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The prevalent approach to executing quantum algorithms on quantum computers is to break down the
algorithms to a concatenation of universal gates, typically single and two-qubit gates. However such a
decomposition results in long gate sequences which are exponential in the qubit register size. Furthermore,
gate fidelities tend to decrease when acting in larger qubit registers. Thus high-fidelity implementations in large
qubit registers are still a prominent challenge. Here we propose and investigate multiqubit entangling gates for
trapped ions. Our gates couple many qubits at once, allowing us to decrease the total number of gates used
while retaining a high gate fidelity. Our method employs all of the normal modes of motion of the ion chain,
which allows us to operate outside of the adiabatic regime and at rates comparable to the secular ion-trapping
frequency. Furthermore we extend our method for generating Hamiltonians which are suitable for quantum
analog simulations, such as a nearest-neighbor spin Hamiltonian or the Su-Schrieffer-Heeger Hamiltonian.
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I. INTRODUCTION

Entanglement gates are at the core of universal quantum
computing. The central operating paradigm of such computers
is to implement quantum algorithms, i.e., unitary operators
acting on the qubit register, by decomposing them into a
concatenation of elements of a universal gate set [1–3]. The
universal gate set usually consists of arbitrary single qubit op-
erations and a two-qubit entanglement gate, e.g., a controlled-
NOT gate, which can be performed on any two qubits in the
qubit register.

Trapped ion qubits are a leading platform for the realization
of a universal quantum computer, already demonstrating many
of the required components with outstanding fidelities [4–10].
Entanglement gates, which are considered the bottleneck of
such realizations, have recently been at the focus of many the-
oretical and experimental investigations aimed at improving
their fidelity, efficiency, and robustness [11–27].

However a multiqubit fault-tolerant quantum computer
has not been achieved yet with trapped ions, or with
any other quantum platform. A central challenge hinder-
ing the appearance of such quantum computers is that of
scaling up. In particular, when the number of the quan-
tum bits in the register increases, the number of concate-
nated universal gate set elements increases exponentially [3]
while the fidelity of each separate element generically
drops [28].

A possible resolution of this challenge is by expanding the
universal gate set, making it overcomplete, by adding different
types of entanglement gates, specifically, all-to-all multiqubit
entanglement gates. It has already been shown that these
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multiqubit gates can increase the fidelity of many quantum
algorithms [29,30].

The same methods used for creating computing-oriented
entangling gates in trapped-ion systems are also used for ana-
log spin-Hamiltonian simulations. In these simulations spin-
spin interactions are generated with an interaction strength
that scales as r−α , where r is the distance between ions and
0 � α � 3 [31–34].

Here we propose and investigate a family of multiqubit
entangling gates for trapped ions. Conventionally, trapped
ions entangling gates operate by coupling to a single normal
mode of motion of the ion chain while the presence of other
normal modes limits the gate rate. Our gates purposefully
couple to all normal modes of motion of the ion chain and can
therefore operate in the nonadiabatic regime. Furthermore, the
different normal modes of motion can be used to generate a
wide variety of interactions. We present examples of all-to-all
entangling gates, which are especially suited for quantum
computing and examples of spin Hamiltonians such as the
nearest-neighbor Hamiltonian.

II. MAIN RESULTS

Our main result is a family of multiqubit entangling gates
for trapped ion qubits, which generate a quantum evolution
operator of the form exp (i

∑N
i,k=1 ji,k σ̂y,iσ̂y,k ), with σ̂y,i the

Pauli-ŷ operator acting on the ith qubit in the N qubit register,
and ji,k is a symmetric coupling matrix.

Specifically we focus on equal all-to-all entanglement
gates, for which jall-to-all

i,k = π
4 for all i and k, and spin-

Hamiltonian couplings such as nearest-neighbor interactions,
for which jn.n

i,k = φ(δi,k+1 + δi,k−1), with an arbitrary φ. Our
method, however, can be used to implement many other spin-
coupling Hamiltonians.
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Our method requires only global uniform interaction of
a multitone light field with the ions. The field spectrum is
comprised of harmonics of the gate time, with a bandwidth
that overlaps the frequencies of the normal modes of motion of
the ion chain. Implementing a specific interaction type is done
by choosing the relative amplitudes of the different tones. We
do not require individually addressing any of the ions, and
thus our method is relatively simple to implement and natural
to most trapped-ion quantum processor architectures.

This operational principle is made possible by exploiting
a counterintuitive fact about the orthogonal normal modes
of motion of the ion crystal: the coupling matrix mediated
by a linear combination of some of the normal modes can
be made to appear as if it was generated by other, orthogo-
nal, normal modes. Thus, instead of decoupling the different
modes of motion we utilize them and generate an accumu-
lated effect. This allows us to generate nonadiabatic entan-
gling gates with rates comparable to the secular ion-trapping
frequencies.

As we show below, our all-to-all gates do not require the
full knowledge of the amplitudes of each of the i = 1, . . . , N
ions in each of the j = 1, . . . , N normal modes. We only need
to know the normal-mode frequencies. Furthermore the laser
power overhead required to implement our gates is small.

The expected infidelity of all-to-all entanglement gates
scales as 1 − F ∼ T

T2
Nα , with the gate time T , the single-

qubit decoherence time T2, and 1 � α � 2 [7], depending
on realization, error model, and initial state [35,36]. Thus
operating at high rates is crucial for scaling up the qubit
register.

In addition we endow our gates with robustness proper-
ties that makes them resilient to many types of errors, such
as pulse-timing errors, trap secular frequency drifts, optical

FIG. 1. Comparison of six-ion multimode entangling gate infi-
delity (dimensionless) to MS and CarNu(2,3,7) gates for varying gate
times. The gate time is given in dimensionless units, with respect
to the center-of-mass axial mode period 2π

ν1
. An example gate, with

gate time T ≈ 5.8 2π

ν1
, is highlighted (green star) and analyzed with

more detail below. We have designed our gate such that the infidelity
is lower than 10−4 (dashed black). Indeed our gate (thick blue)
performs well. However the MS (yellow) and CarNu(2,3,7) (dotted
red) gates, acting on the axial center-of-mass mode, fail to generate a
high-fidelity operation as they are operating outside of their adiabatic
regime.

FIG. 2. Example of the coupling matrix of an entangling gate re-
alizing a nearest-neighbor interaction Hamiltonian (arbitrary units).
The gate is designed such that the resulting coupling matrix is ji,k =
φ(δi,k+1 + δi,k−1), where φ is a coupling strength. Here the realization
fidelity is better than 0.999.

phase drifts (relevant to Raman configurations), and normal-
mode heating, among other examples.

Before diving into the details of our method, we show
examples for the couplings and the entanglement fidelity that
can be achieved with our scheme in two figures.

Figure 1 shows simulation results for different all-to-all
entanglement gates, acting on a N = 6 qubit register in a
harmonic ion trap, for varying gate rates. We benchmark our
gate by its fidelity of rotating the qubit ground state to a
Greenberger-Horne-Zeilinger (GHZ) [37] state, since GHZ
states are good indicators to coherent gate errors [38]. We
compare our gate’s performance to previously demonstrated
methods, such as the Mølmer-Sørensen gate [39,40] (MS) and
the CarNu(2,3,7) gate [19] that are using a single mode of
motion. The multi-ion multimode gates (thick blue) exhibit
low infidelity, which is clearly separated from the MS (yellow)
and CarNu (dotted red) gates, operating at a much higher
infidelity due to their coupling to unwanted motional modes
and to the carrier transition.

Figure 2 exemplifies how our method is used for generating
spin Hamiltonians for analog quantum simulations. It shows
a simulation of the nearest-neighbor coupling matrix ji,k
we implemented, on a N = 12 qubit register. The nearest-
neighbor structure is clearly seen. Indeed the overlap between
the simulated ji,k and jn.n

i,k is better than 0.999. Below we
show further examples of other spin models such as the next-
nearest-neighbor and Su-Schrieffer-Heeger models [41].

III. ALL-TO-ALL ENTANGLEMENT GATE DERIVATION

We begin by deriving the system Hamiltonian. The nonin-
teracting lab-frame Hamiltonian of N trapped ions is

Ĥ0 =
N∑

k=1

[
h̄νk

(
â†

k âk + 1

2

)
+ h̄ω0

2
σ̂z,k

]
, (1)

such that â j is the lowering operator of the jth normal mode
of motion with frequency ν j , ω0 is the single qubit separation
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frequency, and σ̂z,k is the Pauli-ẑ spin operator acting on the
kth qubit.

Here we make use of the normal modes of motion along
a single direction, and implicitly assume that modes of the
other directions are decoupled from the evolution. However,
our derivations below are easily generalized to the complete
set of 3N normal modes.

The ions are driven by a multichromatic laser field, con-
taining 2M frequencies arranged in pairs, {ω0 ± ωi}M

i=1. Each
component has phase φ±,i = ±φi, i.e., the average phase of
each pair is 0, and each pair has the same amplitude 	ri,
with 	 a characteristic Rabi frequency and ri ∈ R (such that
ri → −ri is the same as φi → φi + π ). In total this driving
field is determined by the 3M degrees of freedom, ω, φ, and
r. The resulting interaction due to this field is

V̂ = 2h̄	

M∑
i=1

ri

N∑
n=1

σ̂x,n cos(kx̂n − ω0t ) cos(ωit + φi ), (2)

where σ̂x,n is a Pauli-x̂ spin operator acting on the nth qubit, k
is the laser momentum vector projected on the normal-mode
direction of motion, and x̂n is the position operator of the nth
qubit. The wave vectors k are approximately identical for all
frequencies. We note that we assumed implicitly that the ions
are driven with a uniform global field, i.e., 	 has no n index.

Changing to an interaction picture with respect to Ĥ0,
performing an optical-frequency rotating wave approxima-
tion, and performing the Lamb-Dicke approximation (see
Appendix A), we obtain

VI = h̄	

N∑
j=1

[ f j (t )q̂ j + g j (t ) p̂ j]Ĵy, j, (3)

with f j (t ) + ig j (t ) = 2
√

2√
N

η j
∑M

i=1 ri cos (ωit + φi )eiν j t , q̂ j

( p̂ j) is the dimensionless position (momentum) operator
associated with the jth normal mode of motion, and
η j ≡ k

√
h̄

4πmν j
is the Lamb-Dicke parameter of the jth normal

mode. The spin coupling operator is Ĵy, j =
√

N
2

∑N
n=1 Oj,nσ̂y,n,

such that Oj,n is the normalized participation of the nth ion
in the jth mode of motion. It is a generalization of the global
rotation operator, Ĵy = 1

2

∑N
n=1 σ̂y,n. Equation (3) is lacking

a carrier-coupling term, which has been omitted. We justify
this omission below.

For harmonic confinement (along the axial or the radial
directions) we designate the center-of-mass mode as mode
number 1, and denote Ĵy,1 = Ĵy. In order to implement all-
to-all entanglement gates we require no explicit knowledge
of O.

Equation (3) is the nonadiabatic, multi-ion, multimode,
multitone generalization of Eq. (6) of Ref. [40]. As such it
follows an analogous solution, that is,

Û =
N∏

j=1

(
e−iA j (t )Ĵ2

y, j e−iFj (t )q̂ j Ĵy, j e−iG j (t )p̂ j Ĵy, j
)
,

α j (t ) ≡ Fj (t ) + iG j (t ) =
∫ t

0
dt ′[ f j (t

′) + ig j (t
′)], (4)

Aj (t ) =
∫

dt ′Fj (t
′)

dGj (t ′)
dt ′ .

The evolution operator in Eq. (4) shows that the system
evolution in the jth normal-mode phase space is along the
curve α j (t ). The operator product in Eq. (4) is well defined
since the operators associated with different normal modes
commute, thus no ordering is required.

Assuming that at the gate time all trajectories return to 0,
i.e., α j (t = T ) = 0, then at this time, the evolution operator
can be written as exclusively acting in the qubit subspace
and is determined by a sum of mode-dependent entangling
operators, Ĵ2

y, j , with a phase proportional to the area, Aj (T ),
enclosed by the phase-space trajectory of mode j. We define
ϕ j = Aj (T ) as the mode-dependent entangling phase. A nat-
ural scaling of the necessary drive power with the number of
ions can be predicted by noticing that the Aj’s are proportional
to 	2/N . We therefore expect 	 ∝ √

N .
We next derive general constraints on the entangling phases

{ϕ j}N
j=1 such that a desired multiqubit entangling gate is

formed. For an all-to-all coupling gate, an obvious method
to rotate the ground state to a GHZ state is by demanding
that α j=1,...,N (T ) = 0, ϕ j�2 = 0, and ϕ1 = π

2 . That is, the
entangling operation can be obtained by enclosing an area of
π
2 in the center-of-mass phase space while not accumulating
any area in all other modes of motion. This is precisely what
is achieved in Ref. [42] in the adiabatic regime.

We would like to obtain the same end result, but in the
nonadiabatic regime. Thus we ask whether the condition
ϕ j�2 = 0 is necessary. Surprisingly the answer is no, and it
may be replaced by a significantly less restrictive constraint.
Specifically we use the relation

1 = ei
∑N

j=1 Ĵ2
y, j ⇒ eiĴ2

y,1 = e−i
∑N

j=2 Ĵ2
y, j , (5)

which shows that when all of the j � 2 modes are equally
coupled, then a center-of-mass-like effect is generated, with
opposite coupling. Thus the necessary condition is in fact
ϕ1 − ϕ j�2 = π

2 for all j � 2. This does not merely reduce the
number of constraints on ϕ j , but also allows for nonvanishing
entanglement phases associated with all normal modes of
motion.

Equation (5) above is nonintuitive, as it shows that a sum
over the spin couplings of orthogonal modes can generate that
of a different orthogonal mode. This is of course only valid
since the summation is over the operators squared, Ĵ2

y, j (mode
orthogonality would prohibit a similar identity for the Ĵy, j’s).
We prove this identity in Appendix B.

The only knowledge of the normal-modes structure we
used is that the first mode is a center-of-mass mode. As we
show below, this means that in order to generate an all-to-all
entangling gate we only need to know the frequencies of the
remaining modes, as they determine the different Lamb-Dicke
parameters, but not the specific participation of the ith ion in
the jth normal mode, Oj,i.

The identity in Eq. (5) can be used not only for all-to-all
type couplings, but also to efficiently generate other types of
couplings such as the nearest-neighbor interaction shown in
Fig. 2, and for general interactions which can be written as
linear combination of the Ĵ2

y, j operators, even when a center-
of-mass mode doesn’t exist.

The driving field acts between time t = 0 and the
gate time t = T . Furthermore, we show below that it is
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beneficial to use a drive that vanishes continuously at its
edges. Such drives can always be expanded in a Fourier-
sine basis in harmonics of 2π

T . Thus we fix 2M degrees of
freedom of the driving field such that ωn = 2π

T n and φn = π
2

for n = 1, . . . , M. Choosing a harmonic basis for the gate
drive has already been proven useful in several entangling gate
schemes [13,19,25].

This approach eliminates the need to optimize ω and φ, and
hinges all of the gate properties on the optimization of r. How-
ever it comes at a price—the basis is infinite. Practically we
truncate the series of tones such that all spectral components
are in the vicinity of the motional modes. This is reasonable
since tones that are far away from all of the normal-mode fre-
quencies couple almost uniformly to all modes, and therefore,
due to Eq. (5), cannot significantly contribute to the gate’s
performance.

This basis also highlights the speed limit of our method.
For harmonic confinement in the N � 1 case, the axial-modes
frequency difference between adjacent modes approaches ν1

2 .
Due to the identity in Eq. (5), it is beneficial to place the
driving frequencies between the different motional modes.
However for T < π

ν1
it is no longer possible to do so, leading

to a diverging drive power.
As stated above, in order to implement our gates we

must satisfy the constraint α j (T ) = 0 for all j = 1, . . . , N .
That is, at the gate time all phase-space trajectories return to
their initial coordinates such that a state which initially had
spin and motion degrees of freedom disentangled, remains
disentangled after the gate operation.

Using Eq. (4) we note that this constraint is linear in r and
can be separated to a real and imaginary part, thus it can be
written as a linear relation,

Lr = 0, (6)

with L = L(ω,φ) a 2N × M matrix, whose elements are

Lj,i ∝
∫ T

0
dt cos(ωit + φi ) cos(ν jt ) 1 � j � N

(7)

Lj,i ∝
∫ T

0
dt cos(ωit + φi ) sin(ν jt ) N + 1 � j � 2N,

with i = 1, . . . , M.
We demonstrate the different aspect of the derivation using

the N = 6 ions gate highlighted in Fig. 1 (green star) as an
example. The methods used to calculate the gate are provided
below. Figure 3 shows the magnitude of the phase-space
trajectories, |α j (t )|, of the highlighted gate, as the system
evolves. Clearly all six trajectories start at 0 at t = 0 and end
at 0 at t = T as well, indicating that the linear constraints
are met.

In addition to this linear relation, we may require that
the entangling gate operation will be robust against various
types of experimental imperfections and noise. Examples
include pulse timing errors, normal-mode frequency drifts,
normal-mode heating, optical phase noise (relevant to Ra-
man configurations), and nonsmooth effects. Such robust
gates have been previously analyzed in a similar context

FIG. 3. Phase-space trajectories distance of different motional
modes from the origin, |α j (t )| = √

F 2
j + G2

j (dimensionless), during
the gate operation of the highlighted example gate in Fig. 1. The
figure shows the first (thick black), second (thin blue), third (thin
red), fourth (thin yellow), fifth (thin purple), and sixth (thin green)
modes. All trajectories start and end at the origin indicating that the
motion is disentangled from spin degrees of freedom at the gate time.

[11,16–19], and are all linear in r in any order of correction.
Thus they can be incorporated as additional rows of L. The ex-
act form of each of these properties is provided in Appendix C.

A particular imperfection that can be overcome by adding
linear constraints is that of off-resonance carrier coupling,
justifying the omission of the carrier-coupling term in de-
riving Eq. (3). To do so we rewrite the Hamiltonian as
the sum of the noncommuting terms, V̂I = Ĥc.c. + ĤMS, with
Ĥc.c. = h̄	

∑M
i=1 ri cos (ωit + φi )Ĵx,1 and with ĤMS given by

Eq. (3). We make use of a Magnus expansion in order
to derive constraints for the elimination of contributions
of the unwanted Ĥc.c. term to the evolution [11,43,44]
(see Appendix D). This yields an additional linear con-
straint,

∑M
i=1 ri cos (ωiT + φi ) = 0, which can be added to

the rows of L. The next order contribution due to the
carrier-coupling terms are quadratic in r and are treated
below.

We define K ≡ null(L), as a M × l matrix, the columns of
which, ri, form an orthogonal basis of the null space of L, i.e.,
satisfy Lri = 0 for i = 1, . . . , l . Every linear combination,
r = ∑

i ri, satisfies all the linear constraints above. The linear
constraints can be met only if we have a sufficient number of
tones, i.e., M has to be larger than the number of rows of L.

The linear constraints guarantee that the trajectories are
closed, but do not fix the entangling phases implemented
by the trajectory. The entangling phases, ϕ j = Aj (T ), are
quadratic in r. Thus, in a similar fashion to the linear
constraints above, they can be written as a bilinear form,
ϕ j = rT Ã jr, with the N symmetric M × M matrices, whose
elements are

(Ã j )i,k = −4η2
j

∫ T

0
dt

∫ t

0
dt ′[sin(ν jt ) cos(ν jt

′)

× [cos(ωkt + φk ) cos(ωit
′ + φi)]] + (i ↔ k), (8)
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FIG. 4. Entangling phases of highlighted example gate in Fig. 1.
Each entangling phase evolves independently from the other, how-
ever at gate time the difference between ϕ1 (thick black) and the
remaining phases, ϕ2 (thin blue), ϕ3 (thin red), ϕ4 (thin yellow),
ϕ5 (thin purple), and ϕ6 (thin green), is exactly π

2 . Together with
the closure of phase-space trajectories, shown in Fig. 3, the unitary
fidelity of this gate is 1. Robustness to timing errors is evident as all
the entanglement phase curves flatten near the gate time. The inset
shows the entire phase-space trajectories formed (dimensionless);
clearly all trajectories start and end at the origin, as is evident in
Fig. 3 as well.

and (i ↔ k) marks the same term with the i and k indices
flipped.

In order to restrict r to satisfy the linear constraints above
and such that the entangling phase constraints in Eq. (5) are
satisfied as well, we define

C̃ j ≡ KT (Ã1 − Ã j )K, j = 2, . . . , N. (9)

Here, each of the N − 1 different C̃j’s is a l × l matrix.
Thus, to find a solution to the desired phases within the null

space of L, the problem is reduced to choosing an l-element
real vector x, such that the constraint

xT C̃jx = ϕdesired
1 − ϕdesired

j , ∀ j = 2, . . . , N (10)

is satisfied, where ϕdesired
j are the entanglement phases which

implement the desired interaction. For an all-to-all entangling
gate the right-hand side of Eq. (10) is given by ϕdesired

1 −
ϕdesired

j = π
2 .

Figure 4 shows the entangling phases evolution for the
N = 6 ions gate highlighted in Fig. 1. Clearly each phase
evolves seemingly independently, however at gate time the
distance between the center-of-mass mode phase (thick black)
and the remaining is π

2 , indicating a valid solution of Eq. (10)
above.

For arbitrary matrices C̃ j’s in Eq. (10), finding solutions for
the naively looking Eq. (10) above is in fact a NP-hard prob-
lem, known as the multivariate quadratic problem [45,46].
However the “hardness” is in terms of the matrix dimension
l . Thus it is critical to choose M such that the resulting
null space dimension l is compatible with the number of
quadratic constraints, i.e., such that l = O(N ). As we show
below, provided an appropriate initial guess, a local numerical
search yields, in most cases, satisfactory solutions, and thus

the hardness of the problem does not hinder finding suitable
gates for a moderate number of tens of ions.

For the case N = 2 ions the problem is easily solvable. A
solution is formed by choosing arbitrary amplitudes r that sat-
isfy the linear constraints (which is numerically easy). Since
there is only a single quadratic condition C̃2, then by choosing
a normalization for r such that xT C̃2x = π

2 all constraints
are met. Moreover, by diagonalizing C̃2 we may obtain a
power-efficient solution (see Appendix E). Thus generating
fast two-qubit entangling gates is conceptually simple. Fast
trapped-ion entangling gates have been preformed to date only
on two-ion registers [15,16].

Furthermore, satisfying the quadratic constraints for C̃2 and
C̃3 in the general case (or any other pair out of the N − 1
constraints) can be done in polynomial time in N , as is shown
in Appendix E. We use this solution in order to speed up the
numerical optimization.

In order to further justify omission of the carrier cou-
pling term from Eq. (3), beyond linear contributions, we
use the second-order term of the Magnus expansion (see
Appendix D). This generates additional quadratic constraints
in r, which correspond to two-photon processes that couple
a qubit state to itself via sideband and carrier transitions.
As shown numerically below, abiding these constraints is
relatively easy.

We may reformulate the different constraints above as a
constrained optimization problem. The resource we wish to
optimize (minimize) is the field amplitude, as this is the
relevant limit in terms of available laser power. Thus we form
the problem

argmin
{x}

(|KT x|1) such that

{
xT C̃jx = ϕdesired

1 − ϕdesired
j

W (KT x) = 0
,

(11)

where W (r) encapsulates the carrier-coupling quadratic con-
straints described above and j = 2, . . . , N .

Note that in Eq. (11) we choose to minimize the one-norm,
i.e., |r|1 = ∑

i |ri|. We are motivated by 	2|r|21 being the peak
laser power during the gate. Furthermore, we are conceptually
searching for generalized solutions of physically motivated
schemes which are in general spectrally sparse [13,18,19,40].
We intend to violate this sparsity only weakly. The one-
norm favors solutions for which most entries of r are
small.

Figure 5 shows the required drive spectrum for the N = 6
ions gate highlighted in Fig. 1. The drive is made of equally
spaced tones, many of which have negligible amplitude due to
the one-norm optimization.

In order to obtain our entangling gates we use a constrained
genetic numerical global search algorithm of Eq. (11). The
search algorithm outputs tone amplitudes r, from which we
evaluate the resulting gate evolution and fidelity. We have
arbitrarily set the tolerance of the constraints such that the
resulting gate infidelity is lower than 10−4.

Our search algorithm is implemented using MATLAB’s
global optimization toolbox and evaluated on a standard
3.6-GHz eight-core desktop computer. The algorithm run
time is determined by the number of degrees of freedom to
optimize. Thus gates which operate at rates comparable to the
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FIG. 5. Spectrum of highlighted example gate in Fig. 1. The
results of the numerical search algorithm are the amplitudes of each
driving harmonic (blue). The harmonics are centered around the
normal-mode frequencies (dashed red, height arbitrary). Together
these generate a drive that abides all the constraints above. The inset
shows the resulting pulse which starts and ends continuously at 0.

trapping frequency are optimized faster than gates operating
in the adiabatic regime.

IV. REALIZATION OF ALL-TO-ALL
ENTANGLEMENT GATES

We present simulation results of all-to-all entangling gates.
Our methods are valid for general trapped-ion architec-
tures. For concreteness we focus here on trapped 88Sr+

ions. We define the qubit states |0〉 ≡ |5S1/2,−1/2〉 and |1〉 ≡
|4D5/2,−3/2〉 as our qubit levels, which are coupled by an
optical quadrupole transition at 674 nm. We use the axial
normal modes of motion of a harmonic linear Paul trap, and
take the frequency of the center-of-mass axial mode to be
400 KHz.

For an even number of ions we benchmark the performance
of our all-to-all entangling gates via the fidelity of generating
a GHZ state when acting on the ground state (for odd N the
resulting evolution does not generate GHZ states). This is
sufficient as the GHZ states form a maximally sensitive set,
which allows testing for coherent gate errors [38]. The exact
form of the fidelity is given in Appendixes F and G.

In Fig. 1 we show the resulting fidelity of different all-to-
all entangling gates in a N = 6 qubit register, with gate times
between 100 2π

ν1
and 5 2π

ν1
. As seen, the search algorithm finds

solutions for which the infidelity is well below 10−4.
Figure 6 shows the laser amplitude (or power; depending

on the realization), |r|	 in units of Rabi frequency, which is
required for realizing our gates (thick blue), compared with
the CarNu(2,3,7) gate (dotted red) and MS gate (yellow).
Clearly the required power is similar. The search algorithm
run time for gates with T < 20 2π

ν1
is approximately 5 min.

Figure 7 shows a detailed analysis of a N = 12 qubit gate,
operating at T = 6 2π

ν1
. Both linear and quadratic constraints

are satisfied such that the resulting fidelity is F = 0.9987,
demonstrating that our method is applicable to larger qubit
registers as well. In addition the gate is made robust to pulse
timing errors, trapping frequency drifts and phonon-mode

FIG. 6. Comparison of six ion multimode entangling gate drive
amplitude (thick blue) to MS (yellow) and CarNu(2,3,7) (dotted red)
for varying gate times as in Fig. 1. The drive amplitude is measured
in terms of ν1 (dashed black). The same example gate as in Fig. 1
is highlighted (green star). All gates exhibit a similar scaling with
respect to gate time. The overhead required to implement our gate is
small, and starts to deviate only when the gate time approaches the
secular trapping frequency.

heating. The required laser power is |r|	 = 10.26ν1. The
optimization algorithm run time here is 105 min.

V. REALIZATION OF SPIN HAMILTONIANS

Our methods can also be used to generate spin Hamiltoni-
ans for quantum simulations. We determine the required en-
tanglement phases ϕideal

j that implement the unitary evolution

operator exp (
∑N

i,k=1 jideal
i,k σ̂y,iσ̂y,k ) at time t = T and perform

the same optimization described above.

(a)

(c) (d)

(b)

FIG. 7. Example entangling gate for N = 12 ions. (a) Spectrum
of laser drive (similar to Fig. 5). (b) Phase-space trajectory, di-
mensionless, for center-of-mass mode (thick black) and remaining
11 modes (color). (c) Distance of phase-space trajectories from
origin (dimensionless). Clearly all trajectories start and end at 0.
(d) Entangling phases for all modes. At gate time, the difference
between the center of mass mode (thick black) and the remaining
modes, which are all equal to each other, is approximately π

2 , thus
the fidelity of this gate is F = 0.9987.
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The system state, after repeating the entanglement gate n
times, is equivalent to the evolution due to the Hamiltonian

Ĥ = h̄	

N∑
i,k=1

jideal
i,k σ̂y,iσ̂y,k (12)

after an evolution time tn = n
	

. This allows for a stroboscopic
implementation of Ĥ .

In addition, an effective Trotter-Hamiltonian of the form

Ĥ = h̄	

N∑
i,k=1

ji,k σ̂+,iσ̂−,k + H.c. (13)

can be generated by interleaving σ̂y- and σ̂x-type interactions,
which can be accomplished by a global π

2 phase shift of the
driving field.

In order to determine the ϕ j’s we expand the desired
coupling matrix jdesired in terms of the Ĵ2

j,y’s,

exp

⎛
⎝i

N∑
i,k=1

jdesired
i,k σ̂y,iσ̂y,k

⎞
⎠ = exp

⎛
⎝i

N∑
j=1

ϕ j Ĵ
2
y, j

⎞
⎠. (14)

Notably, the left-hand side of Eq. (14) has 1
2 N (N + 1)

degrees of freedom and the right-hand side has only N degrees
of freedom, which means it cannot be generically solved.
Nevertheless, we generate optimal approximations of jdesired,
such that the overlap fidelity Foptimal is high (see Appendix H).

We present simulation results of various spin Hamilto-
nians. As in the section above we focus on trapped 88Sr+

ions. Here we use the axial normal modes of motion of an
anharmonic linear Paul trap designed such that the ions are
equally spaced [47]. The frequency of the first axial mode is
tuned to 400 KHz.

In Fig. 2 above we show the implemented coupling matrix
of a nearest-neighbor model acting on a N = 12 qubit, jn.n

i,k =
φ(δi,k+1 + δi,k−1), for which the implementation fidelity is
better than 0.999 (Foptimal = 0.9999). The gate time is T =
20 2π

ν1
and the required amplitude for φ = π

4 is |r|	 = 5.3ν1.
Figure 8 shows a small selection of more examples

of possible simulation oriented entanglement gates for
N = 12 equally spaced trapped-ion qubits, such as
nearest neighbors with opposite next-nearest-neighbors
interaction coupling (a), with fidelity of F = 0.9997
(Foptimal = 0.9999), corresponding to the Hamiltonian
Ĥ = h̄	

∑N
n=1 (σ̂y,nσ̂y,n+1 − 1

4 σ̂y,nσ̂y,n+2), and its
resulting entanglement phase evolution (b), and the
Su-Schriefer-Heeger model, i.e., the coupling matrix
jSSH
i,k = [φ − (−1)(t+i+k)δφ](δi,k+1 + δi,k−1), such that

φ > δφ > 0, with s = 0 in the topologically trivial regime
(c) and s = 1 in the nontrivial regime (d) [41], with
fidelity of F = 0.9800 (Foptimal = 0.9801) and F = 0.9758
(Foptimal = 0.9768) respectively. Clearly our method allows
for the implementation of a variety of spin Hamiltonians with
close-to-ideal fidelities.

VI. CONCLUSIONS

We have presented a general method for design-
ing multiqubit entangling gates for trapped-ion qubits,

(a) (b)

(d)(c)

FIG. 8. More examples of simulated gates intended for analog
quantum simulations. (a) Coupling matrix implementing nearest-
neighbor interaction with an opposite amplitude next-nearest-
neighbor (arbitrary units), here we have set jn,n+2 = − 1

4 jn,n+1 which
is implemented with fidelity F = 0.9997. (b) The resulting entan-
glement phase evolution of (a); clearly here each entanglement
phase takes a distinct value at gate time (compared to Fig. 4
above). The corresponding desired entanglement phases are shown in
dashed. (c) Coupling matrix implementing the Su-Schrieffer-Heeger
model in its trivial regime. The interlaced strong-weak pattern of
the nearest-neighbor couplings is easily seen (arbitrary units). The
fidelity is F = 0.9800. (d) The same as in (c) in the topological
nontrivial regime. The coupling pattern here is weak-strong. The
implementation fidelity is F = 0.9758.

implementing the evolution exp (
∑N

i,k=1 ji,k σ̂y,iσ̂y,k ). By utiliz-
ing all the normal modes of motion of the ion chain our gates
operate outside of the adiabatic regime and can implement a
variety of coupling matrices. Thus they may be used either
as quantum-logic gates aimed at quantum computation, or
in order to generate various spin-spin interactions for analog
quantum simulations.

Our gates require only a multitone global driving field,
utilizing a bandwidth similar to that of the ion-chain’s normal
modes. Our implementation results in a high-fidelity process,
without a significant laser-amplitude overhead. Thus they
are suited for many trapped-ion architectures. Furthermore,
we have endowed our gates with robustness properties such
that they are resilient to various noises and implementation
imperfections.
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APPENDIX A: HAMILTONIAN DERIVATION

We begin by deriving the Hamiltonian of N trapped ions.
The derivation follows at large Refs. [39,40], however here
we consider N trapped ions and N normal modes of motion
and do not use an adiabatic approximation with respect to the
normal-mode frequencies.
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The noninteracting laboratory-frame Hamiltonian is

Ĥ0 =
N∑

k=1

[
h̄νk

(
â†

k âk + 1

2

)
+ h̄ω0

2
σ̂z,k

]
, (A1)

with â j the lowering operator of the jth axial normal mode
of motion with frequency ν j , the single qubit separation
frequency ω0, and σ̂z,k the Pauli-ẑ spin operator acting on the
kth qubit.

The ions are driven by a multichromatic laser field, con-
taining 2M frequencies arranged in pairs, {ω0 ± ωi}M

i=1. Each
component has phase φ±,i = ±φi, i.e., the average phase of
each pair is 0, and each pair has the same amplitude 	ri,
with 	 a characteristic Rabi frequency and ri ∈ R (such that
ri → −ri is the same as φi → φi + π ). In total this driving
field is determined by 3M degrees of freedom. The resulting
interaction due to this field is

V̂ = 2h̄	

M∑
i=1

ri

N∑
n=1

σ̂x,n cos(kx̂n − ω0t ) cos(ωit + φi ),

(A2)

where σ̂x,n is a Pauli-x̂ spin operator acting on the nth qubit, k
is the laser momentum vector projected on the normal-mode
direction of motion, and x̂n is the position operator of the nth
qubit. We note that we assumed implicitly that the ions are
driven with a uniform global field, i.e., 	 has no n index.

The driving applied on the qubits depends on the position
of the ions, which has dynamics by itself, and thus this
Hamiltonian couples the motion of the ions to the “spins” σ .

The total Hamiltonian is Ĥ = Ĥ0 + V̂ . We change to an
interaction picture with respect to Ĥ0 to obtain

V̂I = h̄	

M∑
i=1

ri

N∑
n=1

cos(ωit + φi )(e
−iω0t σ̂+,n + H.c.)

× (
e−i

∑N
j=1 η j O j,n(â†

j e
iν j t +â j e

−iν j t )−iω0t + H.c.
)
, (A3)

with σ̂+,n the spin raising operator acting on the nth ion, and
η j ≡ k

√
h̄

4πmν j
, the Lamb-Dicke parameter of the jth motional

mode, with ion mass m. Furthermore, O is an orthogonal
matrix whose rows are the normal modes of motion, such
that the standard basis vectors are given by (e j )i = ∑N

i=1 Oi, j .
The mode matrix O can be determined in a semiclassical
analysis [48] and strongly depends on the effective trapping
potential. Here we do not require specific knowledge of the
normal mode’s structure, rather only that these orthogonal
harmonic normal modes exist.

We note that the interaction in Eq. (A3) contains counter-
rotating terms at ∼2ω0, which is an optical frequency. These
terms may be neglected in a rotating wave approximation
(RWA). We obtain

V̂I = h̄	

M∑
i=1

ri cos(ωit + φi )

×
N∑

n=1

(
e−i

∑N
j=1 η j O j,n(â†

j e
iν j t +â j e

−iν j t )σ̂+,n + H.c.
)
. (A4)

Next we take the Lamb-Dicke approximation, i.e., we
assume that η j � 1 for all j = 1, . . . , N such that all normal

modes of motion are spectrally resolved. This simplifies the
interaction in Eq. (A4) further to

V̂I = h̄	

M∑
i=1

ri cos (ωit + φi )
N∑

n=1

×
⎡
⎣

⎛
⎝1− i

N∑
j=1

η jO j,n
(
â†

j e
iν j t + â je

−iν j t
)⎞⎠σ̂+,n+ H.c.

⎤
⎦,

(A5)

with quadratic corrections in η j . The term proportional to 1
generates off-resonance carrier coupling. It is customary to
neglect it in a RWA in terms of 	 � ν j . Here however we
intend not to perform such an adiabatic approximation. We
nevertheless drop this term and justify it below by formulating
constraints under which this term is effectively decoupled
from the system’s evolution.

We are left with

VI = h̄	

M∑
i=1

ri cos(ωit + φi)

×
N∑

j=1

η j (â
†
j e

iν j t + â je
−iν j t )

N∑
n=1

Oj,nσ̂y,n. (A6)

The three summations in Eq. (A6) are on drive components,
normal modes, and ions respectively. It is helpful to de-
fine the mode-dependent global Pauli spin operator as Ĵi, j =√

N
2

∑N
n=1 Oj,nσ̂i,n, with i ∈ {x, y, z,+,−} and j ∈ {1, . . . , N}.

For simplicity we will assume the first normal mode of motion
is the center-of-mass mode, i.e., Ĵy,1 identifies with the global
spin rotation Ĵy = 1

2

∑N
n=1 σ̂y,n.

Using this convention we are able to eliminate the latter
summation on ions. Furthermore we define the normal-mode
position (momentum) operator q̂ j = â†

j +â j√
2

( p̂ j = i
â†

j −â j√
2

), such
that Eq. (A6) becomes Eq. (3) of the main text.

APPENDIX B: PROOF OF SUFFICIENT ENTANGLEMENT
PHASE CONSTRAINT

Here we prove the identity in Eq. (5) of the main text, i.e.,

1 = ei
∑N

j=1 Ĵ2
y, j , (B1)

with Ĵi, j =
√

N
2

∑N
n=1 Oj,nσ̂i,n, such that i ∈ x, y, z,+,− and

j = 1, . . . , N . We note that the columns of the mode matrix
O are orthonormal vectors.

Directly,

N∑
j=1

Ĵ2
y, j = N

4

N∑
j,n,m=1

Oj,nOj,mσ̂y,nσ̂y,m

= N

4

N∑
j,n,m=1

OT
n, jO j,mσ̂y,nσ̂y,m

= N

4

N∑
n,m=1

δn,mσ̂y,nσ̂y,m = N

4

N∑
n=1

1. (B2)
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By exponentiation of the first and last terms in Eq. (B2)
above we recover the identity up to an insignificant global
phase.

We note that this result may be used not only to generate
an all-to-all coupling via a center-of-mass mode, but also to
generate any coupling scheme between the ions that can be
written as a linear combination of the Ĵ2

y, j operators, without
the need to nullify contributions that do not appear in the
explicit combination.

For example, in order to generate a coupling of the form
aĴ2

y,1 + bĴ2
y,2, instead of realizing ϕ1 = a, ϕ2 = b, and ϕ j�3 =

0, which, due to the latter condition, is a hard task in the
nonadiabatic regime, one may alternatively use ϕ1 − ϕ j�3 =
a and ϕ2 − ϕ j�3 = b, which is much less restrictive on all of
the j � 3 normal modes.

APPENDIX C: EXPLICIT EXPRESSION FOR
ROBUSTNESS PROPERTIES

As discussed in the main text, phase-space trajectory clo-
sure can be formulated as a linear constraint in the amplitudes
vector r. Similarly, various robustness properties can as well
be formulated as linear constraints.

Below we describe the matrix elements of L which corre-
spond to the different properties. The elements Lj,n are given,
which correspond to conditions applicable to the jth normal
mode and the nth tone with frequency ωn = 2π

T n. The desired
property is obtained by satisfying the relation

∑N
n=1 Lj,nrn =

0 for all j.
Robustness to timing errors, i.e., error of the form

T → T + δT , can be implemented by requiring that
dGj

dδT |δT =0,ω= 2π
T n = 0, and dFj

dδT |δT =0,ω= 2π
T n = 0 [19]. We note

that substitution of the harmonic frequencies should be done
after differentiation (since the choice of frequencies does not
depend on this kind of error). For a harmonic gate these terms
vanish; for general frequencies we obtain

Lj,n = 2
√

2η j cos(ν jT ) cos(ωnT + φn),
(C1)

Lj,n = 2
√

2η j sin(ν jT ) cos(ωnT + φn).

We note that Eq. (C1) seemingly depends on the mode
index j, however since we are only interested in the kernel
of L, using Lj,n = cos (ωnT + φn) suffices.

Higher-order robustness to timing errors may be easily
implemented by requiring that higher-order derivatives vanish
at the errorless gate time as well. All orders will remain linear
in r and thus may be just as easily implemented.

Robustness to normal-mode errors, i.e., errors of the
form ν j → ν j + δν, and normal-mode heating can simi-
larly be minimized by requiring that

∫ T
0 Gj (t )dt = 0 and∫ T

0 Fj (t )dt = 0, which is easily seen by integration by parts of
dα j

dδν
|δν=0 = 0. Similarly to robustness to timing errors above,

these constraints result in the matrix elements

Lj,n = 2
√

2πnT 2η j{T ν j[2 sin(T ν j ) − T ν j] + 4π2n2}(
T 2ν2

j − 4π2n2
)

2
,

(C2)

Lj,n = −4
√

2πnT 3η jν j[cos(T ν j ) − 1](
T 2ν2

j − 4π2n2
)

2
.

In Raman gate configurations a possible source of error is a
phase drift between the two counterpropagating Raman beams
(in direct-transition gates this corresponds to phase noise in
the rf signal generators and is less likely). Robustness to this
error can be obtained with the matrix elements

Lj,n =
√

2T 2η jν j sin(T ν j )

T 2ν2
j − 4π2n2

,

(C3)

Lj,n =
√

2T 2η jν j[cos(T ν j ) − 1]

4π2n2 − T 2ν2
j

.

APPENDIX D: MAGNUS EXPANSION FOR CARRIER
COUPLING

As mentioned above, we justify the omission of the car-
rier coupling term in the derivation of Eq. (A6) by nulling
the term’s contributions in a Magnus expansion. Specifi-
cally, we rewrite the Hamiltonian in Eq. (A5) as the sum
of the noncommuting terms, V̂I = Ĥc.c. + ĤMS , with Ĥc.c. =
h̄	

∑M
i=1 ri cos (ωit + φi)Ĵx,1 and ĤMS is given by Eq. (3).

Following Ref. [44] we expand the unitary evolution oper-
ator Û , due to V̂I , to second order,

Û = exp

(∑
k

	̂k

)
, 	̂1 = − i

h̄

∫ T

0
dt1V̂I (t1),

	̂2 = 1

2

(
− i

h̄

)2 ∫ t

0
dt1

∫ t1

0
dt2[V̂I (t1), V̂I (t2)]. (D1)

In the first order we obtain

	̂1 = −i	
M∑

n=1

rn

∫ T

0
dt sin(ωnt )Ĵx,1 + 	̂1,MS, (D2)

where 	̂1,MS corresponds to desired terms that are not due
to carrier coupling (these create displacement). We note that
the first term in Eq. (D2) vanishes identically in the har-
monic basis (however it does not vanish in the conventional
MS gate).

In the second order we again obtain desired terms that
are not due to carrier coupling (generating the entanglement
phases) and carrier coupling related terms. These terms are

	̂2,c.c = − i	2

4

M∑
n,m=1

rnrm

∫ T

0
dt1

⎡
⎣sin(ωnT )

N∑
j=1

η j

×
∫ t1

0
dt2 sin(ωmt2)[cos(ν jt2) p̂ j + sin(ν jt2)q̂ j]Ĵz, j

⎤
⎦.

(D3)

The evolution due to 	̂2,c.c corresponds to two-photon pro-
cesses involving a sideband transition and a carrier transition,
generating a mode-dependent effective energy shift of the
qubit levels due to the Ĵz, j operator.

Furthermore, similarly to what we have seen in the “nor-
mal” gate evolution, in Eq. (4), the evolution can be pictured
along phase-space trajectories, (Gj,c.c.(t ), Fj,c.c.(t )), where
Gj,c.c. (Fj,c.c.) is the term proportional to p̂ j (x̂ j). Since, in
general, the trajectories do not close at t = T an additional
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infidelity penalty occurs due to residual entanglement to the
motional degrees of freedom.

APPENDIX E: EXPLICIT SOLUTIONS OF THE
QUADRATIC CONSTRAINTS FOR N = 2, 3

As we stated in the main text, the quadratic constraint in
Eq. (10) is an NP-hard problem. Here we show that for the
N = 2 ions it is easy to construct solutions that are power
efficient and that for the N = 3 ions it is easy to construct
solutions, however their efficiency is a priori unknown.

As shown above, by restricting the quadratic problem
to the kernel of the linear constraints matrix L, we have
reduced the entangling gate problem to satisfying the N − 1
quadratic equations xT C̃jx = π

2 , for j = 2, . . . , N , where x
is an l-element real vector and l is the dimension of the
kernel of L (the number of independent solutions to the linear
constraints). An efficient solution is a solution which satisfies
the N − 1 equations while minimizing |r|.

For the N = 2 there is a single quadratic equation,
xT C̃2x = π

2 . Any arbitrary vector x satisfies by definition
the linear constraint and takes some value C = xT C̃2x. By
renormalizing x →

√
π

2|C| x, we obtain a valid solution. We
note that if C < 0 we actually generate the entangling phase
−π

2 which also generates a GHZ state.
As x is arbitrary, this method does not ensure the solution

efficiency. In order to obtain an efficient solution we note
that C̃2 is symmetric and therefore can be diagonalized. Every
eigenvector of it, which corresponds to a positive eigenvalue,
can be a solution. Specifically, the eigenvector corresponding
to the largest eigenvalue will be the optimal solution, i.e.,
x = u1

√
π

2λ1
, where u1 is a normalized eigenvector of C̃2,

corresponding to the largest eigenvalue λ1 > 0. As above,
if there are no positive eigenvalues we may pick the largest
eigenvalue in absolute value and generate a −π

2 phase.
We now proceed to the N = 3 solution. We define D̃ j =

C̃2 − C̃ j with j = 3, 4, . . . , N , which are also symmetric real
l × l matrices. The quadratic constraint above becomes

xT D̃ jx = 0, j = 3, . . . , N

xT C̃2x = ±π

2
. (E1)

For N = 3 we only have one of these matrices, D̃3, which
can be spectrally decomposed to

D̃3 =
p∑

i=1

λiψiψ
T
i +

n∑
j=1

γ jξ jξ
T
j , (E2)

where the ψ’s and ξ’s are normalized eigenvectors of D̃3

corresponding to the positive eigenvalues λi with i = 1, . . . , p
and negative eigenvalues γ j with j = 1, . . . , n, respectively.

Assuming that n, p > 0, i.e., that D̃3 has both positive
and negative eigenvalues, we choose an arbitrary positive
eigenvalue and negative eigenvalue and set

x = C

(
ψi +

√∣∣∣∣λi

γ j

∣∣∣∣ξ j

)
i ∈ {1, . . . , p} j ∈ {1, . . . , n}.

(E3)

This choice suffices such that xT C̃2x = xT C̃3x. The normal-
ization C is chosen such that xT C̃2x = ±π

2 , thus satisfying
Eq. (E1). This solution can fail if the resulting x is an eigen-
vector of one of the C̃j’s with a zero eigenvalue, however this
is not generic.

We note that if the eigenvalues of any of the D̃ j’s are only
positive or only negative then the problem cannot be solved.

The solution for N = 3 above implies a general approach
for numerically searching for a solution for an arbitrary num-
ber of ions. In each step of the numerical search a candidate
x is evaluated for feasibility, i.e., whether it satisfies the
quadratic constraints and optimality, i.e., whether it corre-
sponds to a low-power solution.

We may improve upon the candidate x by renormalizing
it such that it at least satisfies xT D̃3x = 0. This is done by
expanding x with the positive and negative subspaces of D̃3,
that is,

x =
p∑

i=1

aiψi +
n∑

j=1

b jξ j (E4)

such that xT D̃3x = ∑p
i=1 a2

i λi + ∑n
j=1 b2

jγ j . We note that in
order for this expression to vanish the positive sum must be
equal to the magnitude of the negative sum.

Thus we define the vectors ã (b̃), with the elements ãi =
ai√
λi

(b̃ j = b j√|γ j | ). By renormalizing ã → ã/|ã| (b̃ → b̃/|b̃|),
i.e., such that they lie on the p-dimensional and n-dimensional
unit spheres, respectively, then xT D̃3x = 0 is satisfied. Finally,
we renormalize the resulting x such that xT C̃2x = π

2 and
Eq. (E1) is satisfied.

We note that the solutions presented here treat the C̃j’s as
arbitrary. The numerical solution can possibly be sped up by
taking advantage of the problem’s underlying structure, i.e.,
that the matrices originate from the contributions of different
harmonics to the entanglement phases.

APPENDIX F: UNITARY FIDELITY CALCULATIONS

We separate the all-to-all gate fidelity to two contributions,
unitary fidelity FU , which is determined by deviations of
the state functions, {Gj, Fj, Aj}N

j=1 from their ideal values
at the gate time, and carrier-coupling fidelity Fc.c., which is
determined by the effect of the carrier-coupling Hamiltonian,
Hc.c., described above. Assuming both errors are small then
we calculate the total gate infidelity as

Itotal = 1 − Ftotal ≈ 1 − FU Fc.c.. (F1)

Here we derive expressions for FU . Derivation of Fc.c

appears in Appendix G below. Throughout our derivations we
assume that N is even.

We define FU = 〈GHZ|ρ̂q(T )|GHZ〉, with ρ̂q(t ) the qubit-
subspace density matrix, after evolution time t .

In order to avoid direct evolution of the state in a (2N nN
max)-

dimensional Hilbert space, with nmax the maximum phonon
number of the different normal modes, we first obtain a more
efficient expression.
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Following a similar derivation as in [11], we note the
identity

Ûj = e−iA j Ĵ2
y, j e−iFj x̂ j Ĵy, j e−iG j p̂ j Ĵy, j

= e−i(Aj+Fj Gj/2)J2
y, j e−i(Gj p̂ j+Fj x̂ j )Jy, j

= e−i(Aj+Fj Gj/2)Ĵ2
y, j D̂(α j Ĵy, j ), (F2)

where for brevity we omit the time dependence of Gj ,
Fj , and Aj , and used the displacement operator, D̂ j (α) =
exp (αâ†

j − α∗â j ), such that here α j = − i√
2
(Fj + iG j ).

Furthermore, we note that D̂ j (αĴy, j ) = ∑
i D̂ j (α jλ j,i )

P̂j,iλ j,i, where P̂j,i is a projector to the subspace spanned by
the ith eigenvector of Ĵy, j , with eigenvalue λ j,i.

This allows us to rewrite the evolution operator in
Eq. (4) as

Û =
∏

j

(
e−i(Aj+Fj Gj/2)Ĵ2

y, j

∑
i

PiDj (α jλ j,i )

)

=
∏

j

(∑
i

Q̂ j,iD̂ j (α jλ j,i )

)
, (F3)

where the operator Q̂ j,i = P̂ie
−i(Aj+Fj Gj/2)λ2

j,i acts exclusively
in the qubit subspace. We note that we dropped the mode
index j from the projector P̂i as all the Ĵy, j operators have the
same eigenvectors (and differ only by eigenvalues).

Using the form of Û in Eq. (F3) above we able to easily
trace out the normal-mode degrees of freedom. We have

ρ̂q =
∑

n

〈n|Û ρ̂0Û
†|n〉

=
∑
α,β

⎡
⎣P̂α

⎛
⎝∏

j1

Q̂ j1,α

⎞
⎠ρ̂q,0

⎛
⎝∏

j2

Q̂ j2,β

⎞
⎠P̂β

×
∏

j

∑
n j

〈n j |D̂ j (α jλ j,α )ρ̂ j,0D̂ j (α jλ j,β )|n j〉
⎤
⎦, (F4)

where ρ̂0 = ρ̂q,0 ⊗ ρ̂1,0 ⊗ · · · ⊗ ρ̂N,0 is the system’s initial
states, assumed to be made of the qubit ground state ρ̂q,0

and normal-mode thermal states, ρ̂ j,0, with j = 1, . . . , N ,
such that the probability of the nth phonon state is pn =

1
n̄ j+1 ( n̄ j

n̄ j+1 )
n
, where n̄ j is the average occupation number of

the jth normal mode.
To proceed we use the identity, relevant to thermal

states [11],

∑
n

〈n|D̂(αλα )ρ̂ j,0D̂(αλβ )|n〉 = e−|α|2(λα−λβ )(n̄+1/2). (F5)

Thus we obtain

ρ̂q =
∑
α,β

⎡
⎣Pαρq,0Pβ

∏
j

e−i(Aj+Fj Gj/2)(λ2
j,α−λ2

j,β )e−(R2
j /2)(λ j,α−λ j,β )2(n̄ j+1/2)

⎤
⎦, (F6)

with Rj = G2
j + F 2

j .
Since the qubit ground state, written in the Ĵy,1 basis, is an equal superposition of all states, then in this basis Eq. (F6) becomes

ρ̂q =
∑
α,β

⎡
⎣|α〉〈β|

∏
j

e−i(Aj+Fj Gj/2)(λ2
j,α−λ2

j,β )e−(R2
j /2)(λ j,α−λ j,β )2(n̄ j+1/2)

⎤
⎦. (F7)

A simple way to calculate FU is by computing FU = Tr[ρ̂qρ̂GHZ], where ρ̂GHZ is obtained by setting Gj = Fj = 0, A1 = π
2 ,

and Aj�2 = 0 in Eq. (F7) above.
Alternatively in this basis the GHZ state can be written as

|GHZ〉 = 1√
2N+1

∑
α

(1 − i(−1)N/2P(α))|α〉, (F8)

where P(α) is the state parity, i.e., it takes the value 1 if there are an even number of qubits in the state | + i〉 and −1 otherwise,
and we have assumed that N is even. Thus the unitary fidelity is explicitly given by

FU = 1

22N+1

∑
α,β

⎡
⎣(1 + i(−1)N/2P(α))(1 − i(−1)N/2P(β ))

N∏
j=1

e−i(Aj+Fj Gj/2)(λ2
j,α−λ2

j,β )e−(R2
j /2)(λ j,α−λ j,β )2(n̄ j+1/2)

⎤
⎦. (F9)

We note that the expression in Eqs. (F7) and (F9) makes use of a double summation on N-qubit states, thus its evaluation
requires O(22N ) calculations.

We note that if we are coupled exclusively to the center-of-mass mode, we can reduce the number of calculations by exploiting
the structure of the eigenvalues of Ĵy,1. Namely, instead of summing on states, as in Eq. (F7), we sum on the eigenvalues
−N

2 ,−N
2 + 1, . . . , N

2 . We get

FU,1 = 1

22N+1

N/2∑
λα,λβ=−N/2

[(
N

N
2 + λα

)(
N

N
2 + λβ

)
(1 − i(−1)λα )(1 + i(−1)λβ )e−i(A+FG/2)(λ2

α−λ2
β )e−(F 2+G2 )/2(λα−λβ )2(n̄+1/2)

]
. (F10)

This expression can be evaluated with O(N2) calculations.
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Similarly, the fidelity of remaining in the ground state when coupled exclusively to the center-of-mass mode is given by

FI,1 = 1

22N

N/2∑
λα,λβ=−N/2

[(
N

N
2 + λα

)(
N

N
2 + λβ

)
e−i(A+FG/2)(λ2

α−λ2
β )e−(F 2+G2 )/2(λα−λβ )2(n̄+1/2)

]
. (F11)

Utilizing the entanglement phase identity in Eq. (5) we
obtain a simple approximation for FU ,

FU ≈ FU,1(A1 − Ā, G1, F1)
N∏

j=2

FI,1(Aj − Ā, Gj, Fj ), (F12)

with Ā = 1
N−1

∑N
n=2 An. That is, we use the center-of-mass

fidelity in Eq. (F10), with the mean difference between A1 and
the other entanglement phases, and the identity center-of-mass
fidelity in Eq. (F11) to calculate the “excess” phase. Using this
expression FU may be approximated with O(N3) calculations.

Nevertheless, in the simulations presented in the main text
we use the full expression for FU .

APPENDIX G: CARRIER COUPLING FIDELITY
CALCULATIONS

As mentioned in Appendix D, for nonharmonic gates, the
first-order Magnus contribution of the carrier coupling terms
does not vanish. The infidelity due to these terms has been
previously evaluated as [19]

Fc.c.,1 = cos

(
2	

M∑
i=1

ri
cos(ωiT + φi )

ωi

)
. (G1)

Furthermore, the second-order Magnus terms, derived in
Appendix D, contribute to the carrier-coupling infidelity since
the trajectories formed by them, [Gj,c.c.(t ), Fj,c.c.(t )], do not
generally close and thus leave the spin and motional degrees
of freedom entangled.

In analogy to the derivation of the unitary fidelity in
Appendix F we may calculate the resulting trajectory formed
by these terms and evaluate the resulting carrier coupling
infidelity.

For simplicity we use the two-ion fidelity analog,

Fc.c.,2 =
N∏

j=1

[
3 + e−(F 2

j,c.c.+G2
j,c.c. )

8

+ 1

2
cos

(
Fj,c.c.Gj,c.c.

2

)
e−(F 2

j,c.c.+G2
j,c.c.)/4

]
, (G2)

that is, we use the two-qubit identity fidelity assuming all
modes are a center-of-mass mode. Finally, Fc.c. = Fc.c.,1Fc.c.,2.

APPENDIX H: APPROXIMATING GENERAL
SPIN-COUPLING MATRICES

As stated in the main text, we are interested in imple-
menting a general coupling matrix, jdesired, by expanding it
in terms of the Ĵ2

j,y’s, as in Eq. (14) above. However jdesired is
determined by 1

2 N (N + 1) degrees of freedom, while we can
control the coupling of only N modes.

Thus not all coupling matrices can be perfectly imple-
mented. However jdesired can be optimally approximated by
rewriting Eq. (14) as the matrix equation,

jdesired ∼=
N∑

j=1

ϕ joT
j oj, (H1)

with oj the jth row of O, i.e., (oj )k = Oj,k .
The congruence symbol ∼= defines a matrix equality up

to the main diagonal, i.e., A ∼= B ⇔ Ai, j = Bi, j, ∀i �= j. The
congruence is used here since the main diagonal of jdesired

does not need to be approximated as it contributes identity
operators to the spin interaction.

Equation (H1) is linear in terms of the ϕ j’s, and therefore is
amenable to a least-squares approximation using the Moore-
Penrose pseudoinverse method, yielding a solution ϕ

optimal
j

and the corresponding matrix jideal = ∑N
j=1 ϕideal

j oT
j oj .

The optimal implementation fidelity is then given by the
normalized overlap,

Foptimal = 1

2

(
1 + 〈 joptimal, jdesired〉√

〈 joptimal, joptimal〉〈 jdesired, jdesired〉

)

(H2)

where we use the diagonal-less overlap 〈A, B〉 ≡∑
n �=m An,mBm,n.
We note that for higher spin operators the congruence

relation in Eq. (H1) becomes a straightforward equality, as
we can no longer ignore the main diagonal. This has a simpler
solution, ϕ j = oT

j jdesiredoj , yet a lower optimal fidelity, calcu-
lated with a trace inner product.

[1] D. P. DiVincenzo,Two-bit gates are universal for quantum com-
putation, Phys. Rev. A 51, 1015 (1995).

[2] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N.
Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter,
Elementary gates for quantum computation, Phys. Rev. A 52,
3457 (1995).

[3] A. Y. Kitaev, Quantum computations: Algorithms and error
correction, Russ. Math. Surv. 52, 1191 (1997).

[4] A. H. Myerson, D. J. Szwer, S. C. Webster, D. T. C. Allcock,
M. J. Curtis, G. Imreh, J. A. Sherman, D. N. Stacey, A. M.
Steane, and D. M. Lucas, High-Fidelity Readout of Trapped-Ion
Qubits, Phys. Rev. Lett. 100, 200502 (2008).

032330-12

https://doi.org/10.1103/PhysRevA.51.1015
https://doi.org/10.1103/PhysRevA.51.1015
https://doi.org/10.1103/PhysRevA.51.1015
https://doi.org/10.1103/PhysRevA.51.1015
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1103/PhysRevLett.100.200502
https://doi.org/10.1103/PhysRevLett.100.200502
https://doi.org/10.1103/PhysRevLett.100.200502
https://doi.org/10.1103/PhysRevLett.100.200502


THEORY OF ROBUST MULTIQUBIT NONADIABATIC … PHYSICAL REVIEW A 101, 032330 (2020)

[5] T. P. Harty, D. T. C. Allcock, C. J. Ballance, L. Guidoni,
H. A. Janacek, N. M. Linke, D. N. Stacey, and D. M. Lucas,
High-Fidelity Preparation, Gates, Memory, and Readout of a
Trapped-Ion Quantum Bit, Phys. Rev. Lett. 113, 220501 (2014).

[6] C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, and D. M.
Lucas, High-Fidelity Quantum Logic Gates Using Trapped-Ion
Hyperfine Qubits, Phys. Rev. Lett. 117, 060504 (2016).

[7] A. Bermudez, X. Xu, R. Nigmatullin, J. O’Gorman, V.
Negnevitsky, P. Schindler, T. Monz, U. G. Poschinger, C.
Hempel, J. Home, F. Schmidt-Kaler, M. Biercuk, R. Blatt, S.
Benjamin, and M. Müller, Assessing the Progress of Trapped-
Ion Processors Towards Fault-Tolerant Quantum Computation,
Phys. Rev. X 7, 041061 (2017)

[8] N. M. Linke, D. Maslov, M. Roetteler, S. Debnath, C. Figgatt,
K. A. Landsman, K. Wright, and C. Monroe, Experimental
comparison of two quantum computing architectures, Proc.
Natl. Acad. Sci. U. S. A. 114, 3305 (2017).

[9] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage,
Trapped-ion quantum computing: Progress and challenges,
Appl. Phys. Rev. 6, 021314 (2019).

[10] K. Wright, K. M. Beck, S. Debnath, J. M. Amini, Y. Nam, N.
Grzesiak, J.-S. Chen, N. C. Pisenti, M. Chmielewski, C. Collins,
K. M. Hudek, J. Mizrahi, J. D. Wong-Campos, S. Allen, J.
Apisdorf, P. Solomon, M. Williams, A. M. Ducore, A. Blinov,
S. M. Kreikemeier, V. Chaplin, M. Keesan, C. Monroe, and
J. Kim, Benchmarking an 11-qubit quantum computer, Nature
Communications 10, 5464 (2019).

[11] C. F. Roos, Ion trap quantum gates with amplitude-modulated
laser beams, New J. Phys. 10, 013002 (2008).

[12] F. Haddadfarshi and F. Mintert, High fidelity quantum gates of
trapped ions in the presence of motional heating, New J. Phys.
18, 123007 (2016).

[13] M. Palmero, S. Martinez-Garaot, D. Leibfried, D. J. Wineland,
and J. G. Muga, Fast phase gates with trapped ions, Phys. Rev.
A 95, 022328 (2017).

[14] T. Manovitz, A. Rotem, R. Shaniv, I. Cohen, Y. Shapira, N.
Akerman, A. Retzker, and R. Ozeri, Fast Dynamical Decou-
pling of the Mølmer-Sørensen Entangling Gate, Phys. Rev. Lett.
119, 220505 (2017).

[15] J. D. Wong-Campos, S. A. Moses, K. G. Johnson, and C.
Monroe, Demonstration of Two-Atom Entanglement with Ul-
trafast Optical Pulses, Phys. Rev. Lett. 119, 230501 (2017)

[16] V. M. Schäfer, C. J. Ballance, K. Thirumalai, L. J. Stephenson,
T. G. Ballance, A. M. Steane, and D. M. Lucas, Fast quantum
logic gates with trapped-ion qubits, Nature 555, 75 (2018).

[17] P. H. Leung, K. A. Landsman, C. Figgatt, N. M. Linke, C.
Monroe, and K. R. Brown, Robust 2-Qubit Gates in a Linear
Ion Crystal Using a Frequency-Modulated Driving Force, Phys.
Rev. Lett. 120, 020501 (2018).

[18] A. E. Webb, S. C. Webster, S. Collingbourne, D. Bretaud,
A. M. Lawrence, S. Weidt, F. Minter, and W. K. Hensinger,
Resilient Entangling Gates for Trapped Ions, Phys. Rev. Lett.
121, 180501 (2018).

[19] Y. Shapira, R. Shaniv, T. Manovitz, N. Akerman, and R. Ozeri,
Robust Entanglement Gates for Trapped-Ion Qubits, Phys. Rev.
Lett. 121, 180502 (2018).

[20] C. Figgatt, A. Ostrander, N. M. Linke, K. A. Landsman, D.
Zhu, D. Maslov, and C. Monroe, Parallel entangling operations
on a universal ion-trap quantum computer, Nature 572, 368
(2019).

[21] A. R. Milne, C. L. Edmunds, C. Hempel, F. Roy, S. Mavadia,
and M. J. Biercuk, Phase-Modulated Entangling Gates Robust
to Static and Time-Varying Errors, Phys. Rev. Appl. 13, 024022
(2020).

[22] P. H. Leung and K. R. Brown, Entangling an arbitrary pair
of qubits in a long ion crystal, Phys. Rev. A 98, 032318
(2018).

[23] N. Grzesiak, R. Blumel, K. Beck, K. Wright, V. Chaplin, J. M.
Amini, N. C. Pisenti, S. Debnath, J. Chen, and Y. Nam, Efficient
Arbitrary Simultaneously Entangling Gates on a trapped-ion
quantum computer, arXiv:1905.09294.

[24] R. T. Sutherland, R. Srinivas, S. C. Burd, D. Leibfried, A. C.
Wilson, D. J. Wineland, D. T. C. Allcock, D. H. Slichter, and
S. B. Libby, Versatile laser-free trapped-ion entangling gates,
New J. Phys. 21, 033033 (2019).

[25] R. Blumel, N. Grzesiak, and Y. Nam, Power-optimal, stabilized
entangling gate between trapped-ion qubits, arXiv:1905.09292.

[26] Y. Lu, S. Zhang, K. Zhang, W. Chen, Y. Shen, J. Zhang, J.
Zhang, and K. Kim, Global entangling gates on arbitrary ion
qubits, Nature (London) 572, 363 (2019).

[27] R. T. Sutherland, R. Srinivas, S. C. Burd, H. M. Knaack, A. C.
Wilson, D. J. Wineland, D. Leibfried, D. T. C. Allcock, D. H.
Slichter, and S. B. Libby, Laser-free trapped-ion entangling
gates with simultaneous insensitivity to qubit and motional
decoherence, arXiv:1910.14178.

[28] C. Monroe and J. Kim, Scaling the ion trap quantum processor,
Science 339, 1164 (2013).

[29] E. A. Martinez, T. Monz, D. Nigg, P. Schindler, and R. Blatt,
Compiling quantum algorithms for architectures with multi-
qubit gates, New J. Phys. 18, 063029 (2016).

[30] D. Maslov and Y. Nam, Use of global interactions in effi-
cient quantum circuit constructions, New J. Phys. 20, 033018
(2018).

[31] D. Porras and J. I. Cirac, Effective Quantum Spin Systems with
Trapped Ions, Phys. Rev. Lett. 92, 207901 (2004).

[32] R. Islam, C. Senko, W. C. Campbell, S. Korenblit, J. Smith,
A. Lee, E. E. Edwards, C. C. J. Wang, J. K. Freericks, and C.
Monroe, Emergene and frustration of magnetism with variable-
range interactions in a quantum simulator, Science 340, 583
(2013).

[33] P. Jurcevic, H. Shen, P. Hauke, C. Maier, T. Brydges, C.
Hempel, B. P. Lanyon, M. Heyl, R. Blatt, and C. F. Roos, Direct
Observation of Dynamical Quantum Phase Transitions in an
Interacting Many-Body System, Phys. Rev. Lett. 119, 080501
(2017).

[34] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker,
H. Kaplan, A. V. Gorshkov, Z. X. Gong, and C. Monroe,
Observation of a many-body dynamical phase transition with a
53-qubit quantum simulator, Nature (London) 551, 601 (2017).

[35] T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg,
W. A. Coish, M. Harlander, W. Hänsel, M. Hennrich, and R.
Blatt, 14-Qubit Entanglement: Creation and Coherence, Phys.
Rev. Lett. 106, 130506 (2011).

[36] A. Ozaeta and P. L. McMahon, Decoherence of up to 8-qubit
entangled states in a 16-qubit superconducting quantum pro-
cessor, Quantum Sci. Technol. 4, 025015 (2019).

[37] D. M. Greenberger, M. A. Horne, and A. Zeilinger, in
Bell’s Theorem, Quantum Theory, and Conceptions of the
Universe, edited by M. Kafatos (Kluwer, Dordrecht, 1989),
pp. 69–72.

032330-13

https://doi.org/10.1103/PhysRevLett.113.220501
https://doi.org/10.1103/PhysRevLett.113.220501
https://doi.org/10.1103/PhysRevLett.113.220501
https://doi.org/10.1103/PhysRevLett.113.220501
https://doi.org/10.1103/PhysRevLett.117.060504
https://doi.org/10.1103/PhysRevLett.117.060504
https://doi.org/10.1103/PhysRevLett.117.060504
https://doi.org/10.1103/PhysRevLett.117.060504
https://doi.org/10.1103/PhysRevX.7.041061
https://doi.org/10.1103/PhysRevX.7.041061
https://doi.org/10.1103/PhysRevX.7.041061
https://doi.org/10.1103/PhysRevX.7.041061
https://doi.org/10.1073/pnas.1618020114
https://doi.org/10.1073/pnas.1618020114
https://doi.org/10.1073/pnas.1618020114
https://doi.org/10.1073/pnas.1618020114
https://doi.org/10.1063/1.5088164
https://doi.org/10.1063/1.5088164
https://doi.org/10.1063/1.5088164
https://doi.org/10.1063/1.5088164
https://doi.org/10.1038/s41467-019-13534-2
https://doi.org/10.1038/s41467-019-13534-2
https://doi.org/10.1038/s41467-019-13534-2
https://doi.org/10.1038/s41467-019-13534-2
https://doi.org/10.1088/1367-2630/10/1/013002
https://doi.org/10.1088/1367-2630/10/1/013002
https://doi.org/10.1088/1367-2630/10/1/013002
https://doi.org/10.1088/1367-2630/10/1/013002
https://doi.org/10.1088/1367-2630/18/12/123007
https://doi.org/10.1088/1367-2630/18/12/123007
https://doi.org/10.1088/1367-2630/18/12/123007
https://doi.org/10.1088/1367-2630/18/12/123007
https://doi.org/10.1103/PhysRevA.95.022328
https://doi.org/10.1103/PhysRevA.95.022328
https://doi.org/10.1103/PhysRevA.95.022328
https://doi.org/10.1103/PhysRevA.95.022328
https://doi.org/10.1103/PhysRevLett.119.220505
https://doi.org/10.1103/PhysRevLett.119.220505
https://doi.org/10.1103/PhysRevLett.119.220505
https://doi.org/10.1103/PhysRevLett.119.220505
https://doi.org/10.1103/PhysRevLett.119.230501
https://doi.org/10.1103/PhysRevLett.119.230501
https://doi.org/10.1103/PhysRevLett.119.230501
https://doi.org/10.1103/PhysRevLett.119.230501
https://doi.org/10.1038/nature25737
https://doi.org/10.1038/nature25737
https://doi.org/10.1038/nature25737
https://doi.org/10.1038/nature25737
https://doi.org/10.1103/PhysRevLett.120.020501
https://doi.org/10.1103/PhysRevLett.120.020501
https://doi.org/10.1103/PhysRevLett.120.020501
https://doi.org/10.1103/PhysRevLett.120.020501
https://doi.org/10.1103/PhysRevLett.121.180501
https://doi.org/10.1103/PhysRevLett.121.180501
https://doi.org/10.1103/PhysRevLett.121.180501
https://doi.org/10.1103/PhysRevLett.121.180501
https://doi.org/10.1103/PhysRevLett.121.180502
https://doi.org/10.1103/PhysRevLett.121.180502
https://doi.org/10.1103/PhysRevLett.121.180502
https://doi.org/10.1103/PhysRevLett.121.180502
https://doi.org/10.1038/s41586-019-1427-5
https://doi.org/10.1038/s41586-019-1427-5
https://doi.org/10.1038/s41586-019-1427-5
https://doi.org/10.1038/s41586-019-1427-5
https://doi.org/10.1103/PhysRevApplied.13.024022
https://doi.org/10.1103/PhysRevApplied.13.024022
https://doi.org/10.1103/PhysRevApplied.13.024022
https://doi.org/10.1103/PhysRevApplied.13.024022
https://doi.org/10.1103/PhysRevA.98.032318
https://doi.org/10.1103/PhysRevA.98.032318
https://doi.org/10.1103/PhysRevA.98.032318
https://doi.org/10.1103/PhysRevA.98.032318
http://arxiv.org/abs/arXiv:1905.09294
https://doi.org/10.1088/1367-2630/ab0be5
https://doi.org/10.1088/1367-2630/ab0be5
https://doi.org/10.1088/1367-2630/ab0be5
https://doi.org/10.1088/1367-2630/ab0be5
http://arxiv.org/abs/arXiv:1905.09292
https://doi.org/10.1038/s41586-019-1428-4
https://doi.org/10.1038/s41586-019-1428-4
https://doi.org/10.1038/s41586-019-1428-4
https://doi.org/10.1038/s41586-019-1428-4
http://arxiv.org/abs/arXiv:1910.14178
https://doi.org/10.1126/science.1231298
https://doi.org/10.1126/science.1231298
https://doi.org/10.1126/science.1231298
https://doi.org/10.1126/science.1231298
https://doi.org/10.1088/1367-2630/18/6/063029
https://doi.org/10.1088/1367-2630/18/6/063029
https://doi.org/10.1088/1367-2630/18/6/063029
https://doi.org/10.1088/1367-2630/18/6/063029
https://doi.org/10.1088/1367-2630/aaa398
https://doi.org/10.1088/1367-2630/aaa398
https://doi.org/10.1088/1367-2630/aaa398
https://doi.org/10.1088/1367-2630/aaa398
https://doi.org/10.1103/PhysRevLett.92.207901
https://doi.org/10.1103/PhysRevLett.92.207901
https://doi.org/10.1103/PhysRevLett.92.207901
https://doi.org/10.1103/PhysRevLett.92.207901
https://doi.org/10.1126/science.1232296
https://doi.org/10.1126/science.1232296
https://doi.org/10.1126/science.1232296
https://doi.org/10.1126/science.1232296
https://doi.org/10.1103/PhysRevLett.119.080501
https://doi.org/10.1103/PhysRevLett.119.080501
https://doi.org/10.1103/PhysRevLett.119.080501
https://doi.org/10.1103/PhysRevLett.119.080501
https://doi.org/10.1038/nature24654
https://doi.org/10.1038/nature24654
https://doi.org/10.1038/nature24654
https://doi.org/10.1038/nature24654
https://doi.org/10.1103/PhysRevLett.106.130506
https://doi.org/10.1103/PhysRevLett.106.130506
https://doi.org/10.1103/PhysRevLett.106.130506
https://doi.org/10.1103/PhysRevLett.106.130506
https://doi.org/10.1088/2058-9565/ab13e5
https://doi.org/10.1088/2058-9565/ab13e5
https://doi.org/10.1088/2058-9565/ab13e5
https://doi.org/10.1088/2058-9565/ab13e5


YOTAM SHAPIRA et al. PHYSICAL REVIEW A 101, 032330 (2020)

[38] D. Gottesman, Maximally Sensitive Sets of States,
arXiv:1907.05950.

[39] K. Mølmer and A. Sørensen, Quantum Computation with
Ions in Thermal Motion, Phys. Rev. Lett. 82, 1971
(1999).

[40] A. Sørensen and K. Mølmer, Entanglement and quantum com-
putation with ions in thermal motion, Phys. Rev. A 62, 022311
(2000).

[41] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Soliton excitations
in polyacetylene, Phys. Rev. B 22, 2099 (1980).

[42] K. Mølmer and A. Sørensen, Multiparticle Entanglement of Hot
Trapped Ions, Phys. Rev. Lett. 82, 1835 (1999).

[43] W. Magnus, On the exponential solution of differential equa-
tions for a linear operator, Commun. Pure Appl. Math. 7, 649
(1954).

[44] S. Blanes, F. Casas, J. A. Oteo, and J. Ros, The Magnus
expansion and some of its applications, Phys. Rep. 470, 151
(2009).

[45] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness (W. H. Freeman, San
Francisco, 1979).

[46] B. Grenet, P. Koiran, and N. Portier, The Multivariate Re-
sultant Is NP-hard in Any Characteristic, Lecture Notes in
Computer Science, edited by P. Hliněný and A. Kučera, Vol.
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