a train of N © pulses, equally
spaced T, apart. Here, ideally Q(f) = Zle O(t — nt)7, where d(¢) is
the Dirac delta function. Therefore, the cosine term in equation (2) is a
square waveform with a period of 27,,,,, and the sine term vanishes.
Consequently, a measured signal has to be modulated at f;,, = 1/27,,
and in phase with the ion modulation, that is, ¢ = 0. Here ¢joqcin
is proportional to the signal magnitude, Sp. To measure the probe
phase, we complete the sequence with an additional m/2 rotation,
with a relative ¢,; phase with respect to the initial /2 pulse. We
then detect the probability of the ion being in the |]) state,
Py =1/24(A/2) cos(¢,f — Poerein)- By scanning ¢, we are able to
retrieve both ¢jqcin and the cosine fringe contrast, A, using a fitting
procedure.

Ideally A = 1. In practice, noise processes decrease A. As seen from
equation (2), even in the absence of any signal, N(t) will contribute a
lock-in phase of

1 (" 1
On= —J dt N(t) cos —J dt' Q(t)
h o hJo
The cosine fringe is therefore reduced in the process of averaging:

A = {cos(¢n)), where angle brackets denote an average over different
noise realizations.
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Figure 1 | Measurement scheme. a, Level diagram of a **Sr™ ion. The probe
spin states are |T) = |55y, ] = 1/2, M; = +1/2) and | |) = |5s,5, ] = 1/2,

M; = —1/2). An external magnetic field splits the two levels by a frequency of
fo = 5.72 MHz. Spin rotations are performed using an oscillating magnetic field.
Initialization to | 1) is done by optical pumping. Spin detection is performed by
shelving the | 1) state to the metastable level | D) = |4ds/,, ] = 5/2, M; = +3/2),
with a narrow-linewidth (<100-Hz), 674-nm laser, followed by state-selective
fluorescence at 422 nm. The 1,092-nm and 1,033-nm lasers are used as repump
lasers. b, The quantum lock-in measurement pulse scheme. The ion is
initialized to (|1) +]))/v/2 by a n/2 pulse. While the measured signal is
modulated, the superposition is also modulated, in phase with the signal, by a
train of N 7 pulses, T,y apart. The total relative phase, @oci.in, Of the ion
superposition, (||) + €| 1)) /v/2, accumulated during the lock-in sequence
is measured by scanning the phase of a final 71/2 pulse, ¢4, followed by spin
detection and a fit of the data to Py =1/2+(A/2)cos(¢s — Ploetein)- € Fringe
contrast, A, versus half lock-in modulation period, 7., in the absence of any
modulated signal. Data corresponding to N =1, 9 and 17 & pulses are shown
using blue stars, green rectangles and red circles, respectively. We observe
contrast drops as T,y approaches 2.5, 5 and 10 ms corresponding to magnetic
field noise components at 200, 100 and 50 Hz, respectively. d, Probability of
finding the ion in the | 1) state versus ¢, Fringe plots for .., = 3.6 ms (left)
and 5ms (right), made with lock-in sequences of N = 17 m pulses, are shown.
The solid line is a best fit to Py =1/2—(A/2)cos(¢,¢). The fitted A values are
shown in c at the locations indicated by the two black arrows. The inverted sign
of the second fringe can be understood in terms of equation (4).

The reduction in the fringe contrast has significant implications for
the lock-in measurement sensitivity. The lock-in signal, @iocicin, iS
proportional to the energy shift experienced by the probe and can
therefore be expressed in terms of frequency or magnetic field.
Equation (2) implies that the conversion factor depends on the actual
modulation type being used. This is discussed in Supplementary
Information, where we also show that the optimal frequency-shift
measurement sensitivity, s, is

1 [4—A2
s= -\ gor HeHe 12 (3)
Here T'= (N + 1)T,m, is the total sequence duration and N is the num-
ber of 1 pulses. The standard quantum limit on the sensitivity is reached
when A = 1. To optimize sensitivity, the lock-in modulation frequency
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and the sequence duration should be chosen so as to minimize the
spectral overlap of noise and modulation and therefore maximize A.

We initially quantify the noise floor of our lock-in detector at dif-
ferent modulation frequencies, f,,, and lock-in sequence durations, T,
in the absence of any modulated signal. To begin with we perform this
measurement at low lock-in modulation frequencies, which are com-
parable to typical magnetic noise frequencies in our laboratory. We
measure A for values of the n-pulse interspacing, T, ranging from 0
to 12ms, and for N =1-17 7 pulses per lock-in sequence. Both the
lock-in sensitivity and the spectral resolution increase as N increases.
As shown in Fig. 1c, dips in the fringe contrast emerge as we increase N.
These dips, marked by shading, correspond to a.c. magnetic field noise
components at frequencies of 200, 100 and 50 Hz, respectively.
Figure 1d shows two phase scans for an N =17 lock-in sequence.
One scan is at 7,,,, = 3.6 ms, where no noise is present, and the other
is at 7, = 5 ms, where the lock-in modulation has the same period as
the 100-Hz noise component.

To use the lock-in method to quantify the magnetic noise spectrum,
we assume that it is composed mainly of discrete frequency compo-
nents, f, = ,/2n, with corresponding amplitudes B,. With this
assumption we can calculate

AN o) = Ty <—4g” D G (Vrfam)
n h Wy 2

Here ], is the zeroth Bessel function of the first kind, g is the Landé
g-factor and i is the Bohr magneton. We note that A can have negative
values, as demonstrated by the inverted sign of the second scan of
Fig. 1d. In Fig. 2a, we show A (filled circles) for a lock-in sequence with
N =17 and a best fit to equation (4) (solid line). Here we assume
four discrete magnetic noise spectral components with respective fre-
quencies of 50, 100 and 150 Hz and fy, the last a slowly varying
field. The noise amplitudes are taken as fit parameters, yielding
Bsor, = 540(3) pT, Bigon, = 390(5) pT, Bison, = 260(4)pT and
gUpBgowfsow/h = 37(4) Hz% The relatively low magnetic field ampli-
tudes are due to an active magnetic field noise cancellation system. A
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Figure 2 | Sensitivity of the quantum lock-in measurement. a, Fringe
contrast, A, versus T,., for N =17 7 pulses, in the absence of any modulated
signal. Each point is the fitted contrast of a corresponding measured fringe as in
Fig. 1; error bars are 95% confidence intervals. The data are used to extract the
magnetic noise spectrum. The solid red line is a best it to equation (4) with four
fit parameters: the field amplitudes Bs 1, = 540(3) pT, Bigo 1. = 390(5) pT and
Bison, = 260(4) pT and a slowly varying field gupBgiowfsow/h = 37(4) HZ%

b, Fringe contrast, A, versus number of 7 pulses, N, at a lock-in modulation
frequency of f,,, = 312.5 Hz; error bars are 95% confidence intervals. The red
line is an exponential decay fit to the data yielding a 1/e coherence decay time of
1.4(2) s. ¢, Lock-in sensitivity (solid blue line) versus the lock-in sequence
duration, T, calculated from a using equation (3). The dashed red line is the
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detailed report of the findings described in this paragraph is under way
(SK., N.A, Y.G. and R.O., manuscript in preparation).

Observing that noise amplitudes at frequencies of more than 200 Hz
are negligible, we turn to higher modulation frequencies, in search of
the greatest attainable probe coherence time. We modulate the ion
probe at f,,, = 312.5Hz (14, = 1.6 ms). Figure 2b shows the fringe
contrast A versus N, up to N = 650. Here, owing to the large number
of m pulses, ¢,ralternates by /2 between consecutive pulses, to prevent
rotation errors from coherently accumulating. A fit to an exponential
decrease in fringe contrast yields a probe coherence time of 1.4(2)s.
This is three orders of magnitude longer than the coherence time in the
absence of lock-in modulation, measured using Ramsey spectroscopy.

From the data presented so far, we can report our probe’s best
sensitivity. We calculate the lock-in sensitivity versus T, the total
lock-in sequence duration, from the fringe contrast, A, using equation
(3). Figure 2c shows the lock-in sensitivity in the low modulation
frequency range. A minimum of 0.78 HzHz "> (28 pTHz '?) is
observed at T = 120 ms, between noise components. Figure 2d shows
the lock-in sensitivity versus T'at f,, = 312.5 Hz. Here a best sensitivity
of 0.42(3) HzHz "% (15(1) pT Hz ') is observed at the minimum of
the fit, with a lock-in sequence duration of T'= 624 ms. This is, to our
knowledge®?, the best magnetic field sensitivity reported so far using a
single-spin (or pseudo-spin) detector. In both cases, the measured
sensitivity differs from the standard quantum limit, shown by the
dashed line, by a factor of less than 1.5.

We next demonstrate the lock-in detection of a small signal and
experimentally verify equation (2). To this end, we measure the light
shift of a narrow-linewidth (<100-Hz) laser nearly resonant with the
[1)— |D)=|4ds5, J=5/2, M;=3/2) quadrupole transition at
674nm. The laser amplitude is switched on and off at a rate
f.=500Hz. With this scheme, both the lock-in and the laser are
square-wave modulated. We apply a lock-in sequence of N=99 n
pulses and scan the lock-in modulation frequency. Here the 674-nm
laser is detuned by 4 = —17kHz from resonance (red detuned). A
laser Rabi frequency of 21 X 840 Hz is independently measured by
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standard quantum limit on sensitivity (achieved when A = 1). A best sensitivity
of 0.78 HzHz 2 (28 pT Hz ?) is observed at T = 120 ms. This sensitivity is
only a factor of 1.5 greater than the standard quantum limit. The sensitivity
diverges whenever A (shown in a) crosses zero. d, Exponential decay fit (solid
blue curve) shown in b, translated to sensitivity using equation (3), as in ¢. The
shaded region is a 95% confidence interval for the curve. The dashed red line
shows the standard quantum limit on the lock-in sensitivity. The solid blue
circles are calculated sensitivities of the measured fringe contrast points in

b, with 95% confidence intervals. A best sensitivity of 0.42(3) Hz Hz 2
(15(1) pT Hz ') is obtained at the minimum of the solid blue curve

(T'= 624 ms). A similar value of 0.4(1) Hz Hz~"/? (13(3) pTHz 1/2) is observed
at T'= 560 ms.
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Figure 3 | Lock-in measurement of a small signal. The light shift of the |T)
state induced by the 674-nm laser is measured. The laser is detuned by
Ag74nm = —17kHz from the |1)— | D) quadrupole transition, and is
amplitude-modulated by a square wave of frequency f; = 500 Hz. The lock-in
scheme has N = 99 nt pulses and the lock-in frequency, f,, = 1/27,4.m, is varied.
a, Lock-in fringe scan, Py, versus ¢, at alock-in period of 27,,,,, = 2 ms. The red
solid line is abest fitto Py =1/24(A/2) cos(§ss — Plockain)- A clear phase shift of
Plockin = 0.997 is observed, with a fringe contrast of A = 72%. b, The columns
are lock-in fringe scans, similar to that in a, for various values of 7,,,. The lock-
in signal, ¢1oacin, is seen to increase as the lock-in modulation frequency, f,,
approaches the laser modulation frequency, f;, = 500 Hz. ¢, Lock-in signal,
Plockin> VETSUS Ty, extracted from b as explained in a. A light shift of 9.7(4) Hz
is measured (with 95% confidence). The solid red line is calculated using
equation (2) without any fit parameters.

an on-resonance Rabi nutation curve. Figure 3a shows a fringe scan at
alock-in modulation frequency of f,, = 500 Hz. The solid line is a best
fitto Py =1/24(A/2)cos(ds — Plocain)» With A and Pjoqin as fit para-
meters. A clear phase shift of 0.99m is observed. The columns in Fig. 3b
are fringe scans similar to that in Fig. 3a, made at different lock-in
modulation frequencies. As seen, the lock-in signal is maximal when
the modulation frequency approaches 500 Hz (t,,, = 1,000 ps), that
is, the modulation rate of the laser. Figure 3¢ shows that the prediction
of equation (2) (solid line, calculated without any fit parameters) is in
good agreement with measured values (filled circles) of ¢joqcin as a
function of the lock-in modulation rate. A light shift of 9.7(4) Hz is
measured; the theoretically predicted value is 9.9(4) Hz.

Any measurement uncertainty is ultimately limited, at long integ-
ration times, by slow systematic drifts. The optimal averaging time can
be found by performing an Allan deviation analysis”. We obtain a
minimal measurement uncertainty of 8(2) mHz (290(70)fT) after
3,720 s of averaging. We perform the same analysis for a light shift
measurement, obtaining 0.12(2) Hz after 1,320s. This uncertainty is
most probably limited by slow frequency drifts of the 674-nm laser (see
Supplementary Information for Allen plots and more details). The
magnetic field generated by the valence electron spin of a single
88Sr™ jon will cause a level shift of 52 mHz in a probe ion co-trapped
one micrometre away, the measurement of which could be within our
experimental reach.
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Figure 4 | Light shift spectroscopy. Light shift of | T) induced by the 674-nm
laser, as a function of laser frequency detuning, 4. At each A4 value, a lock-in
sequence of N = 39 1 pulses with a lock-in period of 27,,,, = 200 ps is applied
while the 674-nm laser is amplitude-modulated at the same frequency. a, Every
column is a lock-in fringe scan for a particular value of 4. For each column, the
lock-in signal, ¢jock.in» is the shift of the fringe minimum from zero. b, Fringe
contrast, A (blue filled circles), versus 4. Red filled circles show A in the absence
of laser light. We observe a reduction in contrast due to shelving of the | T) state
to the metastable level | D) whenever the laser approaches resonance. ¢, Lock-in
signal, Pjociin (blue filled circles), versus 4. The red filled circles show jociin in
the absence of laser light. Light shifts are seen to have dispersive resonance.
Both b and ¢ show two sidebands, separated by 5 kHz from the transition
carrier, generated by the fast amplitude modulation of the laser.

Finally, we show how the lock-in method can be used to perform
light shift spectroscopy. We probe the |1) — |D) transition. Figure 4a
shows lock-in phase scans (columns) for different laser detunings.
Figure 4b and Fig. 4c show the fringe contrast, A, and the lock-in
signal, P1ociin> respectively. Population transfer to level |D) results in
a reduction in A whenever the laser is close to resonance. The mea-
sured light shift is seen to be dispersive around resonance. The three
resonances, a carrier and two sidebands, are due to the fast amplitude
modulation of the laser, reminiscent of the Pound-Drever-Hall signal
of a laser scanning across an optical cavity resonance*. Such a dis-
persive signal can be used to lock a narrow-linewidth laser to an atomic
clock transition.

The results presented here demonstrate the potency of the quantum
lock-in measurement technique, which is readily available for any
quantum probe. Specifically, with single trapped-ions the lock-in tech-
nique allows high-precision frequency-shift measurements with nano-
metre-scale spatial resolution (in our set-up, the ion wavefunction
extent is 9 nm with ground-state cooling). In addition to the detection
of a single electronic spin mentioned above, this would be useful to
probe spin-dependent interactions of an ion submerged in a quantum
degenerate gas*>**. Finally, the quantum lock-in technique can be useful
for precision measurements and frequency metrology. As an example, it
can be used to measure the very small frequency shifts required for the
observation of parity non-conservation in a single trapped ion®.
Another example is the characterization of systematic errors, such as
the quadrupole shift, in ion-based atomic clocks”. As a final example,
the technique can be used to characterize the noise spectrum of narrow-
linewidth lasers with respect to an atomic transition.

©2011 Macmillan Publishers Limited. All rights reserved



Received 24 January; accepted 22 March 2011.

1.

2.

10.
1L
12.
13.
14.
15.
16.
17.
18.

Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements:
beating the standard quantum limit. Science 306, 1330-1336 (2004).

Degen, C. Nanoscale magnetometry microscopy with single spins. Nature
Nanotechnol. 3, 643-644 (2008).

Balasubramanian, G. et al. Ultralong spin coherence time in isotopically
engineered diamond. Nature Mater. 8, 383-387 (2009).

Fortson, N. Possibility of measuring parity nonconservation with a single trapped
atomic ion. Phys. Rev. Lett 70, 2383-2386 (1993).

Rosenband, T. et al. Frequency ratio of AI" and Hg" single-ion optical clocks;
metrology at the 17th decimal place. Science 319, 1808-1812 (2008).

Knlnz, S. etal. Injection locking of a trapped-ion phonon laser. Phys. Rev. Lett. 105,
013004 (2010).

Kielpinski, D. et al. A decoherence-free quantum memory using trapped ions.
Science 291, 1013-1015 (2001).

Roos, C. F. et al. Bell states of atoms with ultralong lifetimes and their tomographic
state analysis. Phys. Rev. Lett. 92, 220402 (2004).

Langer, C. et al. Long-lived qubit memory using atomic ions. Phys. Rev. Lett. 95,
060502 (2005).

Leibfried, D. et al. Toward Heisenberg-limited spectroscopy with multiparticle
entangled states. Science 304, 1476-1478 (2004).

Roos, C. F., Chwalla, M., Kim, K, Riebe, M. & Blatt, R. ‘Designer atoms’ for quantum
metrology. Nature 443, 316-319 (2006).

Huelga, S. F. et al. Improvement of frequency standards with quantum
entanglement. Phys. Rev. Lett. 79, 3865-3868 (1997).

André, A, Serensen, A. S. & Lukin, M. D. Stability of atomic clocks based on
entangled atoms. Phys. Rev. Lett. 92, 230801 (2004).

Wineland, D. etal. Experimental issues in coherent quantum-state manipulation of
trapped atomic ions. J. Res. Natl Inst. Stand. Technol. 103, 259-328 (1998).

Uys, H., Biercuk, M. J. & Bollinger, J. J. Optimized noise filtration through dynamical
decoupling. Phys. Rev. Lett. 103, 040501 (2009).

Biercuk, M. J. et al. Optimized dynamical decouplingin a model quantum memory.
Nature 458, 996-1000 (2009).

Gordon, G, Erez, N. & Kurizki, G. Universal dynamical decoherence control of noisy
single-and multi-qubit systems. J. Phys. At. Mol. Opt. Phys. 40, S75-S93 (2007).
Sagi, Y., Aimog, |. & Davidson, N. Process tomography of dynamical decouplingina
dense cold atomic ensemble. Phys. Rev. Lett. 105, 053201 (2010).

19.

21.

22.

23.
24,
25.
26.
27.

LETTER

Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in
diamond. Nature 455, 644-648 (2008).

. Hall, L. T, Hill, C. D,, Cole, J. H. & Hollenberg, L. C. L. Ultrasensitive diamond

magnetometry using optimal dynamic decoupling. Phys. Rev. B82,045208 (2010).
Naydenov, B. et al. Dynamical decoupling of a single-electron spin at room
temperature. Phys. Rev. B 83, 081201(R) (2011).

de Lange, G, Riste, D., Dobrovitski, V. V. & Hanson, R. Single-spin magnetometry
with multipulse dynamical decoupling sequences. Phys. Rev. Lett. 106, 080802
(2011).

Riley, W. J. Handbook of Frequency Stability Analysis. NIST Spec. Publ. 1065 (US
Departmentof Commerce, National Institute of Standards and Technology, 2008).
Drever, R. W. P. et al. Laser phase and frequency stabilization using an optical
resonator. Appl. Phys. B 31, 97-105 (1983).

Zipkes, C., Palzer, S., Sias, C. & Koehl, M. A trapped single ion inside a Bose-Einstein
condensate. Nature 464, 388-391 (2010).

Schmid, S., Harter, A. & Denschlag, J. H. Dynamics of a cold trapped ion in a Bose-
Einstein condensate. Phys. Rev. Lett 105, 133202 (2010).

Oskay, W. H., Itano, W. M. & Bergquist, J. C. Measurement of the 1°°Hg" 5d°6s®
2D, electric quadrupole moment and a constraint on the quadrupole shift. Phys.
Rev. Lett. 94, 163001 (2005).

Supplementary Information is linked to the online version of the paper at
www.nature.com/nature.

Acknowledgements We thank G. Bensky, G. Gordon and G. Kurizki for discussions. We
acknowledge the support by the ISF Morasha program, the Crown Photonics Center
and the Minerva Foundation.

Author Contributions All authors participated in the building of the experimental
apparatus. SK. led the data-taking effort, with help from N.A. Data analysis and
development of the analytic theory were performed by S.K. SK. and R.O. wrote the
manuscript. R.0. designed the experiment and supervised the work. All authors

participated in discussions, contributed ideas along the way and edited the
manuscript.

Author Information Reprints and permissions information is available at
www.nature.com/reprints. The authors declare no competing financial interests.
Readers are welcome to comment on the online version of this article at
www.nature.com/nature. Correspondence and requests for materials should be
addressed to S.K. (shlomi.kotler@weizmann.ac.il).

5 MAY 2011 | VOL 473 | NATURE | 65

©2011 Macmillan Publishers Limited. All rights reserved


www.nature.com/nature
www.nature.com/reprints
www.nature.com/nature
mailto:shlomi.kotler@weizmann.ac.il

	Title
	Authors
	Abstract
	References
	Figure 1 Measurement scheme.
	Figure 2 Sensitivity of the quantum lock-in measurement.
	Figure 3 Lock-in measurement of a small signal.
	Figure 4 Light shift spectroscopy.

