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Atomic sensing is, at large, based on measuring energy differences. Specifically, magnetometry is
typically performed by using a superposition of two quantum states, the energy difference of which
depends linearly on the magnetic field due to the Zeeman effect. The magnetic field is then evaluated from
repeated measurements of the accumulated dynamic phase between the two Zeeman states. Here we show
that atomic clock states, with an energy separation that is independent of the magnetic field, can
nevertheless acquire a phase that is magnetic field dependent. We experimentally demonstrate this on an
ensemble of optically trapped 87Rb atoms. Finally, we use this effect to propose a magnetic field sensing
method for static and time-dependent magnetic fields and analyze its sensitivity, showing it essentially
allows for high-sensitivity magnetometery.
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Magnetometry is widely used in many diverse
fields [1–8]. Atomic magnetometry is performed by
tracking an accumulated dynamical phase of a magnetic-
field-dependent transition of choice, which evolves due to
Larmor precession, and comparing it to a stable local
oscillator, e.g., the Zeeman ground state manifold of 87Rb
atoms compared to a driving rf field. Such a system was
originally proposed by Dehmelt [9] and demonstrated by
Bell and Bloom [10,11]. Measuring an accumulating
dynamical phase is a prevalent approach of atomic sensing
[12,13].
Similarly, atomic clocks operate by locking a local

oscillator, an optical or rf source, to a transition frequency
between two quantum states. Since stability is a crucial
property of the clock, the atomic states are chosen such that
their transition is as insensitive as possible to ambient
magnetic fields [14,15]. The dependence of the transition
between such clock states on magnetic fields typically
vanishes at first order. For example, the j62S1=2; F ¼ 4;
mF ¼ 0i ↔ j62S1=2; F ¼ 3; mF ¼ 0i transition in the
133Cs atom, on which the International System of Units
(SI) second is defined [16].
Here we investigate atomic clock states and show,

theoretically and experimentally, that a magnetic-field-
dependent phase difference between two atomic states
can arise, even when the transition energy does not depend
on the magnetic field. Our approach generalizes the
topological π phase shift acquired by m ¼ 0 atomic states,
upon flipping the magnetic field direction, which was
discovered by Robbins and Berry [17]. By driving the
clock states appropriately, this phase is no longer discrete;
rather it becomes continuous and indicative of the magnetic
field direction.
The clock states differ by their symmetry under rotations

and have a constant energy difference, e.g., the hyperfine
splitting. In a frame rotating with an on-resonance drive, the

states become degenerate, but their symmetry difference is
translated to a dependence of the coupling on the direction
of the magnetic field.
We utilize this effect by mapping rotations of the

magnetic field to its magnitude, and propose a clock-
state-based magnetometry method. We explore the
method’s sensitivity, and show that it allows for high-
sensitivity magnetometry. Furthermore, we discuss the
relevance of this effect to the performance of atomic clocks.
Our derivations below are general for atomic clock

states; however, for simplicity we consider the j1; 0i≡
jF ¼ 1; mF ¼ 0i and j2; 0i clock states of the 5S1=2 ground
level of 87Rb, with a transition energy that is in leading
order magnetic field independent.
We begin by deriving the Breit-Rabi Hamiltonian in the

clock mF ¼ 0 subspace [18], with an additional driving
term. The lab-frame Hamiltonian of the 5S1=2 ground level
of 87Rb is given by

H ¼ Hhf þHZ þ VðtÞ;

Hhf ¼
ℏAhf

2
I · J;

HZ ¼ μNgIB · I þ μBgJB · J;

V ¼ ℏ
μ

�
Ω
2
eiωrf t þ H:c:

�
·ðμNgII þ μBgJJÞ; ð1Þ

where Hhf is the hyperfine interaction Hamiltonian, which
couples the nucleus spin operators I with the electronic spin
operators J, such that the hyperfine splitting is Ahf . The
term HZ is the Zeeman Hamiltonian, describing the
coupling of the quantization magnetic field, B ¼ Bb̂, to
the nuclear and electronic spins through their respective
Bohr magnetons, μN and μB, and the Landé g factors, gI and
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gJ. The term V describes the same Zeeman coupling to an
additional time-dependent, rf, magnetic field used to drive
transitions between the two clock states. We assume that Ω
is complex, i.e., that the rf drive can be written as two
orthogonal quadratures. For simplicity we restrict Ω such
that the resulting polarization ellipse lies in a plane
containing the quantization field direction. Furthermore,
we have defined μ≡ μNgI − μBgJ.
The hyperfine Hamiltonian in Eq. (1) can be diagonalized

in the jF;mFi basis, with F the total angular momentum
and mF its projection along the quantization magnetic
field direction b̂. By shifting it appropriately it becomes
Hhf ¼ ðℏAhf=2ÞðδF;2 − δF;1Þ. In this basis, HZ can be
written as a direct sum of five subspaces marked by their
mF values: HZ ¼ HmF¼−2

Z ⊕ HmF¼−1
Z ⊕ � � � ⊕ HmF¼2

Z . In
the clock subspace the Zeeman Hamiltonian is HmF¼0

Z ¼
ðμB=2Þτx, such that τ ¼ ðτx; τy; τzÞ are Pauli spin operators
acting in the clock subspace.
When ωrf is tuned close to the clock transition frequency

and far detuned from all other transitions (compared to
jΩj), we can assume it does not excite any transitions
outside of the clock subspace.
The lab-frame Hamiltonian in the clock subspace is

therefore composed of the hyperfine splitting, a Zeeman
term, and the rf drive:

Hclk;lab ¼
ℏAhf

2
τz þ 1

2
½μBþ ℏðΩ · b̂eiωrf t þ H:c:Þ�τx: ð2Þ

In the absence of the rf drive, the B-dependent Zeeman term
weakly mixes the j2; 0i and j1; 0i states, resulting in a small
energy shift, which is quadratic in the Breit-Rabi parameter,
ðμB=ℏÞ=Ahf , and is known as the second-order Zeeman
shift. In leading order the mF ¼ 0 states are clock states.
For 87Rb the ground state hyperfine frequency splitting is
approximately 6.8 GHz while the Zeeman splitting in these
manifolds is approximately �Δm × 0.70 MHz=G [19];
thus we may neglect this term for a wide range of magnetic
field magnitudes.
We change to a frame rotating with ðℏωrf=2Þτz, and

perform a rotating wave approximation, neglecting
terms rotating with rate ≥ ωrf , to obtain the interaction
Hamiltonian,

Hclk;I ¼
�
ℏη
2

�
τz þ ℏ

2
ðΩ · b̂τþ þ H:c:Þ; ð3Þ

with the rf drive detuning, η ¼ Ahf − ωrf . Equation (3)
shows that the phase of the Rabi frequency is sensitive to
the projection of the rf field on the magnetic field direction.
For an elliptically polarized rf field, Ω ¼ eiθðΩ1 þ iΩ2Þ,

where Ω1 and Ω2 are the major and minor orthogonal axes
of the polarization ellipse and θ is the rf phase, the on-
resonance Hamiltonian is

Hclk ¼
ℏ
2
Ωeff ½cosðξÞτx þ sinðξÞτy�;

Ωeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ1 · b̂Þ2 þ ðΩ2 · b̂Þ2

q
;

ξ ¼ θ þ arctan

�
Ω2 · b̂

Ω1 · b̂

�
; ð4Þ

where we have arbitrarily defined τx as the rotation operator
acting at θ ¼ 0. Equation (4) gives rise to a Ramsey-like
Hamiltonian where ξ plays the role of the pulse phase;
i.e., it is the angle between the x̂ axis and the Rabi vector on
the equator of the Bloch sphere spanned by the two clock
states.
We first show that the Hamiltonian in Eq. (4) generates

Rabi nutation of population between the two clock states.
Here, b̂ lies in the polarization plane at an angle ϕ with Ω1.
This simplifies Eq. (4) such that ξ ¼ θ þ ϕ. The probability
for the system to remain in the j2; 0i state P2 is

P2 ¼ sin2
�
Ω1T
2

β

�
;

β≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ðϕÞ þ Ω̃2sin2ðϕÞ

q
;

Ω̃ ¼ Ω2=Ω1: ð5Þ

As expected from a single pulse measurement, Eq. (5) is
independent of the rf phase θ.
We experimentally demonstrate our methods on a cloud

of ultracold 87Rb atoms. The atoms are evaporatively
cooled to ≈30 μK in a CO2 laser quasielectrostatic trap.
We drive the transition between the F ¼ 1 and F ¼ 2
hyperfine manifolds using a microwave antenna, tuned to
the resonance frequency of this transition. The atoms are
prepared in the j1; 0i state using optical-pumping pulses on
the jF ¼ 1i → jF ¼ 2i D2 transition combined with
microwave pulses. The population in the j2; 0i state is
measured using absorption imaging of the j2; 0i state
normalized by imaging of the atoms in both the F ¼ 1
and F ¼ 2 manifolds. Further information regarding the
setup may be found in Refs. [20,21].
Figure 1(a) shows measured Rabi oscillations between

the clock states, for varying pulse duration T and magnetic
field angle ϕ. Our data are in good agreement with the
model in Eq. (5) shown in Fig. 1(b).
The clock subspace Hamiltonian in Eq. (4) shows that

the Rabi vector direction, i.e., the clock states’ rotation axis,
is determined by the orientation of the magnetic field with
respect to the rf field polarization ellipse. It is the starting
point for obtaining a magnetic-dependent phase shift
between the two clock states.
We first show that a rotation of the magnetic field

direction imprints a population difference on the two clock
states. Our scheme consists of an on-resonance rf pulse, an
adiabatic rotation of the quantization magnetic field by an
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angle ϕ, and an additional on-resonance pulse, after which
the clock state populations reflect the magnitude of ϕ.
We use an elliptic polarization of the rf driving field,

such that the ellipse major axis is aligned with the
quantization field. We initialize the system to j2; 0i, with
B ¼ Bib̂i, and turn on the rf driving field with phase θ ¼ 0,
to perform an on-resonance π=2 pulse, i.e., Ω1T ¼ ðπ=2Þb̂,
creating an equal superposition of the two clock states.
Next we rotate the field adiabatically to B ¼ Bfb̂f, along
the polarization plane, by an angle ϕ. We note that the
magnetic field magnitude may vary as well. This will not
affect our conclusions below.
As the magnetic field slowly rotates, the j1; 0i and j2; 0i

clock states follow it adiabatically. They accumulate no
dynamical phase, since their energy separation is magnetic
field insensitive, and no Berry phase, since these arem ¼ 0
states.
Next we perform an additional rf pulse with a rf phase θ

for time T. Using Eq. (4), the probability to remain in the
j2; 0i state is

P2¼
1

2
−
jcosðθÞcosðϕÞ− Ω̃sinðθÞsinðϕÞj

2β
sin

�
π

2
β

�
; ð6Þ

with β defined in Eq. (5). Assuming θ ¼ ðπ=2Þ, and a small
rotation, this population becomes P2 ¼ 1

2
− 1

2
Ω̃ϕ, with

quadratic corrections in ϕ. That is, P2 is linear in the
magnetic field rotation angle, and the polarization ellipse
minor-to-major axes ratio is the sensitivity (slope). We
expect this sensitivity to saturate at ϕΩ̃ ¼ 1, as this is the
value at which the leading-order approximation fails.
On the Bloch sphere spanned by the two clock states our

method becomes intuitive. The two axes of the polarization
ellipse are orthogonal to one another in quadrature; the first
pulse acts as a τx rotation due to the major arm, rotating the
state to the −ŷ direction. In the absence of any magnetic
field rotation, the π=2 phase-shifted second pulse acts as a

τy rotation and does not affect the state. However, for a
nonvanishing ϕ the state is rotated again by a τx operator,
with a coupling strength equal to the magnetic field
projection onto the ellipse’s minor arm. If ϕ is large, it
will overrotate the state, setting a limit on the measure-
ment range.
Figure 2(a) shows the geometrical setup of the system.

Figure 2(b) shows the probability to remain in the j2; 0i
state due to a rotation of the magnetic field ϕ, according to
Eq. (6), with θ ¼ ðπ=2Þ. The sensitivity to rotations is the
minor-to-major axes ratio Ω̃, seen as the slope around
ϕ ¼ 0. A trade-off between the sensitivity and measure-
ment range is apparent, as a larger Ω̃ reduces the distance
between the curve maxima and minima.
In order to uncover the underlying phase difference

acquired by the clock states, we make use of a Ramsey
fringe measurement analogue. Instead of fixing the second
pulse phase θ, we scan it and, according to Eq. (6), obtain a
fringe. The fringe phase θf, i.e., the phase of the second
pulse that maximizes the population in the j2; 0i state, is
given by

θf ¼ π − sgnðϕÞ arccos½cosðϕÞ=β�; ð7Þ

with β defined in Eq. (5). For Ω2 ¼ Ω1, we get β ¼ 1, i.e.,
θf ¼ ϕ, and in the limit Ω2 ≫ Ω1, then θf converges to a
step function around ϕ ¼ 0.
To compare our model’s predictions to the experiment,

we implemented the Ramsey sequence described above
using a fixed elliptical microwave polarization with two
main differences. Firstly, we added an additional π echo
pulse in between the two π=2 pulses, in order to mitigate
dephasing due to inhomogeneous trap-induced light shifts.
Secondly, all pulse times were calibrated using the Rabi

(a) (b)

FIG. 2. Clock state population difference due to a magnetic
field rotation. (a) Scheme layout. The polarization ellipse (gray)
is aligned such that the major axis Ω1 is parallel to the magnetic
field direction b̂i (green). The magnetic field is rotated on the
polarization plane to b̂f , by an angle ϕ (dark green). For the rf
phase, θ ¼ ðπ=2Þ, the j2; 0i population is determined by the
projection of the rotated magnetic field on Ω2 (dashed green).
(b) Population in the j2; 0i state P2 as a function of ϕ,
according to Eq. (6), with θ ¼ ðπ=2Þ. As Ω̃ grows, the
sensitivity increases, seen as a larger slope, while the meas-
urement range decreases due to the decreased separation
between the two extrema around ϕ ¼ 0.

FIG. 1. Rabi oscillations between the clock states for varying
pulse duration and magnetic field angles. Color indicates pop-
ulation in j1; 0i. (a) Data obtained by driving an ensemble of 87Rb
atoms with a rf drive, on resonance with the j2; 0i ↔ j1; 0i
transition. (b) Model according to Eq. (5), with Ω̃ ¼ 0.27 in order
to fit the data.
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flop data shown in Fig. 1, such that the fringe visibility
remains constant at all rotation angles, without changing
θf. By fitting the fringe phase to the expression in Eq. (7),
we determined the minor-to-major ratio of our polarization
ellipse to be Ω̃ ≈ 0.27. Figure 3 shows the theoretical model
in Eq. (6) and the measured data, which are in good
agreement. The data clearly show that the clock state’s
phase can be manipulated via a magnetic field rotation.
Figure 4 shows the fringe phase for different minor-to-

major axis ratios according to Eq. (7). The trade-off
between sensitivity and measurement range is evident as
larger minor-to-major ratios Ω̃ result in a steeper change in
θf; however, it also results in faster flattening of the slope
and saturation of sensitivity. Using the experimental data
shown in Fig. 3, we estimated the fringe phase for each
field angle ϕ and added these as data points to Fig. 4 (red
filled points) on top of the theoretical curve. As seen, the
data and model are again in good agreement.
Figure 4 also shows the case Ω̃ ¼ 0.01 (gray) which

corresponds to an almost linear polarization along b̂. This
setting is obviously entirely insensitive to small field
rotations; however it highlights the topological phase which
does not require closing a path in parameter space [17],
here seen as an abrupt and quantized π jump. This
topological phase was verified experimentally in
Ref. [22], where the magnetic field was reversed, and in
Ref. [23], where rotations of the magnetic field by angles
different than π were studied, showing a continuous loss of
fringe visibility, but always a phase of either 0 or π. Here,
by scanning the minor-to-major axes we interpolate
between a continuous (blue) and abrupt (gray) phase
change, generated by circular and linear polarizations,
respectively.
These observations suggest a magnetic sensing method

in which a small magnetic field δ is sensed. Instead of
rotating the quantization field direction between the two
pulses, we simply ramp-down its magnitude adiabatically
from Bi to Bf such that Bi ≫ Bf ≫ δ. Assuming that
δkΩ̂2, i.e., it lies on the polarization plane and is

perpendicular to b̂, then when the quantization field is
ramped-down the total magnetic field rotates such that
ϕ ¼ ðδ=BfÞ þO½ðδ=BfÞ2�. That is, the population change
in Eq. (6) or the Ramsey phase in Eq. (7) becomes
explicitly dependent on δ and linear in it in leading order,
constituting a magnetic field measurement.
A unique property of this method is that the instanta-

neous magnetic field is sampled at the second pulse instant.
Replacing the second pulse with a continuously modulated
drive generates a spectral filter resulting in a spectrometer-
like measurement of time-dependent magnetic fields [24].
We estimate the method’s sensitivity. Ideally, the sensi-

tivity is affected only by projection noise. We approximate
the smallest change in δ that can be observed, Δδ, using the
Cramer-Rao bound [30,31],

Δδ ≈
�
N
X

PðxjδÞ
�
d lnPðxjδÞ

dδ

�
2
�−1=2

; ð8Þ

where N is the number of independent identical measure-
ments and the distributionPðxjδÞ is set by the probability to
measure the state j2; 0i; i.e., it takes the value x ¼ 1 with
probability P2, and x ¼ 0 otherwise. Since we are con-
cerned with small signals, Eq. (8) is evaluated at δ ¼ 0.
Using Eq. (6), with the second pulse phase set to θ ¼ π

2
,

Eq. (8) is evaluated to Δδ ¼ Bfð
ffiffiffiffi
N

p
Ω̃Þ−1. As expected, the

sensitivity improves with more measurements and large
minor-to-major ratio.
In theory our method’s sensitivity is unlimited as both

Ω̃−1 and Bf can be arbitrarily reduced. Practically, we
expect the sensitivity to be determined by the clock
subspace coherence time, τclk. Indeed, a more realistic
analysis of Eq. (8), which takes into account population
“leaks” out of the clock subspace, yields in leading order
Δδ ¼ ðℏ=μÞð2 ffiffiffi

2
p

=
ffiffiffiffi
N

p
τclkÞ [24].

FIG. 3. Data and model of Ramsey sequence with field rotation.
(a) Data, obtained by performing the Ramsey scheme as
described in the main text. (b) Model according to Eq. (6), using
Ω̃ ¼ 0.27 in order to fit the data.

FIG. 4. Ramsey fringe phase of atomic clock states. Here the
trade-off between sensitivity and measurement range is clearly
seen as for Ω̃ ¼ 1 (blue) the measurement range is 2π, yet by
increasing it the slope around ϕ ¼ 0 increases dramatically but
quickly saturates. We superimpose data (red points) obtained
from the data shown in Fig. 3(a). Fitting these results to Eq. (7)
we obtain Ω̃ ≈ 0.27, which shows a good overlap with the theory
(red solid). We also highlight the case Ω̃ ¼ 0.01 (gray), demon-
strating the topological phase of an open trajectory in parameter
space [17].
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This sensitivity is inversely dependent on the clock
subspace coherence time, similarly to conventional
Zeeman-Ramsey methods [32]. However, coherence times
in clock subspaces are typically much longer than in
Zeeman-split subspaces [33,34], implying that the pro-
posed method may improve upon Zeeman-splitting-based
magnetometry.
We note that the effect discussed here may be a source of

shifts for atomic clocks, in which frequency stabilization is
obtained by locking a local oscillator, e.g., a laser cavity, to
an atomic transition [35]. In order to avoid shifts due
magnetic field noise, a clock transition is driven with a
linearly polarized field, using a Ramsey sequence. Any
unwanted ellipticity of the driving field will couple to small
rotations of the quantization axis Δϕ that may occur
between the two Ramsey pulses due to systematic effects.
In leading order this will create an unwanted population
difference between the clock states, ΔP ¼ 1

2
Ω̃Δϕ, which

will cause a systematic frequency shift of the clock.
In conclusion, we showed that atomic clock states can

acquire a magnetic-field-dependent population difference
and phase difference, that appear due to a rotation of the
magnetic field, and measured it experimentally on a cloud
of trapped 87Rb atoms. We proposed a magnetic field
sensing method that is sensitive to signals perpendicular to
the quantization field.
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