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Quantum process tomography of a Mølmer-Sørensen interaction
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We present a simple tomographic protocol, for two-qubit systems, that relies on a single discriminatory
transition and no direct spatially selective imaging. This scheme exploits excess micromotion in the trap to
realize all operations required to prepare all input states and analyze all output states. We demonstrate a two-qubit
entangling gate with a Bell state production fidelity of 0.981(6), and apply the above protocol to perform the first
quantum process tomography of a Mølmer-Sørensen entangling gate. We characterize its χ -process matrix, the
simplest for an entanglement gate on a separable-states basis, and observe that our dominant source of error is
accurately modeled by a quantum depolarization channel.
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The ability to realize and characterize high-fidelity two-
qubit entangling gates is central for quantum information
science as, together with single-qubit rotations, they can form a
so-called universal quantum gate set for quantum computation
[1]. The detailed characterization of these gates is therefore
crucial. Quantum process tomography (QPT) is a systematic
method allowing one to fully characterize linear quantum
processes. In particular, QPT of two-qubit entangling gates
has been used to characterize controlled-NOT (CNOT) gates in
linear-optic [2], NMR [3], as well as trapped-ion qubits [4,5],
or a square root i-SWAP gate with superconducting qubits [6]. In
trapped-ion experiments, Mølmer-Sørensen (MS) entangling
gates [7] have become increasingly popular, both for quantum
computation purposes [8–10] and for inducing effective spin-
spin couplings that allow one to simulate complex quantum
many-body Hamiltonians from condensed matter physics
[11]. One of its main advantages as compared with other
gate protocols is its first-order insensitivity to the phonon
occupation number (i.e., temperature of the ion crystal), which
allowed, inter alia, the highest entangled state production
fidelity reached to date [0.993(1) [12]], entanglement between
ions in thermal motion [13], as well as the creation of a
maximally entangled state of a large (N = 14) number of
qubits [14]. In this Rapid Communication, we first implement
a new and simple protocol for QPT with trapped ions, which
only requires a single discriminatory transition. The scheme
is based on inhomogeneous micromotion in the trap that
enables addressing single qubits in the chain [15–17]. Sub-
sequently, we realize the first full tomographic reconstruction
of a Mølmer-Sørensen interaction which, despite its growing
importance, has not been process-analyzed yet.

A quantum process is defined as a completely positive map
E in the space of density matrices. Given a complete set of
operators {Ai} (such that

∑
j A

†
jAj = I ), the output state for

an arbitrary input state ρ can be written as (for details see, for
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instance [3,18,19])

E[ρ] =
∑

a,b

χabAaρA
†
b. (1)

Here {χab} is the process matrix (with 4n×4n elements for
n qubits), which contains the full information on the process
E and is measured by QPT. A convenient set of input states
for tomography is the set of product states |ψi〉 = |φ1〉 ⊗ |φ2〉,
where |φ1〉, |φ2〉 ∈ {|x〉 , |y〉 , |z〉, |z̄〉}, which are the one-qubit
eigenstates of the Pauli matrices {σx , σy ,σz, σz} with eigenval-
ues {1,1,1,−1}. Note that, with this choice, entangled states
are not used as input states. The measurement basis is conve-
niently chosen to be σi ⊗ σj where i ∈ {0,x,y,z}, and σ0 = I .
However, in the experiment, the detection scheme relies on the
statistics of fluorescence photons, which corresponds to the
measurement of the expectation value 〈σz ⊗ σz〉 = Tr[ρ(σz ⊗
σz)]. In order to measure the expectation value of 〈σi ⊗ σj 〉,
we perform additional rotations on the two qubits. In general
these rotations require single-qubit addressing capability. For
our purpose, a single discriminatory transition is sufficient for
all the required operations.

In our setup, we use 88Sr+ ions confined in a linear Paul
trap [20]. We work with optical qubits that are encoded
in the |S〉 = 5S1/2,+1/2 ground-state level and in the |D〉 =
4D5/2,+3/2 metastable level which has a 1/e lifetime of 390 ms
[21] [see Fig. 1(a)]. Coherent manipulation of the qubit state
is performed with a narrow linewidth laser at 674 nm (fast
linewidth of ∼80 Hz [22]) which drives an electric-quadrupole
transition. The other Zeeman level of the ground state |S ′〉 =
5S1/2,−1/2, separated by 12.3 MHz from the |S〉 level due
to a constant magnetic field (B0 ≈ 0.44 mT), is used as an
auxiliary level in the state detection scheme. Measuring the
qubit state is accomplished by counting fluorescence photons
on the 5S1/2 → 5P1/2 dipole transition with a photomultiplier
tube. We inferred the number of ions in the |S〉 (bright)
state, for each realization, by the number of detected photons.
The probabilities P0, P1, and P2, of finding zero, one, and
two ions in the |S〉 (bright) state were estimated by the
fraction of realizations with the corresponding number of
ions inferred in that state. The discriminatory transition is
provided through a micromotion sideband. If the two-ion chain
is axially aligned so that one ion sits on the rf null, the other
ion is the only one to possess micromotion sidebands, on
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FIG. 1. (Color online) Two-qubit quantum process tomography.
(a) Energy level diagram of the two ions, with the micromotion (MM)
sideband (shown as a dashed black line) for the ion not sitting on the
rf null, separated by νrf = 21.75 MHz from the carrier transition. The
ground-state levels |S〉 and |S ′〉 are Zeeman split by νZ = 12.3 MHz.
(b) Absolute value of the reconstructed χ matrix of the identity
process |χexp| and the absolute value of the difference with the ideal
identity process |χexp − χid|. The basis of the matrix is σi ⊗ σj where,
for clarity we use the convention X = σx, Y = σy, Z = σz.

which selective quantum control can be performed [17,23],
and we use here the micromotion sideband associated with the
motional carrier transition [dashed energy level in Fig. 1(a)].
To maintain coherence throughout the experimental sequence,
the trap rf and the signals feeding the acousto-optic modulator
(AOM) that drive both the micromotion sideband and the
carrier transition, are all phase-locked to a common time base
provided by a commercial Rb atomic reference.

In order to measure all necessary expectation values, it is
enough to possess single-qubit rotation capability on one qubit
only. We look for an operation Rij such that R†

ij (σi ⊗ σj )Rij =
σz ⊗ σz. Indeed, Rij can be decomposed in the form Rij =
Gα(i,j )Lβ(i,j ), where G (L) is a global (local) rotation around
a direction lying in the (x,y) plane of the optical qubit Bloch
sphere. More precisely, these operators can be written as Gα =
exp(i π

4 σ (1)
α ) ⊗ exp(i π

4 σ (2)
α ), a global π/2 rotation around the

α axis, and Lβ = I (1) ⊗ exp(i π
4 σ

(2)
β ), a local π/2 rotation

around the β axis of only one ion, where α,β = ±x, ± y.
For example Rxy = G−yLx , Rzx = L−y , Rxz = G−yLy , and
so on. Similarly, the state preparation of all product states
mentioned above can be realized using the same set of
operations after initializing the ions to |z〉 ⊗ |z〉 by optical
pumping. Lastly, the value of 〈σz ⊗ σz〉 = P0 + P2 − P1 is
extracted from fluorescence histograms. In addition, some of
the necessary measurements for QPT are of the form I ⊗ σj

or σj ⊗ I , and thus require one to measure separately the state
of each ion. To perform these measurements we utilize the
auxiliary |S ′〉 level to which we transfer one of the ions into
a definitely bright state (|S〉 , |S ′〉). This is accomplished by
first transferring the |S〉 state population into |S ′〉 for both ions
with an rf π pulse. Then another π pulse on the micromotion
sideband transfers the |D〉 state population of that ion into
|S〉. The state of the ion at the null is then determined by
P2 (P0 = 0). Similarly, the state of the ion with micromotion
sideband is determined by applying an additional global carrier
π pulse to both ions.

Using all the above, we first validate our QPT toolbox
by characterizing the identity process. We reconstruct the χ

matrix from the state tomography of the 16 output density ma-
trices [19], and use a maximum likelihood process estimation
[24] in order to obtain a physical matrix (noise and systematic
errors lead to unphysical algebraically calculated χ matrices,
i.e., not completely positive maps). Figure 1(b) shows both the
absolute value of the resulting process matrix |χexp| and the ab-
solute value of difference between the experimentally obtained
matrix and the ideal matrix |χexp − χId|. Here, the values of
the imaginary part are small (<0.02). The definition of proper
(and simple) distance measures for quantum operations is a
subtle problem [25]. For simplicity, we quantify the proximity
between a tomographically reconstructed process Emeas and a
target process E0 by the mean fidelity: F(E0[ρin],Emeas[ρin]),
where F(ρ,σ ) = Tr[

√√
ρσ

√
ρ]2 is the Uhlmann fidelity

between the density matrices ρ and σ , ρin = |�in〉 〈�in|, and
the overbar indicates average over an unbiased set of 36 input
states [5]. Interestingly, this fidelity (contrary to the trace
fidelity [19]) is unity if and only if Emeas = E0 regardless
of whether the processes are unitary or not. For the identity
process of Fig. 1, we find a mean fidelity of 0.95(2), where the
error is the standard deviation on the set of the 36 eigenstates
of σi ⊗ σj , with i,j ∈ {x,y,z} used in the average. While a
single Rabi flop on the micromotion sideband was performed
with a success probability of 0.99(1), we observed that this
efficiency slowly decreases with time if the axial displacement
is not re-adjusted. This is likely due to slow drifts of stray fields
(estimated to be ∼10 V/m/min). Furthermore, small laser
detuning errors tend to reduce the single-qubit rotation fidelity.

Next we apply our tomography protocol to analyze a
Mølmer-Sørensen interaction. The gate is performed on the
|S〉 → |D〉 transition via two sidebands, which are generated
by applying two rf signals into an AOM switch [26], with
frequencies of ωc ± (δ + ε), where ωc is the carrier transition
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FIG. 2. (Color online) A Mølmer-Sørensen entangling gate on a
ground-state cooled two-ion chain. (a) Evolution of the populations
P0 (blue squares), P1 (black circles), and P2 (red triangles) as a
function of the interaction duration. The dashed lines are the analytical
solutions of the MS model [13]; the solid lines also take into account
depolarization (see text). For clarity, single error bars are shown
for t = 200 μs. (b) Parity scan (parity = P0 + P2 − P1) oscillation,
obtained by scanning the phase of a π/2 pulse after a gate time
of tg = 130 μs. The red solid line corresponds to the parameters
extracted from a maximum-likelihood analysis of the data (see text).
Each data point corresponds to 200 repetitions. All error bars of this
panel are the binomial standard errors.
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frequency, δ is a motional sideband used for the inter-
mediate spin-motion entanglement, and ε is the gate de-
tuning. We use the stretch axial mode at a frequency of√

3ωz = 2π×1.679 MHz for entanglement as it is less sensitive
to heating than the center-of-mass mode [27]. The gate
detuning is optimally set according to the Rabi frequency �,
as η� = ε/4, where η ≈ 0.03 is the motional Lamb-Dicke
parameter, and the gate time is tg = 2π/ε. After resolved-
sideband ground-state cooling of the stretch mode, the two ions
are initialized by optical pumping to |SS〉 (with single-ion error
∼10−3 [28]). The gate generates the maximally entangled
state |�〉 = (|SS〉 + i |DD〉)/√2. In Fig. 2(a), we display the
evolution of P0 (blue squares), P1 (black circles), and P2 (red
triangles), obtained for a gate detuning of ε = 2π×7.7 kHz. At
a pulse time of 130 μs (shown by a vertical dashed green line),
the two ions are maximally entangled. There are several meth-
ods to extract the coherences of a two-ion density matrix from
a parity scan. While a least-square fit usually gives a more opti-
mistic result, it suffers from drawbacks, such as a possibility for
unphysical results [29]. We rather adopted a more conservative
maximum-likelihood analysis, and under the assumption of
perfectly distinguishable parity measurements, we use a
binomial distribution function [29]. We determine a parity
contrast of Cp = 0.972(6) [red line of Fig. 2(b)]. Together with
P1(tg) = 0.01(1), we deduce a Bell-state production fidelity of
F(|�〉 〈�| ,ρexp) = 1

2 (1 − P1 + Cp) = 0.981(6).

After calibrating the gate time, we experimentally recon-
structed the χ -process matrices of a single, three, and five
consecutive MS gates (the latter is shown in the upper panel
of Fig. 3). As 15 measurements are done to quantum-state
analyze each of the 16 input states, and assuming 400
repetitions per experiment, a full process tomography totals
240×400 = 96 000 measurements. The target process matrices
can be readily deduced from the analytically known evolution
operator U (t) of two ions interacting with the bichromatic
field [26]. At integer multiples n of the gate time tg , the spin
part of the evolution operator takes the simple form UMS(n) ≡
U (ntg) = exp[−i(nπ/8)(σ (1)

y + σ (2)
y )2], whereas the motional

part of the evolution operator equals the identity. The χ

matrix is calculated by expanding the exponent of UMS, i.e.,
UMS(1) = 1/

√
2(I ⊗ I + iY ⊗ Y ). Plugging this expression

into Eq. (1), we readily find

(χMS)II,II = (χMS)YY,YY = 1/2.
(2)

(χMS)II,YY = −(χMS)YY,II = i/2.

Interestingly, this operation matrix, with four nonzero el-
ements, is the simplest one describing entanglement in a
separable-state basis (see, for comparison, the 16 nontrivial
elements of the process-analyzed CNOT or iSWAP gates in the
σ -operator basis [3,6]). The process matrix shown in Fig. 3
exhibits the four nonzero elements as expected from Eq. (2).
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FIG. 3. (Color online) Process tomography of a Mølmer-Sørensen interaction. Upper panel: Real and imaginary parts of the reconstructed
process matrix Re[χ ] and Im[χ ] of five consecutive gates. Lower panel: (a) Average fidelity. In blue points, the values extracted from the
experimentally reconstructed χ matrices with respect to the target gate operation E0. In red points, the mean values are calculated with respect
to output density matrices for which a depolarizing operation has been applied. Dashed lines are linear fits. (b) Average state purity. In blue
points, calculated from the reconstructed process χ matrices, and in red from a depolarization channel model with a depolarization rate of
1.9(1)×10−2 per gate time. The offset value being due to tomographic error, it is set arbitrarily on the red points, and is not used for the analysis
of the gate. Error bars represent the standard deviation with respect to all input states (see text).
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We now turn to a quantitative analysis of χMS. The
mean fidelity of Emeas with respect to the map E0(ntg)[ρin] =
UMS(n)ρinU

†
MS(n) versus the number of applied gates n is

shown by blue points in Fig. 3(a). Due to gate imperfections
the fidelity decreases with growing number of applied gates
at a rate of ≈1.5×10−2 per gate. The direct interpretation of
imperfections from the process matrix is notoriously difficult
because in the σ operator basis each noise process involves
multiple elements with various weights. Instead, it is common
to compare the measured process to different noise models
[3,6,30]. Since the noise is assumed to be a small perturbation
of the ideal evolution, we describe our nonideal process by the
map E(t)[ρ] = [1 − p(t)]E0(t)[ρ] + p(t)Enoise[ρ], where p(t)
is the probability of error. Guided by the previous observation
of fast (∼1 MHz) laser phase noise on our master laser,
driving incoherent S → D transitions [22], we model the noisy
process by a collective depolarization channel Enoise[ρ] =
ECD[ρ], where ECD[ρin] = ∫

dU U⊗2ρinU
†⊗2, and dU is the

Haar measure on U(2) [31–33]. This channel acts as a projector
on the (U⊗2-isotropic) Werner states:ECD[ρin] = Wα(ρin) where
the Werner state is Wβ = (1 − β)I/4 + β |�−〉 〈�−|, α(ρin) =
1
3 (4 〈�−|ρin|�−〉 − 1), and |�−〉 = (|zz̄〉 − |z̄z〉)/√2 is the
singlet Bell state. For a weak noise, it is reasonable to assume
a linear expansion for the error, p(t) = αCDt , and the single
free parameter of the model, αCD, can be determined from
the purity of our measured processes, which is affected only
by nonunitary operations. We recall that the purity of state σ

is P(σ ) = Tr[σ 2]. The rate of depolarization is determined by
matching the slope (with respect to the number of gates) of
P(E(t)[ρin]) [red points in Fig. 3(b)] with the experimental
purities P(Emeas[ρin]) [blue points in Fig. 3(b)]. The slope
matches our data for a rate of αCD = 1.9(1)×10−2 per gate
time. The identity process is excluded from these fits; since
errors from tomography and the gates have a different origin,
they are largely independent.

We can assess the relevance of this description by calculat-
ing the fidelity of Emeas with respect to an MS interaction that
has suffered partial depolarization F(E(ntg)[ρin],Emeas[ρin])
[red points of Fig. 3(a)]. Remarkably, we find that for the
rate previously determined from the averaged purity, the mean
fidelity to the partially depolarized states is almost constant
as a function of the number of gates applied (residual rate is
<10−3 per gate). This shows that the depolarizing channel
accounts well for the imperfections introduced by successive
applications of gates, and we estimate that the remaining error
is due to the tomography itself. Moreover, we can use this
model to predict the expected imperfections on the population
time dynamics previously measured in Fig. 2. On one hand,
these contain more limited information than the full process
matrices, namely, only the diagonal elements of the output
state starting from ρin = |SS〉 〈SS|, but on the other hand,
they are free from tomographic errors. While the solution of
the perfect MS propagator (dashed lines in Fig. 2) does not
describe our data well for the longest times, the agreement
is excellent when the depolarization is taken into account
(solid lines), without any adjustable parameter. Within this
model we expect at t = tg a Bell-state production fidelity
of 98.7% starting from |SS〉, in good agreement with the
direct measurement of 0.981(6). The measured depolarization
rate is in rough agreement with the off-resonance S ↔ D

incoherent transfer rate we observe on a single trapped ion. A
more thorough study of the cause for depolarization is under
way.
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Leibfried, and D. J. Wineland, Phys. Rev. Lett. 110, 173002
(2013).

010103-4

http://dx.doi.org/10.1103/PhysRevA.52.3457
http://dx.doi.org/10.1103/PhysRevA.52.3457
http://dx.doi.org/10.1103/PhysRevA.52.3457
http://dx.doi.org/10.1103/PhysRevA.52.3457
http://dx.doi.org/10.1103/PhysRevLett.95.210505
http://dx.doi.org/10.1103/PhysRevLett.95.210505
http://dx.doi.org/10.1103/PhysRevLett.95.210505
http://dx.doi.org/10.1103/PhysRevLett.95.210505
http://dx.doi.org/10.1103/PhysRevA.64.012314
http://dx.doi.org/10.1103/PhysRevA.64.012314
http://dx.doi.org/10.1103/PhysRevA.64.012314
http://dx.doi.org/10.1103/PhysRevA.64.012314
http://dx.doi.org/10.1103/PhysRevLett.97.220407
http://dx.doi.org/10.1103/PhysRevLett.97.220407
http://dx.doi.org/10.1103/PhysRevLett.97.220407
http://dx.doi.org/10.1103/PhysRevLett.97.220407
http://dx.doi.org/10.1126/science.1177077
http://dx.doi.org/10.1126/science.1177077
http://dx.doi.org/10.1126/science.1177077
http://dx.doi.org/10.1126/science.1177077
http://dx.doi.org/10.1038/nphys1639
http://dx.doi.org/10.1038/nphys1639
http://dx.doi.org/10.1038/nphys1639
http://dx.doi.org/10.1038/nphys1639
http://dx.doi.org/10.1103/PhysRevLett.82.1971
http://dx.doi.org/10.1103/PhysRevLett.82.1971
http://dx.doi.org/10.1103/PhysRevLett.82.1971
http://dx.doi.org/10.1103/PhysRevLett.82.1971
http://dx.doi.org/10.1038/35005011
http://dx.doi.org/10.1038/35005011
http://dx.doi.org/10.1038/35005011
http://dx.doi.org/10.1038/35005011
http://dx.doi.org/10.1038/nature01492
http://dx.doi.org/10.1038/nature01492
http://dx.doi.org/10.1038/nature01492
http://dx.doi.org/10.1038/nature01492
http://dx.doi.org/10.1126/science.1208001
http://dx.doi.org/10.1126/science.1208001
http://dx.doi.org/10.1126/science.1208001
http://dx.doi.org/10.1126/science.1208001
http://dx.doi.org/10.1103/PhysRevLett.103.120502
http://dx.doi.org/10.1103/PhysRevLett.103.120502
http://dx.doi.org/10.1103/PhysRevLett.103.120502
http://dx.doi.org/10.1103/PhysRevLett.103.120502
http://dx.doi.org/10.1038/nphys961
http://dx.doi.org/10.1038/nphys961
http://dx.doi.org/10.1038/nphys961
http://dx.doi.org/10.1038/nphys961
http://dx.doi.org/10.1088/1367-2630/11/2/023002
http://dx.doi.org/10.1088/1367-2630/11/2/023002
http://dx.doi.org/10.1088/1367-2630/11/2/023002
http://dx.doi.org/10.1088/1367-2630/11/2/023002
http://dx.doi.org/10.1103/PhysRevLett.106.130506
http://dx.doi.org/10.1103/PhysRevLett.106.130506
http://dx.doi.org/10.1103/PhysRevLett.106.130506
http://dx.doi.org/10.1103/PhysRevLett.106.130506
http://dx.doi.org/10.1103/PhysRevLett.81.3631
http://dx.doi.org/10.1103/PhysRevLett.81.3631
http://dx.doi.org/10.1103/PhysRevLett.81.3631
http://dx.doi.org/10.1103/PhysRevLett.81.3631
http://dx.doi.org/10.1103/PhysRevLett.110.173002
http://dx.doi.org/10.1103/PhysRevLett.110.173002
http://dx.doi.org/10.1103/PhysRevLett.110.173002
http://dx.doi.org/10.1103/PhysRevLett.110.173002


RAPID COMMUNICATIONS

QUANTUM PROCESS TOMOGRAPHY OF A MØLMER-S . . . PHYSICAL REVIEW A 90, 010103(R) (2014)

[17] N. Navon, S. Kotler, N. Akerman, Y. Glickman, I. Almog, and
R. Ozeri, Phys. Rev. Lett. 111, 073001 (2013).

[18] J. F. Poyatos, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 78, 390
(1997).

[19] M. Nielsen and I. Chuang, Quantum Computation and Quantum
Information (Cambridge University Press, Cambridge, UK,
2010).

[20] N. Akerman, Y. Glickman, S. Kotler, A. Keselman, and R. Ozeri,
Appl. Phys. B 107, 1167 (2012).

[21] V. Letchumanan, M. A. Wilson, P. Gill, and A. G. Sinclair,
Phys. Rev. A 72, 012509 (2005).

[22] Y. Glickman, Ph.D. thesis, Weizmann Institute of Science,
2012.

[23] D. Leibfried, Phys. Rev. A 60, R3335(R) (1999).
[24] Z. Hradil, Phys. Rev. A 55, R1561 (1997).
[25] A. Gilchrist, N. K. Langford, and M. A. Nielsen, Phys. Rev. A

71, 062310 (2005).
[26] C. Roos, New J. Phys. 10, 013002 (2008).
[27] B. E. King, C. S. Wood, C. J. Myatt, Q. A. Turchette, D.

Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland,
Phys. Rev. Lett. 81, 1525 (1998).

[28] A. Keselman, Y. Glickman, N. Akerman, S. Kotler, and R. Ozeri,
New J. Phys. 13, 073027 (2011).

[29] T. Monz, Ph.D. thesis, University of Innsbruck, 2011.
[30] A. G. Kofman and A. N. Korotkov, Phys. Rev. A 80, 042103

(2009).
[31] R. F. Werner, Phys. Rev. A 40, 4277 (1989).
[32] Another potentially relevant noise stems from limited T2, which

is described by a phase damping noise Enoise[ρ] = ∑
i∈S P̂iρP̂i ,

where S = {|SS〉, |SD〉, |DS〉 , |DD〉} and P̂i = |i〉 〈i|. This
map does not describe our data well as in that case, the loss of
fidelity results from a decay of coherences, not from a population
mismatch.

[33] The map ECD bears strong similarities with the fully mix-
ing depolarization map EFD[ρ] = ∫

dU dU ′(U ⊗ U ′)ρ(U † ⊗
U

′†) = (I ⊗ I )/4. Indeed, for all separable input states that
are orthogonal on the Bloch sphere, ECD is fully mixing. More
quantitatively, F(EFD[ρ],ECD[ρ]) = 0.97, and we found that for
104 Haar-drawn pure two-qubit states, 80% have a fidelity F
with the fully mixed state higher than 0.95, and 55% have
F > 0.98. As a result, the fully depolarizing channel also
provides a good description of our data.

010103-5

http://dx.doi.org/10.1103/PhysRevLett.111.073001
http://dx.doi.org/10.1103/PhysRevLett.111.073001
http://dx.doi.org/10.1103/PhysRevLett.111.073001
http://dx.doi.org/10.1103/PhysRevLett.111.073001
http://dx.doi.org/10.1103/PhysRevLett.78.390
http://dx.doi.org/10.1103/PhysRevLett.78.390
http://dx.doi.org/10.1103/PhysRevLett.78.390
http://dx.doi.org/10.1103/PhysRevLett.78.390
http://dx.doi.org/10.1007/s00340-011-4807-6
http://dx.doi.org/10.1007/s00340-011-4807-6
http://dx.doi.org/10.1007/s00340-011-4807-6
http://dx.doi.org/10.1007/s00340-011-4807-6
http://dx.doi.org/10.1103/PhysRevA.72.012509
http://dx.doi.org/10.1103/PhysRevA.72.012509
http://dx.doi.org/10.1103/PhysRevA.72.012509
http://dx.doi.org/10.1103/PhysRevA.72.012509
http://dx.doi.org/10.1103/PhysRevA.60.R3335
http://dx.doi.org/10.1103/PhysRevA.60.R3335
http://dx.doi.org/10.1103/PhysRevA.60.R3335
http://dx.doi.org/10.1103/PhysRevA.60.R3335
http://dx.doi.org/10.1103/PhysRevA.55.R1561
http://dx.doi.org/10.1103/PhysRevA.55.R1561
http://dx.doi.org/10.1103/PhysRevA.55.R1561
http://dx.doi.org/10.1103/PhysRevA.55.R1561
http://dx.doi.org/10.1103/PhysRevA.71.062310
http://dx.doi.org/10.1103/PhysRevA.71.062310
http://dx.doi.org/10.1103/PhysRevA.71.062310
http://dx.doi.org/10.1103/PhysRevA.71.062310
http://dx.doi.org/10.1088/1367-2630/10/1/013002
http://dx.doi.org/10.1088/1367-2630/10/1/013002
http://dx.doi.org/10.1088/1367-2630/10/1/013002
http://dx.doi.org/10.1088/1367-2630/10/1/013002
http://dx.doi.org/10.1103/PhysRevLett.81.1525
http://dx.doi.org/10.1103/PhysRevLett.81.1525
http://dx.doi.org/10.1103/PhysRevLett.81.1525
http://dx.doi.org/10.1103/PhysRevLett.81.1525
http://dx.doi.org/10.1088/1367-2630/13/7/073027
http://dx.doi.org/10.1088/1367-2630/13/7/073027
http://dx.doi.org/10.1088/1367-2630/13/7/073027
http://dx.doi.org/10.1088/1367-2630/13/7/073027
http://dx.doi.org/10.1103/PhysRevA.80.042103
http://dx.doi.org/10.1103/PhysRevA.80.042103
http://dx.doi.org/10.1103/PhysRevA.80.042103
http://dx.doi.org/10.1103/PhysRevA.80.042103
http://dx.doi.org/10.1103/PhysRevA.40.4277
http://dx.doi.org/10.1103/PhysRevA.40.4277
http://dx.doi.org/10.1103/PhysRevA.40.4277
http://dx.doi.org/10.1103/PhysRevA.40.4277



