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High-fidelity two-qubit entangling gates play an important role in many quantum information
processing tasks and are a necessary building block for constructing a universal quantum computer.
Such high-fidelity gates have been demonstrated on trapped-ion qubits; however, control errors and noise
in gate parameters may still lead to reduced fidelity. Here we propose and demonstrate a general family of
two-qubit entangling gates which are robust to different sources of noise and control errors. These gates
generalize the renowned Mglmer-Sgrensen gate by using multitone drives. We experimentally imple-
mented several of the proposed gates on $8Sr" ions trapped in a linear Paul trap and verified their resilience.
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Quantum information processing (QIP) is a rapidly
growing field. Two-qubit entanglement gates play an essen-
tial part in many QIP tasks, and in particular serve as part of a
universal gate set [1,2]. Moreover, the ability to execute high-
fidelity gates is necessary in order to achieve fault-tolerant
quantum computing [3]. To this end, gates which are less
sensitive to control errors would be beneficial.

Trapped ions are a promising platform for QIP applica-
tions; therefore, implementing high-fidelity two-qubit
entangling gates in trapped-ion systems has been at the
center of many experimental investigations [4—10]. In most
of these demonstrations, however, fine-tuning and stability
of gate parameters were required.

Here we present a general scheme for engineering robust
entanglement gates in trapped-ion systems. We generalize
the well-known Mglmer-Sgrensen (MS) gate [11,12] by
using additional frequency components in the laser drive.
We show that these components may be used as additional
degrees of freedom (d.o.f.) to optimize gate robustness to
different noise processes and control errors. Our main
results are entangling gates that are robust to gate timing
errors, harmonic trap frequency uncertainties, and off-
resonance couplings to neighboring transitions.

Recently, several gates with increased resilience to differ-
ent noises were proposed [13,14] and demonstrated [15-18].
In these, a specific source of infidelity is mitigated by
solving, typically numerically, a minimization problem. We
provide a general recipe in which one may combine several
infidelity sources of choice and determine to what degree
each will be treated. The corresponding gate scheme is then
given analytically and is straightforward to implement.

We experimentally demonstrate our gates on a 53Sr™,
two-ion crystal, trapped in a linear Paul trap. We define
the states |§) =58, 1 and |D) = 4D; _; as our qubit levels.
The |S) <> |D) optical quadrupole transition at 674 nm is
driven by a narrow-linewidth (< 20 Hz) laser. We cool the
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ion crystal normal mode to an average phonon number
n = 0.17, although some of our data were taken in a Doppler
cooled regime with 7 = 9.8 for comparison. More details
about our system can be found in Refs. [19,20].

The MS entangling gate is implemented by driving the
qubit transition in a two-ion crystal with a bichromatic field
containing the frequencies w, = wy £+ (v + &j). @y is the
resonance frequency of the qubit transition, v is the
frequency of a selected normal mode of the crystal, and
&y is a frequency detuning from the sideband transition.
Following Ref. [12], the effective interaction Hamiltonian
is H=-2nnQJ (ae" + H.c.), where & is the mode-
lowering operator, 7 is the Lamb-Dicke parameter, €2 is the
laser’s Rabi frequency, and J y= IQ® 6, + 6, ® D)/2isa
global § rotation operator in the two-qubit subspace. This
interaction yields the unitary evolution operator

U(t; 0) = e—iAT; p=iF (1)],% p=iG(1)], p (1)

with

V2R o a0,
0

V21Q
o

A(f) = - A ' deF(2)0,G(x). 2)

G(1)

F(t) = -

[sin (&ot)],

Equation (1) implies that the ions’ evolution follows a
trajectory (G(t), F(t)) in the normal mode’s phase space,
which depends on the eigenvalue of J y- In the J y basis it
acquires a geometric phase A(f), which corresponds to a
correlated rotation by an angle equal to the area enclosed
by the trajectory. By choosing &, = 212, the phase-space
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trajectory closes at the gate time, defined by T =2x/&,
such that A(T) = x/2.

Ideally, the MS gate generates deterministic, temper-
ature-independent, two-qubit entanglement. However, this
requires exact calibration and short-term stability of the
gate parameters, such as the gate time 7 and the normal-
mode frequency v. Inaccuracies and drifts will result in a
reduced, temperature-dependent gate fidelity. Furthermore,
the MS scheme is substantially slower than the normal-
mode period in order to avoid unwanted off-resonance
carrier coupling.

To mitigate these shortcomings, we generalize this
entangling scheme by employing additional frequency
tones. The amplitudes of these tones are then treated as
additional d.o.f. and used to reduce, and in some cases
eliminate, the effect of errors in different gate parameters
on its fidelity, leading to robust entanglement. Here we
demonstrate robustness to gate timing errors, normal-mode
frequency errors, and the reduction of off-resonance carrier
coupling.

Our generalized entangling gate is formally implemented
by driving the ions with a multichromatic beam containing N
frequency pairs, w.; = w =+ (v+n;&), with relative
amplitudes r; and phases satisfying ¢, ; + ¢_; = 0, such
thati =1,...,N. Weinterpretr; > 0(< 0)as ¢, ; —¢p_; =
0 (= n).

We now turn to deriving the generalized gate Hamiltonian.
We assume the ions are well within the Lamb-Dicke regime
and expand the interaction Hamiltonian in orders of # to
obtain

N
H =2nQJ ™ —2mQJ, ) (ae"' +He.) (3)
i=1
The first term in Eq. (3) generates unwanted off-resonance
carrier coupling, i.e., local qubit excitations, without involv-
ing the normal mode. By assuming that Q < v, this term may
be neglected in a rotating wave approximation. Since the
commutation relations of any of the remaining terms in
Eq. (3) are proportional to identity, the Hamiltonian can be
solved exactly. The resulting unitary operator is given by the
same expression as in Eq. (1); however, with a generalized
trajectory given by

_\/5779 N T
=5 ;n—i[l—cos (ni&ot)],

FO=-Y20 Mgl @)

G(1)

Once again, the normal-mode motion follows a trajec-
tory (G(z),F(t)) in phase space, accompanied by a
correlated rotation in the two-qubit subspace by an angle
corresponding to the area enclosed by the trajectory.

Similarly to the MS case, we demand that at the gate time
G(T) = F(T) = 0 and A(T) = =/2, which is satisfied by
setting

2
H=m2="2. (5

Equation (5) defines a family of entangling gates that differ
by the harmonic tones used, {n;}Y |, and their relative
amplitudes, {r; fV: - These parameters can be used as
additional d.o.f. for optimizing the entangling gate’s robust-
ness to different noises or control errors. The case N = 1,
n; = r; = 1 retrieves the MS entangling gate.

A key component in the optimization is the gate fidelity,
Fg = <l//ideal ’,ﬁ(T) |l//ideal>’ where Videal is the ideal tWO'quit
final state and p(7) is the two-qubit density matrix during
the gate evolution. Here, p is obtained by tracing out the
normal-mode d.o.f., yielding

e~ in (A + £G)

2 ’

(6)

where 7 is the average phonon number assuming an initial
thermal state. F, depends on various physical parameters
such as &, v, and T The closed form of Eq. (6) allows for
the expansion of F in any parameter of choice, a, which
may deviate from its ideal value a in the experiment due to
imperfections:

0*(Fg)

F,(6a) =1+ - (6a)* + O(6a*). (7)

a9

Increasing robustness to deviations in «a is possible if the
leading-order contribution to the fidelity may be minimized
or even eliminated by a specific choice of {n;} and {r;}.

The first optimization procedure we demonstrate is that
of gate timing errors. We set T = T, 4+ 6T and expand the
fidelity function. Eliminating the first N — 1 leading orders
in 0T reduces to a set of constraints V,,r = 0, where r is a
vector of N amplitudes and V,, is an N x N Vandermonde
matrix defined by (V,),; = (n;)""". There are no con-
straints on the n;’s. Satisfying these leads to a fidelity of
the form 1 — F, ~ (6T/T)*. For N =2, i.e., eliminating
the second-order term, our solution yields r; = —r.

By choosing n; = 1 and n, = 2, we obtain an entan-
gling gate with a cardioid (heart-shaped) phase-space
trajectory. Inspired by this, we denote all entangling gates
which satisfy this set of constraints as cardioid gates.
Specifically, the heart-shaped gate is a Cardioid(1,2).
However, implementing a Cardioid(1,2) may result in
unwanted on-resonance sideband excitations due to
nonlinear responses of system components (see the
Supplemental Material [21]). We mitigate such effects by
choosing n; € {2,3,7,8,...,5n+2,5n + 3}.
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FIG. 1. Phase-space trajectories and population evolution.
(a) Phase-space trajectories of MS (red) and the heart-shaped
Cardioid(1,2) (orange) and Cardioid(2,3) (green) gates in the
absence of errors. All three gates start and end at (0,0) and enclose
an area of /2. (b) Same as (a), but with a 6% gate timing error.
The MS gate no longer closes the trajectory, while the cardioid
gates are almost unaffected. (c) Evolution of the MS gate. In this
and the following figures, population data (connected circles) of
the SS (blue), DD (red) and SD + DS (orange) states are obtained
by averaging over 625 realizations, yielding at most 2% projection
error, and are compared to the analytic solution (solid line) with no
fitting parameters. The gate time, # = T, is seen as the SS and DD
populations are at 50%, while the SD + DS population vanishes.
(d) Cardioid(2,3) gate showing a flat response of the populations
around the gate time, indicating increased robustness to timing
errors. (e) Antioid(2,3) gate employing the same tones and power
as in the Cardioid(2,3) gate, however with uniform phase. We
observe a narrow quadratic response around the gate time.

The reduction of gate error in cardioid gates is the result
of coherent interference of the contributions from the
different tones. To show this, we compare the cardioid
with an entangling gate which uses the same tones and
amplitudes, but with all amplitudes having the same phase.
The resulting gate has an increased sensitivity to gate
timing errors. Since this gate has the opposite effect on
timing-error robustness, we refer to this family of gates as
antioid gates.

An intuitive understanding of the origin of robustness to
timing errors can be gained by observing that the cardioid
constraint is simply a demand for order-N smoothness of F
and G at the beginning and end of the gate. This means that
the spin-dependent forces applied by the gate vary
smoothly towards the gate’s beginning and end as well.

Figures 1(a) and 1(b) show a comparison between the
phase-space trajectory formed by the MS (red), Cardioid
(1,2) (orange), and Cardioid(2,3) (green) gates for an ideal
scenario and in the presence of a 6% gate timing error.
Robustness is evident, as the cardioid trajectories seem
almost unaffected by the error. Furthermore, the cardioid
gates’ trajectories remain closer to the origin, indicating that
less motion of the ion crystal is excited. Figures 1(c)-1(e)

100
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FIG. 2. Finite-temperature gates. Here ions are Doppler cooled
to 1x9.8. Color coding is identical to that of Fig. 1(c).
(a) Antioid(2,3) gate population evolution. A narrow change
around t =T marks ion entanglement. Gate fidelity is very
sensitive to timing errors. (b) Cardioid(2,3,7,8) gate population
evolution. Using four tones increases the robustness, resulting in
a wide feature around gate time.

show the measured and analytically calculated evolution of
the qubit-state population for the MS, Cardioid(2,3), and
Antioid(2,3) gates, respectively. Compared to the standard
MS gate, the Cardioid(2,3) shows a variation of the ion-state
populations around the gate time which is flatter than
quadratic, while the Antioid(2,3) has a faster quadratic
response.

Due to the dependence of the fidelity on 7 in Eq. (6), any
small deviation of F(T') or G(T) from O will result in errors
that are exponentially amplified by 7. Therefore, robustness
is especially important when implementing entangling
gates in systems which are not cooled to the normal-mode
ground state. Figure 2 shows the population evolution of
antioid and cardioid gates and their corresponding robust-
ness to timing errors in a Doppler cooled regime, with
n =~ 9.8. As seen, the antioid gate is highly sensitive to gate
timing errors at this high temperature, whereas the cardioid
gate shows a flatter response.

We next turn to optimizing our gate to mitigate off-
resonance carrier coupling. The gate error due to this effect
is given by [12]

© (1) 2Qsin(WT) S~ 1\
1_Fd:2<(2n§!< SV(T)ZI_m>' (8)

n=0 i=1

Interestingly, eliminating this term in increasing orders of
Q/v yields exactly the cardioid set of constraints, indicating
that the cardioid gate will eliminate both timing as well
as carrier coupling errors. As an example, a typical MS
gate with Q,/v = 0.1 and gate time T, suffers from ~2%
infidelity due to off-resonance carrier coupling. Increasing
the Rabi frequency to 3, will result in a gate time % T, but
also increases the infidelity by an order of magnitude.
However, using a Cardioid(1,2) gate with a 3Q; Rabi
frequency will result in ~0.1% infidelity with a gate time

\/éTO ~ 0.55T . Figure 3 shows the effect of off-resonance
coupling on the MS and Cardioid(2,3) gates. As seen in the
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FIG. 3. Off-resonance carrier coupling. (a) Population evolu-
tion of the MS and Cardioid(2,3) gates, showing data (circles) and
analytical solution (solid lines). Here Q/v ~ 5%, which, accord-
ing to Eq. (8), corresponds to 2% infidelity for the MS gate and
0.1% for the Cardioid(2,3) gate. This infidelity is seen by the
SD + DS populations not vanishing at the gate time. (b) Zoom-in
scan of SD + DS populations at the gate start. Fast carrier
oscillations are easily observed for the MS gate (yellow points).
These are heuristically fitted to off-resonance Rabi oscillations
Asin? (VQ? +121) (yellow line). For the cardioid no such
oscillations are seen. (c) Zoom-in scan of SD 4 DS populations
around the gate time. The carrier oscillations are less distinct,
since here projection noise is on par with the oscillation
amplitude. The MS gate populations oscillate around 8% at gate
time, while the cardioid populations oscillate around 2%, which
corresponds directly to an increased gate fidelity. The 2%
cardioid infidelity is due to other imperfections and not carrier
coupling.

MS gate, fast oscillations of SD + DS populations are
caused by off-resonance carrier coupling. These are sig-
nificantly suppressed in the cardioid gate.

Intuitively, this works since a smoother gate envelope
has a narrower spectral content and therefore less overlap
with off-resonance transitions such as the carrier. Using
smooth gate envelopes to reduce carrier coupling has
already been suggested [22] and implemented [S]. Here
we have provided a general treatment that does not rely on
spectral density arguments and does not require intermedi-
ate additional pulses as proposed in Ref. [22], which
compensate for a spectral overlap with the motional side-
band transitions.

We turn to optimize the gate to mitigate normal-mode
frequency errors. In many implementations this parameter
is actively stabilized to avoid errors [10,23]. Here, we set
v = vy + 6v and employ our optimization procedure. This
yields a set of constraints V,-ir = 0, where this time the
Vandermonde matrix is (V,-1); ; = (n;)™". As opposed to
timing-error robustness, the quadratic term cannot be
eliminated, and the fidelity always scales quadratically in
ov/&y. However, the prefactor of this quadratic term is
minimized. The gate purity, which is a measure of disen-
tanglement from the motion, defined as P, = Tr(p?), does
become robust order by order. This is important, since it

for a combined 6% timing error and 6% normal-mode frequency
error (dark). Clearly, the CarNu(2,3,7) gate displays robustness,
as its trajectory is almost unaffected. (b) Population evolution of
CarNu(2,3,7). Color coding is the same as in Fig. 1(c). The plot
shows a flat response of the state populations around the gate
time, indicating increased robustness to timing errors.

reduces the number of error syndromes that need to be
considered when implementing quantum error correction.
This quadratic scaling of the fidelity encourages us to add
only one d.o.f.,, as minimizing higher orders will have a
marginal effect. However, adding further tones may be used
to combine this with eliminating timing errors and off-
resonance carrier coupling. We denote this type of com-
bined entangling gate as a CarNu gate. Figure 4 shows
the phase-space trajectory and population evolution of the
CarNu(2,3,7) gate, which demonstrates robustness to gate
timing errors and off-resonance carrier coupling, as well as
normal-mode frequency errors.

Finally, we directly measure the fidelity of the different
gates and observe their robustness properties. Figure 5(a)
shows the fidelity of the different gates as a function of gate
timing error. Cardioid gates display increased robustness,
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FIG. 5. Gate fidelities, showing data (filled circles) and a

rescaled analytical solution (solid lines). (a) Gate fidelity vs
timing error. The MS (red) and Antioid(2,3) (orange) fidelities
scale quadratically with the timing error, with the antioid showing
the narrowest response. The CarNu(2,3,7) (blue) and Cardioid
(2,3,7) (purple) fidelities have fourth- and sixth-order depend-
ences on the timing error, respectively, and are therefore more
resilient. (b) Gate fidelity vs normal-mode frequency errors. Here
optimization is not order by order; rather, the prefactor of the
quadratic term is minimized. The CarNu(2,3,7) (blue) shows
the flattest response compared to the other entangling schemes.
The inset shows gate purity, for which the optimization is order
by order. The CarNu(2,3,7) purity has a fourth-order dependence
on the error, while the other gates scale quadratically.
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seen as a higher-order flat response to timing errors.
Figure 5(b) shows the fidelity of the different gates as a
function of normal-mode frequency error. As expected, the
CarNu gate displays the flattest response. Our robust
entangling gates also display a slightly increased maximal
fidelity; however, this is not a substantial improvement on
our typical gate fidelity, showing that our gates are limited
by other factors. We estimate that the dominant of those is
fast phase noise, at 0.5-1.5 MHz, in our narrow-linewidth
laser, which incoherently couples to the carrier transition
during the gate drive.

We state, without demonstration, that the CarNu(2,3,7)
gate also mitigates errors due to normal-mode heating [18]
and errors due to motional coupling to neighboring normal
modes (see the Supplemental Material [21]).

In conclusion, we have analytically derived and exper-
imentally demonstrated a scheme for robust entanglement
gates for trapped-ion qubits. Our scheme increases the
robustness to gate timing errors and normal-mode fre-
quency errors as well as reducing off-resonance carrier
coupling. This allows for the use of higher laser power and
the implementation of faster entangling gates while main-
taining high gate fidelities. This optimization is particularly
important when working with larger Coulomb crystals
where the spectral distance between modes is small. From
a broader point of view, we believe our methodology offers
a simple and straightforward prescription for increasing the
efficiency of entangling operations, which are an essential
tool in quantum information experiments, as well as many
other research directions.

This work was supported by the Crown Photonics
Center, the ICore-Isracli Excellence Center Circle of
Light, the Israeli Science Foundation, the Israeli
Ministry of Science Technology and Space, the Minerva
Stiftung, and the European Research Council (consolidator
Grant No. 616919-Ionology).

Note added.—Recently, we have become aware of related
work, based on Ref. [13], where RF entanglement gates
were made more resilient to normal-mode heating and
frequency drifts [18].
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