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Comparing two-qubit and multiqubit gates within the toric code
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In some quantum computing architectures, entanglement of an arbitrary number of qubits can be generated in
a single operation. This property has many potential applications, and may specifically be useful for quantum
error correction (QEC). Stabilizer measurements can then be implemented using a single multiqubit gate instead
of several two-qubit gates, thus reducing circuit depth. In this study, the toric code is used as a benchmark to
compare the performance of two-qubit and five-qubit gates within parity-check circuits. We consider trapped ion
qubits that are controlled via Raman transitions, where the primary source of error is assumed to be spontaneous
photon scattering. We show that a five-qubit Mølmer-Sørensen gate offers an approximately 40% improvement
over two-qubit gates in terms of the fault tolerance threshold. This result indicates an advantage of using
multiqubit gates in the context of QEC.
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I. INTRODUCTION

Any long-term realization of a quantum computer will need
to incorporate quantum error correction (QEC). Without QEC,
the performance of any given quantum algorithm will be lim-
ited by the physical qubit error rate. While much experimental
effort is devoted to lowering this rate [1–3], the current values
are too high to solve any large-scale problems with a direct
approach. In a QEC code, information is not stored directly in
physical qubits, but rather in logical qubits. The performance
of the code is dictated by the fault tolerance (FT) threshold; as
long as physical error rates can be kept below this threshold,
then logical errors can be arbitrarily suppressed by increasing
the size of the code [4].

From an experimental standpoint then, the best QEC codes
are those that have the highest FT threshold. Topological QEC
(TQEC) codes [5,6], which encode logical qubits in global
degrees of freedom, have proven to have high FT thresholds.
One popular example of TQEC is the toric code, a stabilizer
code [7] where the structure of interactions between physical
qubits maps onto the surface of a torus [8]. Depending on
the error model and simulation approach used, the threshold
for the toric code (and similarly for its planar generalization
surface code) has been placed between 10−3 and 10−2 [9–11].

An accurate calculation of the threshold requires careful
consideration of the physical qubit architecture. To that end,
studies of QEC in a trapped ion system have been done
[12,13]. Recent work considers Zeeman and hyperfine qubits
and compares their performance in the toric code for various
levels of magnetic field noise [14–16]. Other work determines
how various error models affect the surface code FT threshold
[17]. Generally these works have considered a gate set involv-
ing two-qubit entangling operations. However, in a trapped
ion system it is possible to entangle an arbitrary number of
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qubits in a single gate. In the toric code, the total number
of required entangling operations can be significantly reduced
by using five-qubit rather than two-qubit gates. On the other
hand, such multiqubit gates are generally more susceptible
to noise and error propagation. Because of this tradeoff, it
is hard to predict which method yields better results. We are
therefore interested in the question of how using five-qubit
gates influences logical error rates and the FT threshold.

While QEC circuits involving five-qubit gates have been
suggested [12], the implications on the toric code FT threshold
have not been explored. Here we study properties of two-
qubit and five-qubit Mølmer-Sørensen (MS) gates, including
error propagation. We make several assumptions about the
experimental setup to form an error model, and simulate the
toric code for two different gate sets: one involving two-qubit
gates and one involving five-qubit gates. We extract the FT
threshold in both cases, and compare their respective perfor-
mance. Here we show that the five-qubit gate method gives an
improvement of approximately 40% in the FT threshold, as
well as a 3.7 times improvement in logical error rates at low
physical error probabilities.

II. TORIC CODE

In TQEC qubits are arranged (schematically, not necessar-
ily physically) on a lattice, where local stabilizer operators are
continually measured to infer the location of errors. The codes
are characterized by the number of logical qubits they encode
as well as their distance. A toric code of distance d encodes
two logical qubits; it is composed of a d × d square lattice
of data qubits and a d × d square sublattice of ancilla qubits,
as pictured in Fig. 1(a). It has periodic boundary conditions in
both directions so that qubits on opposing edges are identified.

Stabilizer measurements, or parity checks, are associated
with each ancilla and its surrounding four data qubits. A
schematic circuit diagram for measure-X and measure-Z
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FIG. 1. (a) Surface code layout - white circles represent data
qubits and black circles ancilla qubits. (b) Stabilizer measurement
circuits - H is a Hadamard gate. At the beginning of the circuit the
ancilla is initialized to the 0-state, and at the end of the circuit, it is
measured.

stabilizers, following the standard composition involving two-
qubit CNOT gates, is shown in Fig. 1(b).

The stabilizer-measurement results, attained from the read-
out on the ancilla qubits, are altered by any single {X,Y, Z}
error on data qubits. The corresponding error syndrome is
decoded using a classical algorithm, for example minimum
weight perfect matching (MWPM), to determine where to
apply correction operators. A logical X (Z) error occurs when
a sequence of physical X (Z) errors and their resulting cor-
rection operations form a closed, irreducible, chain along the
torus.

III. STABILIZER MEASUREMENT WITH
MULTIQUBIT GATES

Stabilizer measurement circuits are generally composed of
two-qubit CNOT gates between the ancilla and its adjacent data
qubits. For qubit architectures that permit only local two-qubit
interactions, this is the only reasonable implementation. In the
case of trapped ions, however, global interactions between any
set of qubits within the ion register are possible (regardless of
physical proximity). This is because entanglement is mediated

FIG. 2. (a) Measure-X stabilizer circtuit built from four two-
qubit MS gates. The ancilla is initialized to the 0 state before this
circuit begins. (b) Measure-X stabilizer circuit using only one five-
qubit MS gate.

by the ions’ common motional modes, as in the Mølmer-
Sørensen (MS) interaction [18,19].

A two-qubit MS gate between ions i and j, with entangling
phase θi j , results in the unitary operation

XX2(θi j ) = e−i(θi j/2)XiXj , (1)

while a multiqubit (n > 2) MS gate is given by

XXn(�θ ) = e−i
∑

i �= j (θi j/2)XiXj . (2)

For two qubits, the MS gate is equivalent to CNOT up to single-
qubit rotations [20].

In implementing the toric code, it is possible to perform
gates involving all five ions involved in a given stabilizer
measurement. We would like to determine how the toric
code performance changes when using either two-qubit or
five-qubit MS gates within stabilizer measurement circuits. A
comparison of measure-X stabilizer circuits using two-qubit
and five-qubit MS gates can be seen in Figs. 2(a) and 2(b).

The first circuit uses two-qubit MS gates; it is an exten-
sion of the CNOT-based circuit from Fig. 1(b). Here RX is
a single-qubit rotation about the x axis. The second circuit
contains a single five-qubit MS gate. While this gate pro-
duces all-to-all coupling between all five qubits, many of
these couplings cancel [21]. A detailed explanation of how
this circuit amounts to a stabilizer measurement can found in
Appendix. A measure-Z circuit is implemented similarly—the
only difference being the addition of Hadamard gates on all
data qubits at the beginning and end of the circuit.

One obvious benefit of using a five-qubit gate over the con-
ventional two-qubit gate method is reduction in circuit depth,
the total number of sequential gates required to perform the
stabilizer measurement. Consequently a shorter overall circuit
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time can reduce the probability of error. On the other hand,
making use of a multiqubit operation inherently involves the
possibility of multiple propagated errors. This is discussed
further in Sec. VI. It should be stressed that five-qubit gates
are chosen due to the five qubits of a toric code stabilizer mea-
surement. This analysis can, however, extend to other QEC
codes, where the size of the multiqubit gate should reflect the
structure of the code.

Before proposing an error model and attempting to
quantify this comparison, it is worth specifying a standard ex-
perimental procedure for implementing multiqubit MS gates.

IV. PHYSICAL IMPLEMENTATION OF
MULTIQUBIT GATES

In a typical trapped ion setup, using for example a linear rf
Paul trap, ions are oriented in a long 1D chain—where specific
ions can be targeted by means of individual laser addressing.
A MS gate is implemented using a bichromatic laser field that
drives a force dependent on the spin of the illuminated ions.
The set of ions involved in a given multiqubit MS gate can
thus be controlled by turning on individual addressing beams
at the desired locations.

The MS interaction Hamiltonian can be written (after ap-
plying a rotating wave approximation) as [22]

H (t ) = h̄η�(aeiδt + a†e−iδt )

(
n∑

i=1

Xi

)
, (3)

where η is the Lamb-Dicke parameter, n is the number of ions
involved in the gate, δ is the symmetric detuning from the
center-of-mass (COM) mode, and � is the Rabi frequency.
Here we assume that we only couple to the center-of-mass
mode of the ion chain and any coupling to other motional
modes can be neglected. We also assume that, regardless of
the number of ions participating in the gate, the laser power
is fixed and uniform across each of the individual addressing
beams. Moreover we impose that each of these beams carries
the same two frequencies. Taking δ = 2η� and a gate time
T = 2π

δ
results is a fully entangling gate among the n ions

involved in the operation, where spin and motional degrees of
freedom are unentangled at the end of the gate. These parame-
ters for n = 2 and n = 5 result in the unitaries of Eqs. (1) and
(2).

We will focus on gates based on Raman transitions (see
the following section). In that case, the Rabi frequency is a
function of the laser power (P) and two-photon detuning (�).
We consider � to be fixed and not to depend on the number
of ions involved in the gate. We then notice that the Rabi
frequency, and therefore also the gate time, is independent of
n.

It should be noted that there are other ways to implement
multiqubit gates. The implications of the specific choices
made here on our results are discussed in Sec. IX.

V. ERROR MODEL

To accurately compare the performance of two-qubit and
five-qubit gates within the toric code, we consider a specific
error model with several assumptions. We assume our trapped

ion qubits are embedded in the ground state S manifold (ei-
ther Zeeman or hyperfine), where gates are performed using
Raman transitions [23,24].

There have been many experimental demonstrations of
entangling gates based on Raman transitions, and the cor-
responding sources of error are well classified [1,2,25–27].
Here we choose to disregard all “classical” sources of error
that arise from experimental imperfections such as laser phase
noise, intensity fluctuations, magnetic field noise, gate-timing
errors, among other examples. Thus we consider only the
fundamental physical source of error, which for Zeeman and
hyperfine qubits is spontaneous scattering of photons from the
P-level excited states during the gate.

The rate of spontaneous scattering during a two-photon
Raman transition can be calculated from the Kramers-
Heisenberg formula [26]. This rate can be shown to be
proportional to

� ∝ �2

P
, (4)

where P is the laser power at the position of each ion. For each
gate then, p, the error probability per ion, is given by a product
of this rate with the gate time,

p = �τgate ∝ �2

P
τgate. (5)

In the gate implementation considered above, the Rabi fre-
quency, gate time, and laser power seen by each ion are all
independent of the number of qubits involved in the gate.
Thus Eq. (5) suggests an equal per-ion error probability for
two-qubit and five-qubit gates.

For every ion involved in a given gate, a scattering event
occurs with probability p resulting in a single Pauli error
on that ion. An accurate calculation of elastic and inelastic
scattering for Zeeman and hyperfine qubits would reveal the
respective likelihood of X , Y , or Z errors [14], though for
simplicity we will assume here that each occurs with prob-
ability p

3 . Since entangling gates are considerably longer than
single-qubit rotations, they are the primary source of error and
we choose here to neglect any errors in the latter.

Moreover, due to the symmetry between measure-X and
measure-Z stabilizers in the toric code, we expect a similar
scaling of physical error rates to logical error rates for both
X and Z errors [10,17]. Thus we choose to focus only on
logical X errors. In terms of error propagation then, we are
exclusively concerned with the case where propagation results
in any number of X errors. Considering multiqubit MS gates,
we note that this can only occur as the result of a Z error (on
any one of the qubits) during a measure-X stabilizer. This is
discussed in the following section.

VI. MASTER EQUATION SIMULATION FOR
MULTIQUBIT MS GATES

It is important to compare the precise effects of error propa-
gation for both two-qubit and five-qubit gates. For an XX -type
MS gate, an X error on any qubit commutes through the gate.
Z and Y errors however, do not commute with the gate and
propagate as shown in Figs. 3(a) and 3(b).
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FIG. 3. Circuit depicting propagation of Z error in an XX MS gate
for two cases: (a) two-qubit gate; (b) five-qubit gate. As Y = iXZ , its
propagation follows similarly.

Certain gate errors, such as those due to spontaneous pho-
ton scattering considered in this work, may occur at any point
during the operation of the gate. In the case of two-qubit gates,
when defining an error model for a QEC simulation, it is gen-
erally possible to model the error as happening either before
or after the gate [17]. With our proposed stabilizer circuits
involving five-qubit gates, however, this is not possible as it
would not capture the full effects of error propagation.

Understanding how errors that occur during the gate prop-
agate can be achieved through a master equation simulation.
The Lindblad master equation is given by

ρ̇(t ) = −i

h̄
[H (t ), ρ(t )] +

∑
n

1
2 [2Cnρ(t )C†

n ]

− ρ(t )C†
nCn − C†

nCnρ(t )]. (6)

We use the MS interaction Hamiltonian written in Eq. (3).
As mentioned above, we are specifically interested in learning
how Z errors propagate through a MS gate as multiple X
errors. Without loss of generality then, we consider a Z error
on qubit 1. This error can occur at any point in the duration of
the gate, with a fixed error rate. The corresponding collapse
operator is C = √

�Z1 where � is defined in Eq. (4).
In order to determine the distribution of propagated X

errors, we initialize our state to |0〉⊗n. We run a faulty MS
gate (subject to Z error on qubit 1) preceded by an error-free
inverse MS gate. This way, if no errors occur in the faulty
gate then the |0〉⊗n state will be recovered. However, if a Z
error occurred during the faulty gate and propagated as X
errors on a given set of qubits, these qubit states will flip to
|1〉. Therefore the diagonal elements of the density matrix,
ρ(τgate), obtained by solving Eq. (6), reveal the probability
distribution of how a single Z error propagated as X errors on
each of the qubits. Figure 4 shows this circuit for the case of
n = 5.

We run simulations for two-qubit and five-qubit MS gates,
using the software QUTIP [28]. We express the results as the
likelihood of specific propagated X errors, given that a Z error
certainly occurred on qubit 1. The results for the five-qubit
case are shown in Table I. They are organized with respect to

FIG. 4. Circuit for determining propagation of Z errors that occur
during a five-qubit MS gate. The resulting density matrix is calcu-
lated using a master equation simulator.

two sets of cases. In one set of cases (first two columns), an
X error propagated to qubit 1; in the other set of cases (last
two columns), no X error propagated to qubit 1. Within each
set, there are cases where an X error propagated to two, three,
or all four of the other qubits involved in the gate. For each
case, all qubit combinations are equally likely; for example,
the weight-2 error X2X3 is equally likely as X4X5 (similarly in
the first set, X1X2X3 is equally likely as X1X4X5).

This distribution of propagated error is used to simulate
toric code logical error rates—as described in the following
section.

VII. SIMULATION

With a well-defined physical qubit error model, we can
simulate the toric code to calculate the FT threshold. To do
this, we apply the error model for each entangling operation
in the full QEC circuit and account for error propagation. This
results in a set of “errors” on a random set of qubits.

It is possible that the resulting error syndrome after a
single round of QEC is not reliable, due to the presence of
“measurement error” on the ancilla qubit. In our error model
this occurs via an X error on the ancilla at some point in the
circuit—which will flip the measured value of that ancilla.
To handle the possibility of an inaccurate syndrome we run

TABLE I. Probability distribution for X error propagation during
a five-qubit MS gate. Results obtained by simulating a single Z error
on qubit 1 occurring with uniform probability over the duration of
the gate. The first two columns pertain to events where no X error
propagated to qubit 1. The last two columns pertain to events where
an X error did propagate to qubit 1.
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FIG. 5. Logical error rate vs physical error rate after QEC using
(a) two-qubit MS gates [as shown in Fig. 2(a)], and (b) five-qubit MS
gates [as shown in Fig. 2(b)]. The FT threshold is 0.37% in the first
case and 0.52% in the second.

d rounds of QEC; this creates a three-dimensional syndrome
that varies in space and time [29,30].

The MWPM algorithm is then left to match points spatially
and temporally, where larger distance between two points in
any direction makes the pair increasingly unlikely.

VIII. RESULTS

We plot the performance of the toric code for various
distances in Figs. 5(a) and 5(b). The horizontal axis is the
physical error probability per qubit, and the vertical axis is
the logical error rate of the code. As expected, the logical
error rate decreases with the physical error probability. We
compare the results for the two-qubit and five-qubit models
respectively. The threshold is defined as the physical error
probability at the crossing point of the curves. It therefore
indicates the upper error bound for when increasing code
distance improves logical qubit performance. Each data point
is an average of 106 simulation runs, parallelized using the
WEXAC computing cluster [31].

We observe that the five-qubit gate model results in a
threshold of 0.52%. This is an improvement over the two-
qubit model, which results in a threshold of 0.37%. We thus
note an increase of approximately 40% in the threshold when

FIG. 6. A comparison of toric code logical error rates for a dis-
tance 8 code using two-qubit and five-qubit gates. The FT threshold
for the five-qubit model is at p = 0.52% (circle). Parameters of
the five-qubit model are incrementally varied to match those of the
two-qubit model; these are propagated single-qubit error probability,
propagated two-qubit error probability, and ancilla error probabil-
ity. The threshold respectively drops to p = 0.45% (triangle), p =
0.40% (square), and finally to p = 0.37% (star).

using the five-qubit gate method. These threshold values are
in the range of previous calculations [9,10,17,29,30], with
differences resulting from error model, decoding algorithm,
and definition of logical error rate.1 We also note that, aside
from the threshold, the five-qubit model gives significantly
lower logical error rates.

The advantage of five-qubit gates, both in the threshold
and logical error rates, can be explained by examining the
stabilizer measurement circuits. In the two-qubit model, the
ancilla qubit undergoes four sequential gates; by contrast, in
the five-qubit model, the ancilla is involved in only one gate.
This therefore corresponds to a four times lower probability
of ancilla error in the five-qubit case. Moreover, the fact that
the ancilla in the five-qubit case is less susceptible to error also
results in a lower overall probability of propagated single- and
two-qubit errors on data qubits.

In Fig. 6, we plot the performance of a d = 8 code for
both models at a range of physical qubit error probabilities
(p = 0.001 → 0.0055). These parameters reflect a potential
near-term implementation of the toric code. The simulation
values thus give a practical indication for the performance of
the code. At p = 0.001 the five-qubit model gives a 3.7 times
lower logical error rate.

We examine here the significance of each error type in the
threshold advantage of the five-qubit model. Specifically, we
incrementally modify the toric code simulation of the five-
qubit model to match the parameters of the two-qubit model.
First we impose a probability of propagated single-qubit er-
rors that is equal to its corresponding value in the two-qubit
model. We notice that the threshold drops to p = 0.45%. We

1It should be noted that these works have expressed the physical
error probability as a per-gate value while here it is expressed as a
per-qubit value.
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then likewise increase the propagated two-qubit error proba-
bility, noticing a further threshold drop to p = 0.40%. Finally
we increase the ancilla error probability to match that of the
two-qubit model. With all three of these factors included, the
threshold reduces to that of the two-qubit model, p = 0.37%.

IX. ASSUMPTIONS MADE

We have shown that using five-qubit MS gates to imple-
ment stabilizers in the toric code gives an improvement over
the standard two-qubit gate method in both logical error rates
and the FT threshold. It is worth stressing that this result is
predicated on several assumptions.

We have assumed that all entangling operations are
mediated by a single mode of the ions’ collective motion—
specifically the COM mode. We have also assumed that all
individual addressing lasers, used to single out ions for entan-
gling gates, have equal intensity and the same spectral content.
In other words, the only degree of freedom in implementing
an entangling gate is whether to turn each beam on or off.

Under these conditions, we have seen that two-qubit and
five-qubit gates have equal gate times and spontaneous scat-
tering error rates—and thus equal per-ion error probabilities.
We have chosen to consider spontaneous scattering as the only
source of error, and neglect other potential sources.

While these assumptions reflect current experimental
trends, they are certainly not set in stone. For example, recent
theoretical proposals [27,32–35] have shown that it may be
possible to generalize the standard MS scheme to produce
more optimal gates. This may involve modulating the am-
plitude [32] or frequency [27,33] of the laser fields, or using
multiple laser frequencies [34], to couple to many of the ions’
motional modes, not only the COM. In fact, as the size of
trapped ion chains increases, it may be increasingly difficult to
spectrally isolate a single motional mode—and a multimode
approach may be the only feasible option [33]. This could, for
example, affect the scaling of gate times with the number of
ions involved in the gate.

One could also consider an experimental apparatus where
the total available laser power can be dynamically allocated
to only those ions participating in a given gate. In this case,
two qubit gates could be implemented with 5

2 times more laser
power per ion than five-qubit gates. This could allow running
two-qubit gates with a 5

2 reduction of the gate time. In turn,

this would result in a
√

5
2 times lower error probability for

two-qubit gates and offset the advantage in the FT threshold
that we have observed.

By focusing on the fundamental source of error, we have
shown that multiqubit gates offer an inherent advantage in
error correction. However, the toric code simulation can also
account for wider error models reflecting different experimen-
tal implementations. In this way, it can be used to assess the
performance of multiqubit gates on current hardware.

Finally, we have not approached the subject of performing
stabilizer measurement operations in parallel. In our analysis
this had no effect since we did not include idle time errors
in our error model. We could thus consider the case where
each gate is performed in series with no consequence. This
may be a reasonable approximation for qubits with very high

coherence times, however it is certainly not optimal. The
concept of parallel entangling operations in a chain of trapped
ions has been demonstrated [36]. However, a full experimental
procedure for parallelizing gates in the toric code has not yet
been proposed.

X. CONCLUSION

The ability to perform multiqubit (n > 2) entangling op-
erations is a useful component of a QC architecture. Indeed
[37] have explored potential applications of global MS op-
erations in various quantum information processing (QIP)
protocols. Multiqubit gates clearly offer an improvement over
their two-qubit counterpart by reducing overhead in circuits,
and therefore lowering error rates. Here we have shown, with
specific focus on a trapped ion system, that the advantage
of multiqubit gates extends to QEC as well. Using the toric
code as a benchmark, we have shown that constructing cir-
cuits with five-qubit MS gates gives an approximately 40%
improvement in the FT threshold over the standard two-qubit
approach.

The assumptions made here suit the standard MS scheme;
an analysis of how precisely to optimize the gate procedure
for QEC codes is a topic for further research.
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APPENDIX: STABILIZER MEASUREMENT CIRCUIT
WITH A FIVE-QUBIT MS GATE

It initially appears that the five-qubit all-to-all entangling
gate in Fig. 2(b) would create unwanted two-qubit coupling
among data qubits. However, in composing this circuit we use
the general result of [21] to write

1√
2
(1 + iN+E X ⊗N ) =

{
XXN

(
π
4

)
N even

XXN
(

π
4

)
RX

(
π
4

)⊗N
N odd

(A1)

(equality is up to a global phase), where E = 1 for even N and
E = 2 for odd N . Thus we see that in the case of N = 5

XX5

(
π

4

)
RX

(
π

4

)⊗5

= 1√
2

(1 − iX ⊗N ). (A2)

From the form of this operator we see that, in conjunction with
the single-qubit rotations, the individual two-qubit couplings
among data qubits cancel out. From here we can compose the
parity-check circuit, knowing that the ancilla qubit starts out
in the state |0〉. Also the four data qubits are in either a +1 or
−1 eigenstate of the stabilizer operator SX = X ⊗4. Thus we
will call the overall code state |s〉 where s = {−1, 1} is the
eigenstate of this stabilizer operator. Originally the five qubits
are in the state |0〉 |s〉 where the first ket denotes the ancilla
and the second ket denotes the four data qubits.
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We apply the operator:

XX5

(
π

4

)
RX

(
π

4

)⊗5

|0〉|s〉 = 1√
2

(1 − iX ⊗N )|0〉|s〉

= 1√
2

(|0〉|s〉 − i|1〉Sx|s〉)

= 1√
2

(|0〉|s〉 − i|1〉s|s〉). (A3)

We then apply a Hadamard gate to the ancilla qubit, leading
to

1
2 [(|0〉 + |1〉)|s〉 − i(|0〉 − |1〉)s|s〉]. (A4)

After a final RX gate we have

1

2
√

2
[((|0〉 − i|1〉) + (|1〉 − i|0〉))|s〉

− i((|0〉 − i|1〉) − (|1〉 − i|0〉))s|s〉]

=
(

1 + s

2
|0〉 + 1 − s

2
|1〉

)
|s〉 (A5)

(where the last equality is up to a global phase). We then mea-
sure the state of the ancilla qubit which precisely indicates the
parity. For even parity (s = +1) we will measure the ancilla
in |0〉, for odd parity (s = −1) we will measure the ancilla in
|1〉.
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