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Many-body systems of quantum interacting particles in which time-reversal symmetry is broken give
rise to a variety of rich collective behaviors and are, therefore, a major target of research in modern physics.
Quantum simulators can potentially be used to explore and understand such systems, which are often
beyond the computational reach of classical simulation. Of these, platforms with universal quantum control
can experimentally access a wide range of physical properties. However, simultaneously achieving strong
programmable interactions, strong time-reversal symmetry breaking, and high-fidelity quantum control in a
scalable manner is challenging. Here, we realize quantum simulations of interacting, time-reversal-broken
quantum systems in a universal trapped-ion quantum processor. Using a recently proposed, scalable
scheme, we implement time-reversal-breaking synthetic gauge fields, shown for the first time in a trapped-
ion chain, along with unique coupling geometries, potentially extendable to simulation of multidimensional
systems. Our high-fidelity single-site resolution in control and measurement, along with highly
programmable interactions, allow us to perform full state tomography of a ground state showcasing
persistent current and to observe dynamics of a time-reversal-broken system with nontrivial interactions.
Our results open a path toward simulation of time-reversal-broken many-body systems with a wide range of
features and coupling geometries.
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I. INTRODUCTION

Quantum many-body systems are abundant in nature and
lie at the heart of contemporary physical research. These
systems exhibit complex collective behavior and interesting
phases which emerge due to interactions between the
systems’ constituents. Often, richer phenomena are observed
when placing such systems in the presence of time-reversal
symmetry-breaking (TRSB) fields, such as magnetic fields.
A stark example is the appearance of anyonic excitations in
the fractional quantum Hall effect [1–5].
Typically, quantum many-body systems are analytically

intractable and are not amenable to numerical simulation
techniques beyond small sizes. Thus, in the past three
decades, tremendous effort has been put forth to develop
and employ quantum simulation in order to study such

systems [6,7]. Of the variety of physical platforms used for
simulating quantum systems with TRSB, ultracold gases of
neutral atoms have emerged as particularly prolific [8].
Here, TRSB magnetic fields can be generated by a variety
of techniques, including rotation of the gas, optical dress-
ing, or Floquet engineering [8,9], and have been utilized to
great effect in various experiments [9–20]. Recently,
programmable couplings have also been realized in ultra-
cold gasses trapped in an intracavity optical lattice [21].
TRSB quantum simulation has also been realized in

other platforms, including qubit systems. Some of these
platforms can also serve as fully programmable, universal
quantum computers. Progress in such platforms has culmi-
nated in TRSB demonstrations with superconducting
circuits [22,23] and neutral atoms held in optical tweezers
]24 ]. Despite the restricted Hilbert spaces, qubit platforms

with TRSB can support a variety of exotic phases such as
spin liquids and fractional quantum Hall states [25,26] and
can make use of a powerful quantum control tool set,
potentially enabling state tomography; energy spectrum
measurement [23]; measurement of topological string
operators [27]; quantum-classical variational optimization
[28]; the use of randomized measurements to estimate a
range of complex observables [29,30]; and the measure-
ment of entanglement entropy through swap tests [31].
Trapped-ion chains are one of the leading technologies

for both quantum simulation [6] and quantum information
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processing (QIP) [32–34], due to unparalleled quantum
control fidelity and measurement accuracy. In a typical
trapped-ion-chain platform, an array of ions is confined to a
one-dimensional chain in a linear Paul trap, and a qubit is
encoded on each ion by isolating two energy levels. Qubits
can then be coupled by mediating interaction through the
motional modes of the ion chain [35]. A unique advantage
of trapped-ion platforms for both quantum simulation and
QIP is their natural long-range connectivity, itself a product
of the long-range Coulomb interaction mediating the
coupling of ions. These properties are used in an assortment
of state-of-the-art quantum simulations [36–40].
Here, we realize an analog quantum simulator of TRSB

systems in a small trapped-ion quantum processor [41]. We
use a recently proposed method [42], in which experimen-
tally simple additions to the typical ion QIP tool set provide
scalable access to highly programmable interactions,
including TRSB synthetic fields and emergent coupling
geometries that significantly differ from the one-dimensional
physical geometry of the ion chain. Using these flexible
tools, as well as the quantum control afforded by our
quantum processor, we generate a ground state of an
interactingAharonov-Bohm (AB) ring,whichwe investigate
using state tomography and via ground-state certification
[43]; we observe the gauge-field-dependent dynamics of the
ring model.
Furthermore, we explore the dynamics of a TRSB

triangular ladder system. This model may be scaled to
simulate two-dimensional systems using the one-
dimensional chain. The triangular ladder possesses a wide
set of symmetries, including the C2T , which generates a
nontrivial spin-current structure. This symmetry occurs
in several condensed matter systems where it has signifi-
cant consequences on the electronic band structure
and topological properties [44,45]. Moreover, the two-
dimensionality of the triangular model leads to the appear-
ance of interactions between quasiparticles, in which an
excitation hops between next-nearest-neighbor sites, con-
ditioned on the occupation of the intermediate site. Our
results are the first realization of TRSB in a trapped-ion-
chain quantum simulator with programmable interactions
and delineate a path toward realizing highly flexible and
multidimensional coupling geometries in these systems.
We review previous experimental results in the vein

of those presented here, highlighting similarities and
differences. Triangular TRSB models have been realized
in superconducting circuits in Refs. [22,46] and in Rydberg
atoms in Ref. [24]. All of these experiments mark a
significant advance in analog quantum simulations.
Specifically, in Ref. [24], a triangular model is constructed

from three Rydberg atoms. The implemented Hamiltonian is
identical to our own when limited to the single-excitation
subspace, leading to similar dynamics. However, in contrast
with the results shown here, time-reversal symmetry is no
longer broken in the two-excitation subspace.

In Ref. [22], the authors similarly generate a triangular
AB ring and explore its dynamics when initialized with one
excitation and two excitations. In the latter, interactions
allow the dynamics to be mapped onto a counterpropagat-
ing single-excitation hole. That is, although the model is
interacting, it can be easily interpreted as a free-fermion
model. However, our realization of a four-site triangular
ladder constitutes the smallest nontrivial geometry in which
the role of interactions cannot be mapped to physics of
single particles. Specifically, the dynamics we observe in
the two-excitation subspace does not resemble freely
evolving fermions.
In Ref. [46], the authors generate models with up to five

spin sites but restrict their system to the single-excitation
subspace, such that excitation-excitation interactions do not
play a role in the observed dynamics.
Last, we remark that there is a tremendous synergistic

effect to the parallel research that is carried out on different
physical platforms, with each platform bringing its own
strengths and limitations. Trapped-ion systems, for exam-
ple, allow for connectivity between qubits that are not
nearest neighbors and to distances much larger than those
allowed by other platforms in an analog setting. Indeed, our
experiment makes use of this connectivity, which allows us
to position ions on a one-dimensional line yet construct a
system that has a larger dimension spin connectivity with
programmable complex-valued couplings. As we show in
Ref. [42], the techniques demonstrated here are directly
extendable to simulation of much more complex coupling
geometries.
Our method enables simulation of a variety of models

that can be described through the general spin Hamiltonian:

H ¼
XN−1

n¼1

Hn ¼
XN−1

n¼1

Ωneiðϕn−δntÞ
XN−n

k¼1

σþkþnσ
−
k þ H:c:; ð1Þ

where σþk (σ−k ) denotes a spin-raising (-lowering) Pauli
operator on site k out of N and Ωn, ϕn, and δn are
experimentally tunable parameters that, respectively, cor-
respond to the coupling strengths, static phases, and time-
dependent phases of an n-neighbor-hopping interaction.
The theoretical proposal underpinning our work and

derivation details of Eq. (1) are provided in Ref. [41]. Here,
we review the physical picture and main components
required for its realization. Our method consists of three
conceptual steps: We generate σþσ− couplings between all
ion pairs in the chain, then sever all of these couplings, and,
finally, selectively reinstate the couplings which are rel-
evant to the simulated model.
The first step is achieved by driving red and blue

sidebands of the center-of-mass normal mode of motion
of the ion chain. This couples the ions’ internal, i.e., qubit,
states to the motional state of the chain and typically
generates a spin-dependent force. By sufficiently detuning

SHAPIRA, MANOVITZ, AKERMAN, STERN, and OZERI PHYS. REV. X 13, 021021 (2023)

021021-2



our drive from the sidebands, we adiabatically eliminate
them and generate effective σþσ− spin-hopping couplings
acting only on the qubit degrees of freedom. Since this
interaction is mediated through the center-of-mass mode,
which equally involves all ions, then all ion pairs are
equally coupled. Next, we sever these all-to-all couplings
by introducing a magnetic field gradient along the ion-
chain axis, such that the qubit transition frequency differ-
ence between adjacent ions, Δ, is larger than the rate of the
σþσ− couplings, making it nonresonant. Last, we reinstate
specific Hn terms by modulating the sideband drive.
Specifically, for each desired Hn term, we modify our
drive and generate a pair of spectral tones which couple to
the sideband and have a frequency difference of nΔ that
bridges the energy gap opened between ions that are n sites
apart, making the σþk σ

−
kþn process resonant. We note that

time-reversal symmetry is explicitly broken by the mag-
netic field gradient, as a hop in one direction of the ion
chain is energetically different than in the other. This is
utilized by setting the phase difference between the two
tone pairs, which generates the phase ϕn.
We encode qubit states, j0i and j1i, on the j5S1=2; m ¼ 1

2
i

and j4D5=2; m ¼ 3
2
i orbitals, respectively, of 88Srþ ions held

in a linear Paul trap. These state are coherently coupled
using a narrow-linewidth 674-nm laser [47]. We utilize our
674-nm laser in a global path, homogeneously illuminating
all ions, and in an individual path, in which a tightly
focused beam can address a single ion at a time and light
shift its qubit transition. The multitone modulation of the
laser drive required for our implementation is generated by
driving an acousto-optic modulator controlling the global
674-nm path using an arbitrary waveform generator,
resulting in effective couplings, Ωn, of a few hundreds
of hertz. The magnetic field gradient is realized along the
ion-chain axis, generating an approximately 1-kHz fre-
quency difference between neighboring ions. Our imple-
mentation is amenable to scaling up, as the addition of more
sites to the models requires only slight modifications to the
spectral components driving the interaction [42].
The simple form in Eq. (1) encodes a rich family of spin

models in various dimensions and geometries. Figure 1(a)
shows a linear chain of ions and couplings utilizing nearest-
neighbor (NN), next-nearest-neighbor (NNN), and periodic
boundary conditions with respective coupling strengthsΩ1,
Ω2, and ΩN−1. The specific models implemented here are
also shown: a three-ion AB ring (b) threaded by a flux ΦAB
and a triangular spin ladder (c) threaded by a staggered
flux ΦS.
The spin Hamiltonian (1) can be mapped to a hard-

core boson model by identifying a spin excitation with a
bosonic excitation ðσþ ↔ b†Þ or to a fermionic Hamiltonian
through one of several mappings. Indeed, using a Jordan-
Wigner transformation [48], the Hamiltonian in Eq. (1) is
rewritten as

H ¼
XN−1

n¼1

Ωneiðϕn−δntÞ
XN−n

i¼1

ψ†
iþnψ ie

iπ
P

iþn
k¼iþ1

nk þ H:c:; ð2Þ

where ψ i denotes a fermionic annihilation operator at site i
and nk ¼ ψ†

kψk is the occupation at site k. Using this
Hamiltonian form for the triangular spin ladder reveals that
the model is interacting, as hopping operators along the
ladder’s rails are composed of two-body hop terms and four-
body correlated hop terms, shown in Fig. 1(d).
We note that the spin Hamiltonian (1) commutes with the

total spin (excitation) operator
P

N
k¼1 σ

z
k—i.e., the dynamics

preserves the total spin—and can, therefore, be decom-
posed to total spin-excitation subspaces. We utilize this by
initializing our system in either the single-excitation sub-
space (1ES) or the two-excitation subspace (2ES), which
are free of dephasing due to global phase noise. This allows
us to observe coherent dynamics for times exceeding our
single-qubit coherence time by an order of magnitude [49].

II. TIME-REVERSAL SYMMETRY BREAKING
IN THE AHARONOV-BOHM RING

The AB ring consists of N sites placed on a ring, with
NN hopping allowed, and threaded by a magnetic flux Φ.
Because of the AB effect, the system exhibits persistent
currents, which survive even in the presence of impurities
[50,51]. We realize an N ¼ 3 AB ring and investigate
the dynamics of one and two excitations on it. We also
adiabatically prepare the ring’s ground state in the singly

ΦAB =

Ω2
−

+2
+ −

Ω1
−

+1
+

Ω −1 1
− + −

ΦS = 3

+2

†

−2 +2

†
+1

(a) (b)

(d)(c)

FIG. 1. Mapping of an ion chain to spin models. (a) A linear
chain of ions is coupled with NN hopping (light green), NNN
hopping (blue), and periodic boundary condition hopping (dark
green). Each of these interactions is accompanied by a tunable
phase, ϕ. (b) Setting Ω1 ¼ ΩN−1 ¼ Ω (and all others to zero)
forms an N-site AB ring, penetrated by a flux ΦAB ¼ Nϕ
(orange). (c) Instead, setting Ω1 ¼ Ω2 ¼ Ω (and all others to
zero) forms a triangular ladder. Each plaquette of the ladder is
penetrated by a staggered flux, ΦS ¼ 3ϕ (orange). (d) Trans-
forming to a fermionic Hamiltonian reveals that the triangular
ladder is an interacting model. Indeed, a hop along the ladder’s
rails is possible through two terms, a two-body trivial term and an
interacting four-body term for which the hop from site k to kþ 2
is conditioned on the occupation of site kþ 1.
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excited manifold. While the AB ring is an analytically
solvable model that has been subject to extensive research
[22,24,46,52–56], it is useful for demonstrating a broken
time-reversal symmetry and instructive as a validation of
our method.
The AB ring Hamiltonian is given by

HABðΦÞ ¼ Ω
XN
n¼1

σþiþ1σ
−
i e

iΦ=N þ H:c:; ð3Þ

with N þ 1≡ 1 and Ω an effective coupling between the
ring’s sites.
An apparentmanifestation of the persistent currents in this

model is transport of excitations around the ring. This is
demonstrated by quenching an excitation on an N ¼ 3 AB
ring to specific sites and observing the site occupation at
different evolution times. Figure 2 shows several examples of
these dynamics. In our experimental setup, we measure
independently the state of each ion, which we use in order to
postselect and normalize our results to the relevant subspace;
e.g., when initializing a single excitation, we normalize

Prðj100iÞ↦Prðj100iÞ=½Prðj100iÞþPrðj010iÞþPrðj001iÞ�
(see Appendixes A and B). We compare the dynamics to a
numerical evaluation of the evolution, with Ω obtained by a
maximum likelihood (ML) fit.
Figure 2(a) shows the evolution of an excitation on site 1,

i.e., the state j100i, with ΦAB ¼ π=2. Here, the excitation
traverses the ring sites in a counterclockwise manner, i.e.,
1 → 2 → 3 → 1. A single excitation in the three-site AB
ring is, to a high degree of accuracy, a wave packet; hence,
the excitation does not disperse for long evolution times.
Moreover, for ΦAB ¼ �π=2, the evolution is periodic.
(b) Using the opposite flux, ΦAB ¼ −π=2, the evolution
becomes clockwise, i.e., 1 → 3 → 2 → 1. Setting the flux
to ΦAB ¼ 0 (c), time-reversal symmetry is restored and the
excitation equally occupies sites 2 and 3, before recombin-
ing back at site 1.
Furthermore, we initialize the system to sites 1 and 2 in

the 2ES with ΦAB ¼ π=2, shown in Fig. 2(d). While the
two excitations are interacting, their resulting dynamics
may be transformed to a noninteracting “hole” occupying
site 3 [22], which rotates around the ring in the opposite
direction to that of an excitation. That is, the dynamics in
the 2ES are readily mapped to a free-fermion model. As we
show below, this is not the case in the interacting triangular
ladder.
The population evolution shown in Fig. 2 clearly exhibits

dephasing, which does not exist in the AB model. The
dephasing is generated by the small occupation of states
outside of the decoherence-free subspace (DFS), which are
used to mediate the interaction between the ring’s site. The
extent of the dephasing is estimated and added to the
theoretical prediction (solid lines) with no additional fitting
parameters (see Appendixes A and B). Furthermore, our
analysis shows that, by increasing the system’s single-qubit
coherence time or the drive power, dephasing can be largely
mitigated and does not constitute a hurdle in scaling up the
simulation size.
Next, we investigate the ground state in the single-

excitation subspace of the AB ring. In order to optimally
utilize our coherence time, we slightly deviate from the
adiabatic regime prescribed by Ref. [42]. This acts to add
small unwanted nonresonant terms to the Hamiltonian, such
as σþσ− terms with no complex phase, i.e., ΦAB ¼ 0 terms.
Thus, in our ground-state preparation below, we generate the
modified Hamiltonian Heff ¼ HABðΦABÞ þ ϵHABð0Þ. We
extract ϵ from our data below using a fit, obtaining ϵ ¼ 0.22
(see Appendix D).
We prepare the ground state of Heff using the following

steps. We initialize the system in the state j100i in the 1ES.
We then turn on the HamiltonianH0 ¼ −δσz1, which lowers
the energy of this state, making it the ground state of H0

in the 1ES. Last, we adiabatically ramp down H0 and ramp
up Heff . Specifically, the ramp is implemented by the
Hamiltonian
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FIG. 2. Dynamics in the AB ring, exhibiting TRSB patterns.
Schematic (top of each subplot) shows flux direction (orange) and
observed spin currents (green arrows). Site colors and numbering
correspond to the data (bottom of each subplot). Site occupation
data (point and dashed lines) are postselected to the relevant
excitation subspace and compared to theoretical prediction which
includes dephasing estimations (solid lines), showing a good fit.
Error bars represent 2σ regions due to quantum shot noise (see
Appendix C). (a) Initialization to site 1, with flux ΦAB ¼ π=2.
The excitation “hops” in a counterclockwise manner around the
ring to site 2 and then 3, following the spin-current arrows.
(b) Similarly, by initializing to the same state with ΦAB ¼ −π=2,
the evolution becomes clockwise. (c) For ΦAB ¼ 0, time-reversal
symmetry is restored and the system does not have a preferred
direction of rotation; hence, the excitation “splits” equally
clockwise and counterclockwise and recombines at site 1.
(d) Initialization to sites 1 and 2, in the 2ES, with Φ ¼ π=2.
The system can be mapped to a noninteracting hole (light colors)
initialized at site 2.
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HðtÞ ¼ ½1 − ðt=TÞ2�H0 þ ðt=TÞ2Heff ; ð4Þ

where T is a long ramp time. When adiabaticity holds, we
expect the resulting state jψfi to be the ground state of the
AB ring in the 1ES. When the gap between the ground state
and the next excited level is small, specifically, for
jℏ2δ=TðΔEÞ2j ≫ 1, with ΔE the gap between the ground
state and the next excited level, Landau-Zener transitions
cause a breakdown of adiabaticity.
Utilizing the fact that our quantum simulator is embedded

in a universal quantumprocessor, we perform tomography of
the resulting state jψfi. This requires three independent
measurements of jψfi: occupancyof the ring’s sites; in-phase
correlations between the sites, obtained by operating with an
additional global x spin rotation,

Q
nU

x
nðπ=2Þ, prior to the

measurement; and out-of-phase correlations, obtained by
performing an additional, Uz

2ðπ=2ÞUz
3ðπÞ rotation, prior to

the global x rotation. For a general pure state in the 1ES,
jψi ¼ ffiffiffiffiffi

p1

p
eiϕ1 j100i þ ffiffiffiffiffi

p2

p
eiϕ2 j010i þ ffiffiffiffiffi

p3

p
eiϕ3 j001i, the

occupancy measurement yields the pn’s, and the correlation
measurements yield the ϕn’s (up to a global phase), which
allows us to assess the preparation process in full. Figure 3
schematically shows the adiabatic preparation [Fig. 3(a)] and
measurement sequences [Figs. 3(b)–3(d)]. We remark that
our results use postselection in the 1ES and assume rapid
dephasing of coherences between and in other excitation
subspaces.
We use the tomographic measurements in order to

directly assess the ground-state preparation fidelity.
However, such a method clearly becomes infeasible for
larger ion chains. We, therefore, compare these results to a
direct certification protocol, based on the method in
Ref. [43]. This method uses exclusively energy measure-
ment of the prepared state, which scales linearly with the
system size, and not the full tomographic data. Here, we use

the tomographic data to compute the state energy and
compare our fidelity estimates to the certification’s results
in order to benchmark its performance.
This certification tests ground-state preparation of

Hamiltonians which are composed of local interactions
[e.g., the Hamiltonian in Eq. (1)] and have a known ground-
state energy and known gap to the next excited state.
Ideally, certification would imply that candidate ground
states with a fidelity, i.e., overlap with the ground state,
F ¼ jhψ jψGSij2, which is below a predetermined threshold
FT , will be “rejected” and above the threshold will be
“accepted.” Here, because of the use of only energy
measurements, with finite accuracy, the criterion is slightly
weakened. For a state with fidelity F < FT the protocol
rejects the state with probability 1 − α, where α, the
“reliability,” depends on the simulated model and meas-
urement parameters and is ideally small. Furthermore, the
complementary case is also slightly weakened. That is,
states with fidelity F > FT þ δ are also accepted with
probability 1 − α; however, no guarantee is given for states
with fidelity FT < F < FT þ δ, where δ is an ideally small,
yet nonzero fidelity gap, which also depends on the
simulated model and measurement parameters. The certif-
ication operates by converting the fidelity threshold FT to
an upper energy bound ET , which is compared to the
measured energy and satisfies the reliability described
above. Here, we choose the threshold FT ¼ 0.7, as it
corresponds to the average expected fidelity of our prepa-
ration protocol.
We repeat this process for various values of flux ΦAB

and evaluate the prepared state. Our results are shown in
Figs. 4(a)–4(d). The spectrum of Heff as a function of Φ is
shown in Fig. 4(a). Energies are normalized by a character-
istic coupling scale Ω ¼ 350 Hz. For ΦAB ¼ 0, the ground
state (dashed blue line) is well separated from the other
states; however, at ΦAB ¼ �π, the spectral gap is small.
Accordingly, the gray region (here and in all other subplots)
marks fluxes where Landau-Zener transitions limit our
ground-state preparation fidelity. Nevertheless, the pre-
pared state’s energy (solid blue line), computed using
the tomographic measurements, fits very well to the
ground-state energy. Here (and in all other subplots), error
bars mark 2σ errors due to quantum projection noise.
The green region marks energy values for which state

certification [43] accepts the prepared ground state.
Figure 4(b) shows accordingly which states are accepted
(green) and rejected (red) and the certification’s reliability
α. Clearly, when the ground-state energy gap is sufficiently
large, the prepared states are accepted within a reasonable
success rate.
Figure 4(c) shows the overlap of the prepared states

based on the tomographic measurements (solid line), with
jS1;2;3i, the three eigenstates of Heff , with jS1i the ground
state. The measurements are compared to an estimation
(dashed line) based on a simulation (see Appendix D). We

(a) (b)

(c) (d)

FIG. 3. Adiabatic preparation protocol of the AB ring ground
state. (a) Adiabatic preparation. We initialize the state j001i by
rotating a single site with UxðπÞ, lower the site’s energy with H0

(orange), and slowly ramp H0 down while ramping Heff up
(purple). The ground state is ideally reached at the end of the
ramp. (b)–(d) We perform tomography of the resulting state by
measuring site occupation (b), in-phase correlations viaUx pulses
(c), and out-of-phase correlations via additional Uz rotations (d).
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observe good agreement between measurement and expect-
ation, with a peak overlap with the ground state of
0.97þ0.03

−0.05 . We further notice that this overlap degrades in
the nonadiabatic (gray) regions as expected. The green
region marks the fidelity region F > FT þ δ of accepted
certified states, in correspondence to Fig. 4(a). We note that
this region varies with ΦAB, as δ depends on the ground-
state energy gap [43]. We comment that the occupation of
the different sites of the prepared ground states is long lived
and dictated by the single-qubit lifetime, which is longer
than the evolution times used here. However, similarly to
the dynamics shown above, the coherence between these
populations decays.
Finally, our prepared ground states exhibit nonvanishing

persistent spin currents, which mark the broken time-
reversal symmetry generated by the AB flux. We compute
the expectation value of the spin-current operator,
C ¼ i

P
N
n¼1 ðσþnþ1σ

−
n eiΦAB=N − H:c:Þ, using the tomo-

graphic measurements. As shown in Fig. 4(d), this expect-
ation value varies between positive and negative values

according to ΦAB, demonstrating good agreement between
the theoretical prediction (dashed line) and measured (solid
line) values of spin currents in the ground state.

III. INTERACTIONS ONA TRIANGULAR LADDER

While the one-dimensional Aharonov-Bohm ring is
convenient for clearly illustrating TRSB and periodic
boundary conditions, it is an exactly solvable free-fermion
model and, thus, is not an interesting target for future
quantum simulation. However, by slightly varying the
coupling geometry, it is easy to generate models with
TRSB which cannot be reduced to free fermions and which
inherently include interactions.
Specifically, we set Ω1 ¼ Ω2 ¼ Ω (and null all other

couplings) in the spin Hamiltonian in Eq. (1) and form
triangular plaquettes that make up the ladder coupling
configuration shown in Fig. 1(c). The ladder’s rungs
(diagonal green lines) are formed by the NN term and
its rails (horizontal blue lines) are formed by the NNN
terms. We set ϕ1 ¼ −ϕ2, thereby generating a staggered
flux of ΦS ¼ 3ϕ through the plaquettes. Although the total
flux nulls, time-reversal symmetry is still broken by the
local gauge invariant flux.
Here, we focus onΩ1 ¼ Ω2 ¼ Ω; however,Ω1 andΩ2 can

be fully controlled using our technique, anddifferent coupling
strength ratios can generate interesting models which can
support a variety of phases, including ordered dimerized,
Luttinger liquid, and chiral-ordered phases [29,57–67].
The model’s Hamiltonian in its fermionic form is

Htl ¼ Ω
X
k

ðψ†
kþ1ψk þ ψ†

kψkþ2½1 − 2nkþ1�Þeiϕ þ H:c:; ð5Þ

which is an interacting Hamiltonian. Indeed, the term
ψ†
kψkþ2 has a single-particle contribution but also an

interacting four-body term, which conditions the NNN
hop on the occupation of the intermediate site, as depicted
in Fig. 1(d).
We make use of a gauge transformation and analyze the

model in its spin form:

Htl ¼ Ω
�X

k odd

σþkþ1σ
−
k þ

X
k even

eiΦSσþkþ1σ
−
k

þ
X
k

σþk σ
−
kþ2

�
þ H:c: ð6Þ

The gauge choice in Eq. (6) makes the model’s sym-
metries apparent, which is helpful in its analysis (see
Appendix E). Namely, for a N ¼ 4 minimal triangular
ladder, we observe a unitary symmetry,U1;4 ¼ ð1þ σx1σ

x
4þ

σy1σ
y
4 þ σz1σ

z
4Þ=2, which swaps sites 1 and 4, and an

antiunitary symmetry A ¼ U2;3K, with K the complex
conjugation operator. Furthermore, the staggered flux
ΦS ¼ �π=2 gives rise to an additional chiral symmetry

(a) (b)

(c) (d)

FIG. 4. Evaluation of the AB ring ground state. Error bars
represent 2σ regions due to quantum shot noise. (a) Spectrum of
Heff (dashed lines) and measured energy of the prepared states
(solid lines), showing good agreement. The spectral gap from the
ground state is small at ΦAB ¼ �π, leading to a breakdown of
adiabaticity, marked by the gray region. “Accept” energy values
for ground-state certification are marked in the green region, i.e.,
values for which E < ET . (b) Accepted (green) and rejected (red)
states and the corresponding reliability α. (c) Overlap of prepared
state with the eigenstates jS1;2;3i of Heff . The ground state jS1i is
accurately prepared in the adiabatic region, with a peak overlap of
0.97þ0.03

−0.05 . The preparation degrades in the nonadiabatic region.
The green region marks the certification fidelity FT þ δ, for
which states are accepted with probability 1 − α. We note that this
region has a good overlap with the fidelity estimation of accepted
states. (d) Expectation value of the current operator. The ground
state exhibits a persistent nonvanishing current that changes sign
around ΦAB ¼ 0. The measured value (solid line) is in good
agreement with the theoretical expectation (dashed line).
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C ¼ σz1σ
z
4U2;3, which anticommutes with the Hamiltonian.

An analogous fermionic representation can be constructed
by the Jordan-Wigner transformation.
We first focus on the 1ES. Because of U1;4, the state

jS1i≡ jSi1;4j00i2;3, with jSii;j a singlet of sites i and j, is
decoupled from the rest of the spectrum and carries zero
energy. Because of the existence of the chiral antisymmetry
C, the remaining three states in the 1ES have energies �E1

and 0, where E1 is computed by diagonalization, yielding
E1 ¼

ffiffiffi
5

p
Ω. Thus, the 1ES spectrum is equally spaced,

leading to a periodic evolution with period T1ES ¼
2π=

ffiffiffi
5

p
Ω. We quench the system by initializing a single

local excitation.
We initialize the system to j2i ¼ σþ2 j0000i in the 1ES

and observe the system’s dynamics. This state is an
eigenstate of U1;4 with an eigenvalue of þ1; thus, this
symmetry is preserved throughout the evolution. Indeed,
Fig. 5(a) shows the propagation of the excitation on the
ladder schematically (top) and as measured in the 1ES
(bottom). Similarly to the AB ring above, the evolution
exhibits TRSB and is determined by the local fluxes
through the ladder’s plaquettes. The excitation hops to site
3, then splits to sites 1 and 4, and finally recombines back at
site 2, that is, following the depicted green current arrows.
We note that, due to symmetry U1;4, the occupation of sites
1 and 4 can be in only a symmetric triplet state
jT1i ¼ jTi1;4j00i2;3, excluding jS1i from the dynamics.
Next, we initialize the system to site j1i as shown in

Fig. 5(b). Similarly to above, TRSB is manifested in the
spin-excitation trajectory. We observe the peak occupation
encompassing the ladder in a counterclockwise manner,

following the path 1 → 2 → 4 → 3 → 1. Here, the initial
state is an equal superposition of jS1i and jT1i; hence, the
occupation of site 4 is a result of an accumulation of a phase
difference between these states. The spin-current patterns
demonstrated here are in agreement with Ref. [67], for the
frustration-free regime. We compare the dynamics shown
in Figs. 5(a) and 5(b) to a numerical evaluation of the
evolution, with Ω given by a ML fit, yielding Ω ¼ 245�
2 Hz with 95% probability.
We now turn to the 2ES. Here, the four-body correlated

hop term, shown in Eq. (5), becomes active and modifies
the system’s evolution. A similar symmetry-based analysis
reveals that the 2ES spectrum is composed of the energies
0, �Ω, and �E2, with E2 evaluated by direct diagonaliza-
tion as 3Ω. We conclude that the 2ES evolution as well is
periodic with period T2ES ¼ 2π=Ω. The difference between
E1 and E2 is a clear signature of interactions; i.e., the four-
body interaction in Eq. (5) modifies the 2ES spectrum
[when removing the four-body term from Eq. (5), the
spectrum is �E1; 0 for all eigenstates].
We initialize the system to the state j1; 2i, with

ji; ji ¼ σþi σ
þ
j j0000i, as shown in Fig. 6(a). This initial state

evolution is directly affected by the four-body term ψ1ψ
†
3n2;

i.e., the presence of an excitation on site 2 modifies the hop
1 → 3. Indeed, we observe modified dynamics with respect
to the separate evolution of these two excitations in the 1ES.
Specifically, the state evolves to j1; 3i, as opposed to the 1ES
evolution j1i → j2i in Figs. 5(a) and 5(b). Similarly, the state
then evolves to j2; 4i as opposed to the 1ES evolution
j3i → j1i.

(a) (b)

FIG. 5. Dynamics on a triangular ladder in the 1ES with
ΦS ¼ π=2, exhibiting TRSB patterns. Schematic (top) shows
staggered flux direction (orange) and observed spin currents
(green arrows). Site colors and numbering correspond to the data
(bottom). Site occupation data (point and dashed lines) are
postselected to the 1ES and compared to theoretical prediction
which includes dephasing estimations (solid lines), showing a
good fit. Error bars represent 2σ regions due to quantum
projection noise. (a) Initialization at j2i. The evolution follows
the green spin-current arrows; i.e., the state hops to site 3, then
splits to sites 1 and 4, and finally recombines at 2. For clarity, the
theoretical blue curve for site 1 is slightly shifted. (b) Initialization
to j1i. The peak population encompasses the ladder in a
counterclockwise manner.

(a) (b)

FIG. 6. Dynamics on a triangular ladder in the 2ES with
ΦS ¼ π=2, exhibiting interactions. Schematic (top) shows stag-
gered flux direction (orange) and observed spin currents (green
arrows). Site colors and numbering correspond to the data
(bottom). Site occupation data (point and dashed lines) are
postselected to the 2ES and compared to theoretical prediction
which includes dephasing estimations (solid lines), showing a
good fit. Error bars represent 2σ regions due to quantum shot
noise. (a) Initialization in j1; 2i. Evolution is affected by the four-
body interaction term, resulting in a hop to j1; 3i, as opposed to
the 1ES evolution 1 → 2 (represented by a cross over site 2). The
next hop similarly is to j2; 4i, which does not follow the 1ES
evolution of 3 → 1. (b) Initialization to j1; 4i. The system
exhibits oscillations with period T2ES=3. For clarity, the theo-
retical curve for site 4 is slightly shifted.

QUANTUM SIMULATIONS OF INTERACTING SYSTEMS WITH … PHYS. REV. X 13, 021021 (2023)

021021-7



Next, we initialize the system in the state j1; 4i, which is a
þ1 eigenstate of U1;4, shown in Fig. 6(b). The initial state
occupies onlyE ¼ 0 andE ¼ �3Ω states; thus, the evolution
is periodic with period T2ES=3 ¼ 2π=3Ω, which is observed
in the data. We compare the dynamics shown in Figs. 6(a)
and 6(b) to a numerical evaluation of the evolution, with Ω
given by a ML fit, yielding Ω ¼ 246� 2 Hz with 95%
probability, in complete agreement with the 1ES data,
confirming the theoretical modeling of the system, including
the interactions between excitations in the 2ES.

IV. CONCLUSIONS

Our measurements, shown above, constitute a first
demonstration of quantum simulations of TRSB systems
in a trapped-ion quantum computer, enabled by the
methods detailed in Refs. [41,42]. We observe the complex
dynamics generated by the combination of programmable
strong interactions and TRSB. The flexibility and scal-
ability of our methods will enable future exploration of
more complex models, measuring both nonequilibrium and
ground-state properties of a variety of coupling geometries.
The embedding of the simulator in a programmable
quantum computer can be leveraged to certify ground
states, as shown, but also to measure complex observables,
including high-order correlations needed to probe topo-
logical order parameters; measure nonlinear observables
such as entanglement entropy through the use of random-
ized measurements; and the use of hybrid quantum-
classical optimization to probe ground states of complex
spin systems. By conservatively improving our experimen-
tal setup, our method can be scaled up to study more
complicated models for longer evolution times.
Specifically, the same methods used here can be easily
generalized to simulate longer AB rings and triangular
ladders, as well as more complicated structures such as
helices, tori, and Möbius strips, threaded by magnetic
fluxes. A small addition to the system, such as local
control of the ions, will enable implementation of square
lattices, disordered systems, and adiabatic ground-state
preparation of multiple excited subspaces.
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APPENDIX A: DEPHASING ESTIMATION
OF QUENCH DYNAMICS

As shown in the main text, our excitation dynamics data
exhibit dephasing which is not present in the Aharonov-
Bohm or triangular ladder Hamiltonians. This is despite the

fact that the evolution is normalized to the 1ES which is a
DFS and that our state preparation and measurement error
are typically above 95%.
Here, we show that this dephasing effect is due to a

buildup of incoherent population in states outside of the
DFS, which are nevertheless utilized to mediate the
interactions within the DFS. We model this buildup and
show it captures the measured subspace occupation data, as
well as the dephasing within the DFS. Furthermore, this
dephasing mechanism delineates the route to scaling up our
method, without suffering from increased dephasing, which
is by conservatively increasing the single-qubit coherence
time and drive power, compared to this work.
We start by estimating the population buildup outside of

the DFS. As described in Ref. [42], the coupling of an nth
NN hopping term,Hn, in Eq. (1) is proportional to η2Ω2=ξ,
with η the Lamb-Dicke parameter associated with the
center-of-mass mode of motion of the ion chain, Ω the
carrier Rabi frequency, and ξ a detuning of the laser drive
from the motional sideband. To generate fast enough
dynamics such that the essential physical properties are
observed requires a large laser Rabi frequency or small
detuning ξ.
However, a small ξ generates non-negligible population

in unwanted states. For example, we initialize the state
j100i of the 1ES in Fig. 2(a) and observe a “hop” to the
state j010i, which is, in fact, mediated by populating the
connecting state, j110i, of the 2ES, at intermediate times.
We estimate the population in these subspaces by first
taking one state in the 1ES, e.g., j100i, and one state in the
2ES, e.g., j110i, which are coupled by the Hamiltonian:

H1↔2 ¼
ξ

2
τz þ

ηΩ
2

τx; ðA1Þ

with τi Pauli operators connecting the two states.
Furthermore, the two states experience dephasing, as they
do not occupy the same DFS. Thus, we use a Lindblad
jump operator and model this dynamics as

∂tρ ¼ −i½H1↔2; ρ� þ
γ2
2
L½τz�ðρÞ; ðA2Þ

with ρ the density operator describing the two states, γ−12
the single-qubit coherence time, and the Lindblad super-
operator L½O�ðρÞ ¼ OρO† − fρ; O†Og=2, with the jump
operator O used for dephasing is τz.
In the limit ξ ≫ ηΩ; γ2, which is maintained in our

implementation, Eq. (A2) can be solved showing that the
population of an initially unoccupied state in the 2ES is
given by

P2ES ¼
1

2
−
1

2
e−γeff t; ðA3Þ

with an effective decay rate γeff ¼ ðη2Ω2=ξ2Þγ2. In this
trivial model, P1ES ¼ PDFS ¼ 1 − P2ES. This result is
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intuitive; in the absence of dephasing, the Hamiltonian
generates off-resonance Rabi oscillations, which in the
limit above corresponds to an oscillation of the population
in the 2ES at rate ξ and amplitude η2Ω2=ξ2. The dephasing
gradually decoheres these oscillations, which leads to a
buildup of population at a rate corresponding to the single-
qubit coherence time, scaled by the oscillation’s amplitude.
The spin models we implement in this work are

generated by driving several tones, detuned by ξm from
the motional sidebands and with corresponding power Ωm,
with m ¼ 1;…; 8 (see below). Furthermore, other subspa-
ces such as the 0ES are also similarly coupled during the
system’s evolution. Therefore, we generalize our argument
by modifying the effective decay rate:

γeff → Nγ2
X
n

ðηΩn=ξnÞ2; ðA4Þ

with N the number of ions. We use this to estimate the
population in the subspace we initialized to:

PDFS ¼
1

2
þ 1

2
e−γeff t: ðA5Þ

In our implementations, we independently evaluate
γ−12 ¼ 1.19� 0.03 ms using standard Ramsey measure-
ments. Together with the drive’s spectral information
(see below), we are able to predict the population in the
initialized subspaces. These generate good estimation,
without fitting, of the observed subspace occupation, as
seen in Figs. 7 and 9 (dashed black line, below).
Next, we show that the buildup of incoherent population

acts as a mediator of dephasing within the DFS. Because
our data are postselected on the correct occupation sub-
space, i.e., the subspace we initialized to (see below), the
dephasing is quadratic in time and not linear, allowing
observation of longer coherent dynamics.
As an example, we take the AB Hamiltonian in Eq. (3),

in the 1ES, with ΦAB ¼ 0 and N ¼ 3. That is, the
Hamiltonian

HAB ¼ Ω

0
B@

0 1 1

1 0 1

1 1 0

1
CA: ðA6Þ

We model the mediation of coupling in a Lindbladian
equation:

∂tρ ¼ −i½HAB; ρ� þ
γ2
2
½1 − PDFSðtÞ�

X3
n¼1

L½jnihnj�ðρÞ

≡DtðρÞ; ðA7Þ

that is, the state evolves according to the coherent AB
Hamiltonian but dephases according to the single-qubit

dephasing rate γ2, which is normalized by the population
outside of the 1ES. The Lindblad jump operator
L½jnihnj�ðρÞ simply causes a dephasing of the nth site in
the AB ring. The second row in Eq. (A7) defines the linear
operation acting on ρ using the time-dependent super-
operator, Dt.
Equation (A7) constitutes a time-dependent ordinary

differential equation. However, since γeff ≪ Ω, it can be
solved by assuming adiabatic following. That is, we
estimate the resulting population dynamics by considering
the evolution of a fully coherent model and rescaling it
according to a decaying envelope EDFSðtÞ, such that
pnðtÞ→EDFSðtÞpnðtÞþð1=NDFSÞ½1−EDFSðtÞ�, with pnðtÞ
the population of site n due to only Hamiltonian evolution
and NDFS the number of states in the DFS.
Specifically, we estimate EDFS by considering the

eigenvalues and eigenstates of the instantaneous Dt. Its
diagonalization reveals that the decay in the system is given
by the eigenvalue

λðtÞ ¼ −
γ2
4
ðe−γeff t − 1Þ: ðA8Þ

Therefore, we estimate

EDFSðtÞ ¼ exp

�Z
t

0

dt0λðt0Þ
�

¼ exp

�
−

γ2
4γeff

ðe−γeff t − 1þ γefftÞ
�
: ðA9Þ

We note that in leading order the envelope is
EDFSðtÞ ¼ exp ð− 1

8
γ2γefft2Þ, with corrections in higher

orders of γefft. Thus the buildup of incoherent population
outside of the DFS “leaks” into the DFS as dephasing.
However, due to our use of postselection, the decay is
quadratic in short times, leading to an initially slow decay,
i.e., slower than the loss of population from the subspace.
We use EDFSðtÞ in order to rescale the population

dynamics predicted by the Hamiltonian evolution of our
simulated models (using similar considerations for the
triangular ladder model). As seen in the solid lines in
Figs. 2, 5, and 6, these estimations generate a good
prediction of the observed dynamics, without fitting the
decay parameters.
Figure 8 below shows the effect of both population

leakage out of the DFS and dephasing within the DFS
(dashed black line) on unprocessed data, i.e., data with no
postselection.
This analysis also indicates what is necessary in order to

efficiently scale up the simulated models while ensuring a
high-fidelity simulation. Decoherence effects can be miti-
gated by improving the system coherence times such that
small populations outside of the decoherence-free subspace
will not cause significant decoherence. For example, using
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a magnetic field shielding or qubits based on clock states
show long coherence times in numerous trapped-ion
systems. Clearly, such a solution cannot be implemented
together with the application of an external magnetic field
gradient; however, a qubit transition frequency difference
can be generated with alternative methods, e.g., by using an
additional shaped laser beam that generates an appropriate
light shift profile on the ion chain. In addition, increasing
the laser power, together with increasing ξ, acts to reduce
the population in the intermediate states, thus avoiding the
effects of decoherence altogether.
For example, increasing the single-qubit coherence time

to 100 ms (100-fold increase compared to this work) and
increasing the laser power to 100 mW (tenfold increase
compared to this work), which are both conservative
changes to our setup, allows one to simulate dynamics
which decay out of the subspace 100 times slower and
evolve 10 times faster than this work.

APPENDIX B: ADDITIONAL DYNAMICS
MEASUREMENT DETAILS

As mentioned in the main text, our setup measures the σz
operator at each site independently [41] (other Pauli
operator measurements are performed by rotating the state
prior to the σz measurement). Thus, after repeating the same
experiment several times, we reconstruct a probability
distribution over all 2n states (but not the phase relation
between them).We use this information in order to postselect
and renormalize the results shown in Figs. 2, 5, and 6 to the
relevant excitation subspace. For example, Fig. 2(a) shows an
initial single excitation in a three-site model; thus, the
data shown for the occupation of site number 1 (blue)
are transformed as Pr ðj100iÞ ↦ Pr ðj100iÞ=½Pr ðj100iÞ þ
Pr ðj010iÞ þ Pr ðj001iÞ�, with Pr ðjn1n2n3iÞ the measured
probability of observing the state jn1n2n3i and ni ∈ 0; 1.
This means that, in this dataset, measurements yielding 0, 2,
or 3 excitations are ignored.
We present the evolution of the occupation of the different

subspaces corresponding to the data in themain text. Figure 7
shows the occupation of the different subspaces in the AB
ring model, corresponding to Fig. 2. We note that the 1ES
occupation in Figs. 7(a)–7(c) and 2ESoccupation in Fig. 7(d)
decays but remains larger than 0.5 throughout the evolution.
We also add the expected population in theDFS according to
the prediction of Eq. (A5).
We present examples of unprocessed data, i.e., without

subspace normalization. Figure 8 shows the full occupation
data in the AB ring dynamics experiments, with Fig. 8(a)
corresponding to Figs. 2(a) and 8(b) corresponding to
Fig. 2(d). The main features discussed in the main text
are clearly observed in this dataset, as well as negligible
population in the other subspaces. Furthermore, our pre-
diction for the decay, given by Eqs. (A5) and (A9), shows a
good fit to the measured data.

Figure 9 shows the subspace occupation in the triangular
ladder, corresponding to Figs. 5 and 6. We also add the
predicted population in the DFS according to the estimate
in Eq. (A5).
The magnetic gradient generated on the ion chain is

measured using correlation spectroscopy in a Ramsey-like
experiment. A similar protocol is used in Ref. [68].
Specifically, all ions are prepared in the j0i state and are
then rotated to the jþi ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

state using a
global π=2 pulse. The ions then freely evolve under the
influence of the magnetic gradient for some time t, after

(a) (b)

FIG. 8. Unprocessed data of the AB ring dynamics. States in
the initialized excitation subspace (bold lines) are primarily
excited, while other states (dashed lines) have negligible pop-
ulations. (a) Corresponding to Fig. 2(a). (b) Corresponding to
Fig. 2(d). The dashed black line shows the expected population
decay according to Eqs. (A5) and (A9), scaled by the initial
preparation fidelity, i.e., by the first data point. Error bars
represent standard deviation due to quantum shot noise.

(a) (b)

(c) (d)

FIG. 7. Subspace occupancy of AB ring experiments. With zero
(blue), one (red), two (orange), and three (purple) excitations
present. (a)–(d) correspond to Figs. 2(a)–(d), respectively. The
dashed black line shows the expected population in the DFS,
according to Eq. (A5). The initial estimate is scaled by the
preparation fidelity, i.e., the first data point. Error bars represent
standard deviation due to quantum shot noise.
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which they are rotated using an additional π=2 pulse. We
then measure the individual σz component and compute
the parity signal of adjacent ions, i.e., the number
P ¼ Pr ðj00iÞ þ Pr ðj11iÞ − Pr ðj10iÞ − Pr ðj01iÞ, which
oscillates at the relative transition frequency difference
of the two ions, i.e., in the frequency Δ generated by the
gradient.
Figure 10 shows typical measurements (markers with

dashed lines) and the corresponding fitted parity

oscillations (solid lines) used to obtain Δ for three
ions (a), for which we estimate Δ ¼ 1012� 31 Hz, and
four ions (b). In our trap, the ions are not positioned at equal
distances from each other; thus, they exhibit various
differential frequencies, and we obtain Δ1;2 ¼ Δ3;4 ¼
922� 35 Hz and Δ3;4 ¼ 866� 35 Hz, with Δi;j the tran-
sition frequency difference between ions i and j. Clearly, a
trap which uses anharmonic potentials to generate equally
spaced ions or a programmable method of generating a
constant energy difference along the ion chain, e.g., tunable
light shift, can mitigate these effects.
Using the measured values of Δ and values such as the

carrier Rabi frequency and the center-of-mass sideband
frequency (measured in standard methods), we generate the
spectral tones required to implement our models. In
principle, each Hn term in Eq. (1) requires two tones.
However, in this work, we use four tones per Hn term, as
we show in Ref. [41] that the additional terms act to
mitigate unwanted effects, e.g., inhomogeneous broaden-
ing. In general, we use the frequencies

ωb
n;� ¼ ω0 þ δþ ðνþ ξnÞ � nΔ=2; ðB1Þ

ωr
n;� ¼ ω0 þ δ − ðνþ ξnÞ � nΔ=2; ðB2Þ

with ωb
n;� (ωr

n;�) a frequency pair addressing the blue (red)
sideband, ω0 the single-qubit transition frequency, Δ the
frequency difference per ion as discussed above, ν the
frequency of the center-of-mass mode of motion, ξ a
“symmetric” detuning, and δ an “asymmetric” detuning
from the two-photon transition.
As discussed in detail in Ref. [42], at low values of ξ

unwanted nonresonant Hamiltonian terms can affect the
simulation fidelity (in addition to decoherence discussed
above); however, large values of ξ result in slower dynam-
ics. These considerations are encapsulated in the dimen-
sionless number β ¼ ξ=2Ωn ¼ ξΔ=ðηΩÞ2, with η the
Lamb-Dicke parameter associated with the motional mode
and Ω the carrier Rabi frequency. The role of δ is to
suppress transitions of the form σþσþ and σ−σ−, which are
associated with a resonant absorption of one ωr

n;� photon
and one ωb

n;� photon.
For the generation of the quench dynamics shown in

Fig. 2, we useH1 andH2 (and all else zero). To this end, we
use β ≈ 6, ν ≈ 1 MHz, and Ω ≈ 60 kHz, yielding
ξ1 ¼ 28.1 kHz. Furthermore, we choose δ ¼ ξ1=2.
As shown in Eq. (B2), the value of ξ depends on n; this is

done in order to avoid unwanted resonances. We choose
ξ2 ¼ 1.25ξ1 ¼ 35.1 kHz. Since we are interested in equal
coupling strengths of all the links in the ring, we compen-
sate the difference in symmetric detuning using the power;
thus, we drive the ω2’s at a relative power r2=r1 ¼

ffiffiffiffiffiffiffiffiffiffiffi
ξ2=ξ1

p
.

In order to observe time-reversal-breaking dynamics, we
set the phase of the different tones to ϕn;� ¼ �Φ=6, withΦ

(a) (b)

(c) (d)

FIG. 9. Subspace occupancy of triangular ladder ring experi-
ments with zero (blue), one (red), two (orange), three (purple),
and four (green) excitations present. (a) and (b) correspond
to Figs. 5(a) and 5(b), respectively. (c) and (d) correspond to
Figs. 6(a) and 6(b), respectively. The dashed black line shows the
expected population in the DFS, according to Eq. (A5). The
initial estimate is scaled by the preparation fidelity, i.e., the first
data point. Error bars represent standard deviation due to
quantum shot noise.

(a) (b)

FIG. 10. Parity measurement used to determine the frequency
difference between adjacent ions, for three ions (a) and four ions
(b). The data (points connected by a dashed line) show parity
oscillations between adjacent ions (see the legend) and are fitted
(solid line) in order to determine the frequency difference. Error
bars represent standard deviation due to quantum shot noise. As
seen for four ions, the frequency difference between ions 2
and 3 is different than the rest due to unequal spacing of the
ion chain.
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the flux penetrating the ring and in correspondence to the
notation in Eq. (B2).

APPENDIX C: ERROR BAR ESTIMATIONS

All of the error bars shown in the main text and below
correspond to �1σ estimations due to quantum shot noise.
These errors are propagated using standard methods, i.e.,

δfðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i ð∂xif · δxiÞ2
q

, for computing error bars for

postselected, renormalized data (see below), as well as for
computing the energy, current, and overlap with the ground
state, in the adiabatic ground-state preparation section. The
error estimations for the dynamics data in Figs. 2, 5, and 6
are due to 100 repetitions of each evolution time. The error
estimations for the ground-state preparation data are due to
200 repetitions per flux point.

APPENDIX D: ADIABATIC GROUND-STATE
PREPARATION

In the main text, we state that we do not precisely
implement the AB Hamiltonian HABðΦABÞ in Eq. (3).
Rather, we implement theHamiltonianHeff ¼ HABðΦABÞ þ
ϵHABð0Þ, such that the factor that accompanies a hop is
modified: eiΦAB → eiΦAB þ ϵ.
In our method, we use pairs of spectral tones to resonantly

bridge the frequency gapΔ between adjacent ions, openedby
the magnetic field gradient. However, a single tone may off-
resonantlymediate a NNhop aswell. Since the same beam is
used to excite anddeexcite the ions tomediate a hop, its phase
is irrelevant, and it cannot carry a flux, i.e., Φ ¼ 0. We
estimate the coupling of this effect by comparing the
on-resonance coupling rate Ωn¼1 and the detuning Δ in a
two-photon Raman coupling, yielding the estimate
ΩΦ¼0 ¼ Ω2

n¼1=Δ. In our implementation, we have Ωn¼1 ≈
350 Hz and Δ ≈ 1 kHz, yielding ΩΦ¼0=Ωn¼1 ≈ 0.35.
In practice, we obtain the value of ϵ and Ω with a

maximum likelihood fit. Specifically, we simulate an ideal
adiabatic ramp of HAB in the 1ES (i.e., a three-dimensional
Hamiltonian) and choose the values of ϵ and Ω, such that
they maximize the probability to measure our obtained
data. We obtain ϵ ¼ 0.22 and Ω ¼ 350 Hz.
We note that due to the expression for Ωn we have

ΩΦ¼0=Ωn¼1 ∝ Ω2
0=Δ2, with Ω0 the carrier Rabi frequency.

Thus, this effect can be mitigated by increasing Ω0 and Δ
such that Ωn is unchanged but ΩΦ¼0 is suppressed.
In the main text, we state that tomography of the resulting

prepared state is performed by occupancy and correlation
measurements, under the assumption of rapid dephasing of
other excitation subspaces. Indeed, assuming the prepared
state jψi¼ ffiffiffiffiffi

p1

p
eiϕ1 j100iþ ffiffiffiffiffi

p2

p
eiϕ2 j010iþ ffiffiffiffiffi

p3
p

eiϕ3 j001i,
then the occupancy measurement is equivalent to evaluating
hσzi for each of the three sites. Similarly, evaluating
hσjzσjþ1

z i after the in-phase measurement procedure yields
2
3
pjpjþ1cosðθj−θjþ1Þ and after the out-of phase correlation

procedure yields hσ1zσ2zi¼ 2
3
p1p2 sinðθ1−θ2Þ and hσ2zσ3zi¼

2
3
p2p3 sinðθ2−θ3Þ. These combined are enough to recon-
struct jψfi up to a global phase.
To supplement the data, we perform a numerical sim-

ulation of the full ion-chain Hamiltonian of the adiabatic
ramp [i.e., a 23ðnmax þ 1Þ-dimensional Hamiltonian, with
nmax ¼ 9 the maximum phonon occupation number of
the chain’s center-of-mass normal mode of motion].
Figure 11(a) shows the evolution of the different 1ES
states under the adiabatic ramp protocol with Φ ¼ π=2 and
the remaining parameters similar to those of the experi-
ment, such that β ¼ ξ=2Ωn ¼ 7 [42]. The ramp starts at
t ¼ 0 and ends at 10 ms (dashed line), after which the
resulting state is coherent, seen from its high purity (purple
line) and occupies almost equally the three 1ES states (blue,
red, and yellow lines) at the stroboscopic times (markers),
indicating an approximate ground state of the underlying
AB Hamiltonian.
We also repeat this simulation deep in the adiabatic

regime, with β ¼ 40 andΦ ¼ 0, shown in Fig. 11(b). Here,
the procedure yields an even higher overlap with the
underlying ground state. Furthermore, the large β value
results in much less oscillation, making the result viable at
all evolution times.

APPENDIX E: TRIANGULAR MODEL ANALYSIS

We provide further details on the four-site triangular
ladder. Specifically, we show that the three symmetries
U1;4, A2;3, and C, described in the main text, allow one to
easily recognize seven of the 16 eigenstates. Furthermore,
this analysis immediately shows periodicity of the 1ES
evolution and of a subspace of the 2ES. A summary of the
eigenstates is given in Table I.
We start by noticing that the unoccupied state j↓↓ij↓↓i

and the fully occupied state j↑↑ij↑↑i are trivially E ¼ 0

(a) (b)

FIG. 11. Simulation of adiabatic ground-state preparation of the
AB ring. (a) Preparation with parameters similar to the experi-
ment, withΦ ¼ π=2 and β ¼ 7. The adiabatic ramp starts at t ¼ 0
and ends at t ¼ 10 ms (dashed line). The resulting state occupies
the three 1ES states almost equally at stroboscopic times
(markers) and is coherent, as seen by the high purity values.
(b) Preparation deep in the adiabatic regime with β ¼ 40 and
Φ ¼ 0, the system evolves smoothly at all times and results in a
high overlap with the AB Hamiltonian ground state.
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eigenstates of the system, as all Hamiltonian terms anni-
hilate them. Here and in all other states below, the two kets
are to be understood as jψijφi≡ jψi1;4jφi2;3.
Next, because of U1;4, when sites 1 and 4 form a spin

singlet, they are decoupled from the evolution. Therefore, a
set of eigenstates can be found by diagonalizing the
remaining terms connecting sites 2 and 3. In the 1ES, this
comes about as jSij↓↓i, with E ¼ 0. The chiral symmetry
now forces the three remaining eigenstates of the 1ES to
have energies 0;�E1, with E1 determined by exact
diagonalization of the 3 × 3 Hamiltonian. Similarly, in
the 3ES, we have jSij↑↑i, with E ¼ 0.
In the 2ES, a singlet on sites 1 and 4 requires an additional

excitation on sites 2 and 3. The interaction between these
sites takes the form of a σy term; thus, two eigenstates in the
2ES are jSiðj↑↓i � ij↓↑i= ffiffiffi

2
p Þ with energy∓ Ω. The state

ðj↑↑ij↓↓i − j↓↓ij↑↑i= ffiffiffi
2

p Þ is an additional eigenstate in
the 2ES, carrying 0 energy. Similarly to above, the remaining
three states must carry energies 0;�E2, with E2 determined
by exact diagonalization.

[1] B. I. Halperin, Statistics of Quasiparticles and the
Hierarchy of Fractional Quantized Hall States, Phys.
Rev. Lett. 52, 1583 (1984).

[2] D. Arovas, J. R. Schrieffer, and F. Wilczek, Fractional
Statistics and the Quantum Hall Effect, Phys. Rev. Lett. 53,
722 (1984).

[3] B. I. Halperin and J. K. Jain, Fractional Quantum Hall
Effects: New Developments (World Scientific, Singapore,
2020).

[4] H. Bartolomei, M. Kumar, R. Bisognin, A. Marguerite,
J.-M. Berroir, E. Bocquillon, B. Plaçais, A. Cavanna, Q.
Dong, U. Gennser, Y. Jin, and G. Fève, Fractional Statistics
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