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Trap-assisted formation of atom–ion  
bound states
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Pairs of free particles cannot form bound states in an elastic collision due 
to momentum and energy conservation. In many ultracold experiments, 
however, the particles collide in the presence of an external trapping 
potential that can couple their centre-of-mass and relative motions, assisting 
the formation of bound states. Here we report the observation of weakly 
bound molecular states formed between one ultracold atom and a single 
trapped ion in the presence of a linear Paul trap. We show that bound states 
can efficiently form in binary collisions, and enhance the rate of inelastic 
processes. By measuring the electronic spin-exchange rate, we study the 
dependence of these bound states on the collision energy and magnetic 
field, and extract the average molecular binding energy and mean lifetime of 
the molecule, having good agreement with molecular dynamics simulations. 
Our simulations predict a power-law distribution of molecular lifetimes with 
a mean that is dominated by extreme, long-lived events. The dependence of 
the molecular properties on the trapping parameters enables further studies 
on the characterization and control of ultracold collisions.

Collisions between pairs of particles are among the fundamental build-
ing blocks of molecular formation and quantum chemistry. Owing to 
energy and momentum conservation, pairs of free particles cannot 
bind in binary elastic collisions; instead, molecules’ formation usually 
requires inelastic dynamics or three-body interactions, as realized  
in processes such as photoassociation1–4, Feshbach association5–8  
or three-body recombination9–11.

In many ultracold collision experiments, however, the particles 
are not free but trapped by an external potential, such as optical dipole 
traps12–16 or ion traps8,10,17–22. Charged particles, in particular, are highly 
susceptible to electric fields and usually require strong electromag-
netic potentials to assist trapping. In most trapped ion experiments, 
the ions are held in a Paul trap, using time-dependent electric fields23,24.

Various studies have shown that the presence of a trap can modify  
the properties of collisions and lead to the emergence of unique 
phases25,26, to change in the profile of scattering resonances26–30, to 
non-equilibrium dynamics31,32 or to the formation of bound states 
via the adiabatic merging of two different traps33–35. Yet, to date, 

trap-assisted bound states between pairs of neutral atoms and atomic 
ions have not been observed.

Here we show that the ion’s confinement can lead to a short-lived 
and loosely bound 88Sr+–87Rb molecule in a cold binary collision. By 
measuring the probability of electronic spin exchange (SE) between 
the atom and ion at different settings, we estimate the molecule’s 
lifetime and binding energy. We compare our results with a molecular 
dynamics (MD) simulation and characterize the trap effect for various 
experimental configurations. We show that the molecular lifetime  
is power-law distributed such that the mean molecular lifetime is  
dominated by extreme, long-lived events.

Formation and detection of atom–ion bound 
states
In most hybrid atom–ion experiments in the ultracold regime, both 
neutral atom and ion are trapped by external potentials. Yet, the dyna-
mics is predominantly governed by the ion’s trapping potential owing 
to its considerably high trapping frequency. This potential breaks the 
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cooling. A cloud of (5−10) × 105 atoms is loaded into a one-dimensional 
optical lattice created by two counterpropagating laser beams44. The 
atoms are optically pumped into one of the hyperfine states 
|F = 1, mF = ±1〉 in the electronic ground state. The atomic cloud is  
transported through the Paul trap at a fixed velocity, equivalent to a 
kinetic energy of 100 μK, which is controlled by the optical frequency 
difference of the beams. A 88Sr+ ion is trapped in a linear segmented 
Paul trap and is cooled using Doppler cooling, followed by 
resolved-sideband cooling into the ground state (n̄ ≲ 0.5  in each 
motional mode). Then, the ion is optically pumped into one of the two 
Zeeman states of the electronic ground-state manifold 5S1/2. Following 
preparation and before overlapping with the atomic cloud, the  
magnetic field is changed from 3 G to a target value.

We measure the ion’s spin state by double shelving one of the 
ground-state levels into two different Zeeman states in the 4D5/2 mani-
folds using a narrow-linewidth laser at 674 nm, followed by the detec-
tion of state-dependent fluorescence light using the strong 5S1/2–5P1/2 
dipole transition.

Enhancement of SE rate
SE is one of the most probable inelastic processes in 88Sr+ and 87Rb col-
lisions41,45. In Fig. 1c, we illustrate an SE process between 88Sr+ and 87Rb 
in their electronic ground state. In the presence of a magnetic field, 
the SE is accompanied by an exchange of internal and kinetic energies. 
The SE rate was studied for exothermic and endothermic processes 
when the particles’ initial states were |↑⟩Sr+ |1, −1⟩Rb and |↓⟩Sr+ |1, +1⟩Rb, 
respectively. The energy gap for these two pathways depends on the 
magnetic field as ΔSE = ±h × 3.5 MHz G–1 = ±168 μK × kB G–1, where h is 
Planck’s constant and kB is Boltzmann’s constant.

In the experiment, the mean number of Langevin capturing 
events per passage of the atomic cloud through the ion trap is given 
by NL = ρKL/vlattice (Methods and ref. 44), where ρ is the atomic column 
density of the neutral atoms integrated along the lattice direction 
of motion and vlattice is the speed of the lattice. The Langevin capture 
rate coefficient KL is nearly independent of the collision energy or the 
magnetic field. All the experiments are taken at a constant lattice veloc-
ity, and therefore, the probability for at least one Langevin collision is 
constant and equal to 0.32(3) (Methods).

Energy dependence
We first study the dependence of SE on the ions’ excess micromotion 
(EMM) energy EEMM, which is the energy in the fast oscillatory motion 
in the frequency of the trapping radio-frequency (RF) fields. EEMM is 

translation-invariance symmetry of the interaction Hamiltonian and 
could hence generate a coupling between the relative motion and 
centre-of-mass motion of the atom–ion pair. This coupling could trans-
fer energy between these two frames and reduce the pair’s energy in 
the relative frame, consequently allowing short-lived bound states. A 
similar mechanism—inelastic confinement-induced resonance—leads 
to ultracold atoms to have bound states in anharmonic traps36–39 or 
when the particles have different trapping frequencies40.

We illustrate the bound-state formation (Fig. 1a) via the numerical 
simulation of a collision when an ideal, spherical symmetric harmonic 
potential is applied to the ion (Methods). Here the atom and ion bind 
in a binary collision; their relative motion manifests multiple oscilla-
tions, shown in the centre-of-mass frame. Consequently, during the 
lifetime of this molecule, the pair comes into close contact multiple 
times, enhancing the action of short-range chemical forces during 
the scattering, and increasing the probability of inelastic processes.

The total inelastic scattering rate depends on the elastic scattering 
rate and inelastic process probability. The number of distinct scattering 
events with different atoms is determined by the Langevin capture rate 
coefficient, KL = π√4C4/μ (ref. 3), where C4 is the leading long-range 
induction coefficient of the interaction and μ is the reduced mass. In 
each Langevin collision, the atom and ion spiral towards each other, 
and have a single period of interaction if they remain free, or multiple 
periods of short-range interactions if a bound state is formed. Since 
chemical forces leading to inelastic scattering are short ranged, the 
inelastic process probability is primarily determined by the relative 
molecular potential curves at a scale of several Bohr radii3,41. On the 
other hand, two characteristic length scales are associated with the 
external trap. The first is the harmonic oscillator length, rho ≈ √ℏ/mω, 
where m is the ion mass and ω is the trapping frequency. The second is 
the distance at which the polarization potential is equal to the ion’s 
trapping potential, that is, r ≈ 6√C4/mω2  (ref. 42). Both length scales 
are about a few tens of nanometres and are considerably larger than 
the range of chemical forces. Owing to this length-scale separation, 
the inelastic short-range probability is unaffected by the trapping 
potential. Yet, bound states lead to multiple short-range encounters, 
and by that, enhance inelastic processes.

Experimental system
We study the formation of loosely bound 87Rb–88Sr+ molecules using 
the experimental system (Fig. 1b) with the details provided else-
where32,43,44. In brief, we trap and cool 87Rb atoms in a magneto-optical 
trap (MOT) with a dark MOT stage followed by a polarization gradient 
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Fig. 1 | Bound state formation and experimental apparatus. a, Collision 
between an atom and an ion in the centre-of-mass frame when the ion is trapped 
in a harmonic trap. A bound state with five short-range collisions is formed (solid 
lines). If an exothermic SE occurs (a schematic for the second collision is shown 
here), the energy is released and the bound state may dissociate (dashed lines). 
b, Experimental setup. A cloud of Rb atoms is trapped, cooled down and loaded 
into an optical lattice trap. The atoms are optically pumped (OP) into a specific 

spin state. The atomic cloud is transported over the ion at velocity vlattice. The ion 
is prepared in a specific spin state before the passage of the cloud, and typically a 
single Langevin collision occurs. Ion-state detection is realized afterwards using 
state-selective fluorescence. c, Energy levels for 88Sr+ and 87Rb in the electronic 
ground state. After the SE process (denoted by the red arrows for an exothermic 
process), the Zeeman energy is released or absorbed to the motional degrees of 
freedom.
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determined by the voltage difference ΔVcomp, which is the difference 
between the voltage applied on one of the trap electrodes and the com-
pensated voltage (Methods). In Fig. 2, we show the dependence of the 
measured SE probability per atomic cloud passage, ppassSE , on the micro-
motion energy at a background field of B = 16 G.

Although in the absence of a bound state, we expect ppassSE  to be 
independent of the micromotion energy, our measurement shows 
exothermic channel enhancement at small EEMM. The low-energy SE 
enhancement indicates the formation of a bound state, which leads to 
multiple short-range collisions.

At low micromotion energy, the endothermic SE is suppressed 
compared with the exothermic channel. This is expected since the 
kinetic energy of the bodies and the work done by the trap are smaller 
than the magnetic energy gap. However, at 16 G, the energy gap for an 
endothermic transition is about 2.5 mK, larger than all the other initial 
energy scales in the system. The lack of the complete suppression of 
endothermic SE is another indication of trap-associated effects, which 
could be explained by multiple short-range collisions during which 
work can be done by the trap time-dependent fields.

Magnetic-field dependence
We next turned to measure the SE dynamics at various magnetic fields. 
Owing to the conversion between internal magnetic energy and kinetic 
energy, we expect to see the enhancement or suppression of SE as a 
function of the magnetic field for different scattering pathways if a 
bound state is formed. The measured endothermic (exothermic) SE 
probability as a function of the magnetic field is shown by the blue 
(red) filled circles (Fig. 3).

The dependence of the exothermic channel on the magnetic field 
can be understood from its effect on the bound state’s dissociation. 
At high magnetic fields, the released energy is larger than the binding 
energy. As a result, the bound state dissociates after the first SE event. 
At low magnetic fields, however, the ion’s spin can flip multiple times 
in subsequent short-range encounters, which decreases the observed 
SE probability.

For the endothermic channel, SE still occurs in the highest meas-
ured magnetic field, despite the fact that it should be suppressed 

by energy conservation. We further characterized the dynamics by 
measuring the temperature of the ion, post-selected on experiments 
in which its spin had flipped. The measured temperatures are shown in 
Fig. 3b,c, using the Rabi carrier thermometry technique20. A reference  
temperature of non-SE events was separately measured for each  
channel (Methods). At a magnetic field of 3 G, both exothermic (red) 
and endothermic (blue) pathways leave the ion at a similar tempera-
ture, of about 1 mK, which is probably dominated by heating driven 
by the fields of the Paul trap20,42. At the highest magnetic field, after an 
exothermic transition, the ion heats up to a temperature comparable 
with the Zeeman gap. Surprisingly, after an endothermic transition, the 
temperature of the ion is similar to that measured at the low magnetic 
field, without any observed kinetic energy reduction, which is naively 
expected by the Zeeman-energy barrier. This might indicate additional 
trap-induced effects in this regime.

MD simulations
We compared our observations with an MD model, numerically simulat-
ing the dynamics of the collisions in a Paul trap (Methods). Using the 
simulation, we can study the distribution of the number of short-range 
collisions N. We find that for our experimental trapping parameters, 
a bound state is typically formed in a Langevin collision when EMM is 
compensated (Fig. 4a, blue line). In addition, the tail of the distribution 
exhibits a power-law behaviour, which scales roughly as 1/N2. For this 
distribution, the mean number of short-range collisions and the mean 
molecular lifetime are dominated by rare tail events. The power-law 
tail of the distribution is suppressed at higher micromotion energies, 
for example, at EEMM = 10 mK kB (Fig. 4a, red line).

When the collision energy is increased beyond the bound state’s 
binding energy, the probability for more than one short-range collision 
pbound is reduced (Fig. 4b). This coincides with the observed reduced SE 
probability at larger EMM (Fig. 2). However, bound states still occur for 
high values of EMM energies. Since the collision energy depends on the 
momentary phase of the RF field, low-energy events are still possible.

By fitting the exothermic SE probability in Fig. 2 to the numerical 
simulation results, we can extract the microscopic SE probability for a 
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Fig. 2 | SE as a function of collision energy. SE probability per passage as a 
function of EMM energy is measured at 16 G for exothermic (red) and 
endothermic (blue) channels. The error bars are binomial-distribution standard 
deviation. Each point is an average of ~1,000 experiments. The black solid line is 
the maximum likelihood fit of the short-range SE probability based on a 
numerical simulation, including detection efficiency change due to heating 
(Methods), giving a probability of p0SE = 0.122(4). The shaded area is the 1σ 
confidence bounds of the fit. The dashed blue line is the effective SE given  
by the simulation for the endothermic channel at B = 16 G transition when  
the short-range probability is 0.12, including detection efficiency.
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Fig. 3 | SE as a function of magnetic field and thermometry. a, SE probability  
per passage as a function of the magnetic field for the exothermic (red) and 
endothermic (blue) channels at a lattice velocity of 0.14 mm ms–1 (equivalent to 
100 μK). The error bars are binomial-distribution standard deviation. Each point is 
an average of 1,500–3,000 experiments. The solid lines are the maximum likelihood 
estimation fit to a decay exponential function ppassSE = A× exp(−B/B0) + C  for 
both experiments. The parameters are A = –0.031(4), B0 = 3.9(7) G and C = 0.108(2) 
for the exothermic channel and A = 0.043(3), B0 = 10.0(1) G and C = 0.040(1) for the 
endothermic channel. The dashed lines are the expected ppassSE  values for the 
exothermic (red) and endothermic channels (blue) from the MD simulation, 
assuming the short-range p0SE = 0.12 that was found using the data shown in Fig. 2 
with no fit parameters (Methods). b,c, Heating of the ion using Rabi carrier 
thermometry on the SE event of the two transitions at 3 G (b) and 20 G (c).  
The dashed yellow line denotes half of the Zeeman-gap energy.
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single short-range interaction, giving p0SE = 0.122(4) (Methods) (Fig. 2,  
black line). This probability is consistent with previous measurements 
at higher energies46. The dashed blue line in this figure shows the pre-
dictions of our model for the endothermic channel given p0SE = 0.12. 
Evidently, our model predicts a much stronger suppression at low 
energy than measured.

Using the estimated p0SE, we can find—using the MD simulation—
the expected ppassSE  value as a function of the magnetic field (Fig. 3, 
dotted lines) with no other fit parameters. The simulation results agree 
with the enhancement in exothermic SE as a function of the magnetic 
field, and the suppression of the endothermic SE in the low-magnetic- 
field regime. The MD simulations of the endothermic channel under-
estimate the SE probability at high magnetic fields compared with the 
measured data. This difference might result from effects not included 
in the simulation (Supplementary Note II).

The formation of trap-induced bound states is a universal phenom-
ena that can emerge at different trap configurations. For example, in 
Fig. 4c, we show the bound-state probability pbound as a function of the 
secular trap frequency ω for an ideal, time-independent spherical sym-
metric harmonic trap (blue) and a Paul trap (red) with radial frequency 
ω and fixed axial frequency. Evidently, a trap can lead to bound states 
in binary collisions. For the harmonic case, the bound-state probability 
increases with the trap frequency to close to unity, but saturates for a 
Paul trap at pbound ≃ 0.5, owing to work done by the time-dependent 
fields that can prevent molecular binding42. The binding probability 
also depends on the atom–ion mass ratio (Extended Data Fig. 1b). 
For the harmonic case, the coupling term or the Hamiltonian is given 
by Hcpl = ω2μR · r, where μ is the reduced mass and r (R) is the relative 
(centre-of-mass) coordinate (Supplementary Note I). This coupling is 
negligible for a free ion, or smaller reduced mass, which is qualitatively 
reproduced in the simulation results.

Binding energy and lifetime of trapped-assisted 
bound states
We can use our measured data to estimate different parameters of 
the loosely bound molecules. The maximum likelihood estimation 
of the magnetic dependence of the exothermic channel to an expo-
nential decay gives a decay constant of B0 = 3.9(7) G, corresponding 
to the mean bond energy of Ebind = ΔSEB0 = 0.7(1) mK. The likelihood of 
the exponential decay can be compared with a constant probability  
model using a likelihood ratio test, giving a p value of 1.2 × 10−5. For 
comparison, in the bound state of neutral atoms due to inelastic 
confinement-induced resonance, the binding energy is on the order of 

a few harmonic oscillator quanta36. For our case, Ebind × kB/h = 15(2) MHz 
is ~10 quanta of the secular frequency. However, the RF fields might 
play a role in setting the binding energy.

By a simple model for a bound state, the number of short-range 
collisions and the resulting molecular lifetime can be roughly estimated 
from the experiment, without a full calculation of the particles’ trajec-
tories (Methods). Using this model, we find the effect on the probability 
of SE in a single atomic cloud pass. The bound state can be modelled 
by assuming that the number of short-range interaction periods N  
has a geometric distribution with probability 1/〈N〉. For any short-range 
SE probability p0SE, we can calculate what would be the effective SE in 
the two regimes: when the process has no energetic gap (zero magnetic 
field) and when the process is exothermic with an energetic gap larger 
than the binding energy (large magnetic field) (Methods). This ampli-
fication depends on both p0SE and 〈N〉, and is extracted from the experi-
ment using an exponential fit to the exothermic channel (Fig. 3). 
Combining both measured amplification and the estimation for p0SE 
and comparing the model, the mean number of collisions in the experi-
ment is 〈N〉exp = 8(2) (Extended Data Fig. 2). Assuming the binding is 
only due to the C4/2r4 potential, the time between collisions is T = 62 ns 
(Methods), and we can estimate the lifetime of the molecule in the 
experiment as 0.5(1) μs, similar to the mean lifetime given by the MD 
simulation, namely, 0.411(4) μs.

Discussion
We have observed the formation of trap-assisted bound states in 
ultracold atom–ion collisions. These bound states amplify the rate 
of inelastic processes in both exothermic and endothermic collision 
channels. From the measured SE rates, we estimated the molecules’ 
binding energy as 0.7(1) mK and mean lifetime as 0.5(1) μs.

Remarkably, bound states are efficiently formed in binary  
collisions. Numerical simulations indicate formation for every other 
collision and the molecular lifetime with a power-law distribution. 
Power laws in the energy distribution were already observed in  
atom–ion collisions due to multiplicative energy fluctuations after 
multiple collisions20,31,32. However, in this case, the power law arises in 
a single collision.

The trap parameters can control the molecular binding probability 
and lifetime, providing a convenient control knob. We observe that 
trap-assisted bound states are also efficiently formed in static poten-
tials. This indicates that the source for binding is the coupling between 
the relative and centre-of-mass motion by breaking translational sym-
metry rather than the presence of time-dependent fields in Paul traps. 
Therefore, this effect can still play a role in atom–ion interactions using 
an optical trap for the ions14.

These bound states introduce a systematic effect that potentially 
needs to be accounted for in analysing the scattering processes near  
the s-wave regime34,47. Yet, for a small atom–ion mass ratio ma ≪ mi 
and weak trapping frequencies, the formation of bound states is 
suppressed48.

The formation of bound states by the trap is akin to the mecha-
nism in which ultracold atoms can bind in anharmonic traps, related 
to inelastic confinement-induced resonances36–39. Yet, we expect the 
bound-state formation to qualitatively differ from the case of neutral 
atoms in two main aspects. First, because the external forces primarily 
trap the ion but not the atom, translational variance leads to efficient 
coupling between the centre-of-mass motion and relative motion (Sup-
plementary Note I). For cold neutral atoms, on the other hand, owing to 
the nearly harmonic trapping potential, such formation is suppressed, 
and strong anharmonicity is required. Therefore, this effect might be 
pronounced in various hybrid atom–ion experiments. Second, the 
time-dependent trapping fields exert work on the ion that shortens 
the bound state’s lifetime. We, therefore, expect that ultracold atoms 
or ions held in energy-conservative optical traps would feature longer 
bound-state lifetimes.
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The formation of bound states can potentially enhance the prob-
ability of other inelastic processes or chemical reactions, as suggested 
recently49. Yet, owing to the coupling between the centre-of-mass and 
relative motion, energy from the centre-of-mass frame can potentially 
broaden the collision energy and hinder the observation of low-energy 
resonant processes, such as shape and Feshbach resonances.

Here we have explained our observations using classical simula-
tions and did not include any quantum effects. In a quantum descrip-
tion, the trap might introduce a dense spectrum of resonances, similar 
to molecular ‘sticky collisions’50. Moreover, the measured endothermic 
SE substantially deviates from the predictions of our simulations at a 
low collision energy and strong magnetic field. This could be, for exam-
ple, due to the effect of multiple overlapping Feshbach resonances at 
these magnetic fields.
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Methods
Experimental sequence
A cloud of 87Rb atoms is trapped and cooled down using an MOT,  
followed by a dark MOT stage and a polarization gradient cooling.  
A cloud of ~106 atoms is loaded into an optical lattice created by  
counterpropagating 1,064 nm laser beams. The atoms are pumped into 
one of the hyperfine states, namely, |1, –1〉 or |1, +1〉, by a sequence of 
microwave and optical pulses. After pumping, more than 90% of the 
population is in the desired spin state.

The ion is trapped in a linear segmented Paul trap where the  
secular frequencies are f = (1.10, 1.30, 0.48) MHz, and ΩRF =  
2π × 26.51 MHz. The ion is Doppler cooled and subsequently cooled 
near its ground state with n̄ < 0.5 in each of the motional modes. The 
atoms are moved to the lower chamber by changing the relative fre-
quency between the lattice beams. Unless stated otherwise, the atoms 
are moved over the ion at a velocity of 0.14 m s–1, which is equivalent to a 
kinetic energy of 100 μK. The current in the quantization coils is ramped 
up or down after cooling of the ion, and 30 ms before the collision. After 
the atomic cloud passes the ion, the magnetic field is ramped back to its 
initial value for state detection of the ion. Due to eddy currents in the 
system, the magnetic field has a transient time of 5 ms.

The spin-state detection was done 70 ms after the current in the quan-
tization coils returned to its initial value and consists of two stages. First, we 
apply two π-pulses from the spin state that was not the initial state to two 
different states in the D5/2 manifold (double shelving). For example, in the 
exothermic transition, the ion is initialized at |+1/2〉, the detection π-pulses 
are |–1/2〉→|–5/2〉 and |–1/2〉→|+3/2〉. After the shelving pulses, a fluorescence 
detection scheme is applied to check whether the ion spin was changed or 
not. If SE did not occur, the ion remains in the S1/2 manifold and will appear 
bright. Otherwise, it is shelved into the D5/2 manifold and no photons 
are detected. As a result of avoided crossing (Supplementary Note III),  
preparation and detection pulses are changed accordingly above 9.5 G.

The same detection scheme is applied for the same experimental 
sequence, but without atoms, to detect the preparation efficiency of 
the ion’s spin state, which is independent of the magnetic field and 
EMM, and is about 0.5%. Experiments are taken interlacing over the 
scanned variables and the background experiments.

EMM is compensated every hour during the experiment to less 
than 50 μK for each of the radial modes and to a few microkelvins in 
the axial direction.

Measuring the probability of Langevin collisions
For two free particles, the Langevin rate is given by

ΓL = nσL(Ecol)√
2Ecol
μ

, (1)

where n is the atomic density, σL is the total Langevin cross section, Ecol 
is the energy of the collision in the centre-of-mass frame and μ is the 
reduced mass. Classically, the cross section is given by σL = π√2C4/Ecol, 
and therefore, the reaction rate coefficient is

KL = σL(Ecol)√
2Ecol
μ

= π
√
4C4
μ

, (2)

which is independent of the collision energy.
In the experiment, the atomic density in the ion position n is time 

dependent due to the movement of the lattice44, and the number of 
Langevin collisions per passage is given by

NL = KL∫
∞

−∞
n(t)dt. (3)

Assuming the lattice is moving in a constant velocity vlattice, the 
number of collisions can be written as a function of the atomic density 
integrated along the direction of motion ρ as

NL =
KL

vlattice
∫

∞

−∞
n(x)dx ≡ ρKL

vlattice
, (4)

where x is the position of the ion relative to the centre of the atomic 
cloud.

We measured the number of collisions per passage by measuring 
the failure probability to shelve the ion from the electronic ground state 
to the D level using a long shelving pulse (14.6 μs) in the presence of high 
EMM energy (EEMM = 2.5 K), as described elsewhere47. Under these condi-
tions, a Langevin collision will efficiently couple the EMM energy to the 
secular motion51 and consequently decrease the shelving probability. 
We numerically simulate this process47, and find that the expected 
probability for a shelving failure per Langevin collision is about 87%.

We measure the shelving failure probability per passage of the 
cloud and present it (Extended Data Fig. 3) as the probability of observ-
ing the ion in a bright state after two shelving pulses as a function of 
the velocity of the ultracold atomic cloud. We find that the probability 
fits well to

pbright = ρKL/vlattice + pbg, (5)

where the first term is expected from equation (4), and the second term 
describes a constant background. From the maximum likelihood esti-
mation, ρKL = 0.039(3) and pbg = 0.078(8). The background probability 
is not due to finite shelving efficiency (which is 98.4(3)%), but probably 
due to hot atoms that are not trapped in the lattice. Taking into account 
the detection efficiency of a collision, at a collision energy of 100 μK, 
the probability for a cold Langevin collision in a single pass is 
platticeL  = 0.32(3) with a background of about pbgL  = 0.089(4). This value 
corresponds to the probability to have at least one collision in a pass. 
Assuming the number of collisions in a single pass has a Poisson distri-
bution, the mean number of collisions per pass is 〈N〉 = 0.385, with a 
probability of psingleL  = 0.26 for a single collision and pmultipleL  = 0.06 for 
multiple collisions.

Rabi carrier thermometry
The temperature of the ion after a collision is measured by Rabi  
carrier thermometry20,52. The probability of observing the ion in the 
D5/2 manifold after a resonant pulse driving the S1/2 → D5/2 transition 
with duration t is given by24

PD(t) = ∑
n

P(n)sin2(Ωn,n), (6)

where P(n) is the occupation probability of the Fock state n.  
Here Ωn,n is the coupling strength between |S1/2〉|n〉 and |D5/2〉|n〉 is  
given by24

Ωn,n = Ω0∏
i

eη2i /2Lni
(η2

i
), (7)

where Ω0 is the scaled interaction strength, ηi is the Lamb–Dicke para-
meter of the ith mode and Ln(x) is the nth Laguerre polynomial. The 
Fock states are assumed to be thermally distributed with a mean  
occupation number n̄:

P(n; n̄) =∏
i

1
n̄i + 1

( n̄i

n̄i + 1
)
ni

. (8)

At higher temperatures, more values of n need to be considered 
in this distribution. At temperatures above 2 mK, we approximate the 
energy distribution by

P(E) = 1
(kBT)

3 E
2e−

E

kBT , (9)
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where E = ∑iℏωini and ni is taken over a logarithmic scale. The contrast 
of a Rabi cycle post-selecting the spin state proportional to the SE 
probability is given by

PD(t;pSE) = ppassSE PD(t). (10)

The parameters T, Ω0 and ppassSE  are found by the maximum likelihood 
estimation of the experimental results to PD(t; pSE) assuming that  
the number of dark events follows a binomial distribution. The Rabi 
oscillations for the temperature measurements in Fig. 3b,c are shown 
in Extended Data Fig. 4.

EMM energy calibration
We control the EMM energy by changing the voltage difference ΔVcomp 
on an additional electrode, relative to the compensated value, generat-
ing a static electric field that shifts the equilibrium position of the ion 
away from the RF null of the Paul trap’s potential. Consequently, the 
ion is subject to the trap’s electric field in the radial direction that oscil-
lated at ΩRF, generating EMM displacements at the same frequency 
with amplitude uEMM. The EMM energy the ion gains is, therefore,

EEMM = mi(uEMMΩRF)
2

4 . (11)

We measure the EMM oscillation amplitude as a function of  
ΔVcomp by following the protocol in other works53,54, namely, by compa-
ring Ω0, the Rabi frequency of the carrier S1/2−D5/2 transition, with  
Ωsb, the Rabi frequency of the first micromotion sideband transition 
(that is, a transition detuned from the carrier transition by micro motion 
frequency ΩRF). The ratio of these two Rabi frequencies is related  
to uEMM by

Ωsb
Ω0

= k ⋅ uEMM
2 , (12)

where k is the wavevector of the narrow-linewidth laser at 674 nm  
that we used to drive the transition. Equation (12) holds for weak  
micromotion amplitudes k · uEMM ≪ 1 (ref. 53), which is valid in our 
experiment.

We measure Ωsb and Ω0 as a function of ΔVcomp and show the projec-
tion of the micromotion amplitude along the optical axis ̂k  (Extended 
Data Fig. 5) using equation (12). We fit the data to the following 
function:

uEMM ⋅ k̂ =√γ2proj(V − V0)
2 + c2, (13)

where V is the applied voltage, V0 is the value at which micromotion is 
compensated and ΔVcomp = V − V0. The coefficient γproj, offset c and V0 
are the fitting parameters of this model. We use parameter c because 
the estimation of Ωsb is limited by the coherence time of the system54. 
However, the electrode’s response is solely given by γproj. We find 
γproj = 3.97(6) nm V–1, V0 = –74.68(2) V and c = 2.8(2) nm with 1σ confi-
dence bounds. We extract the total micromotion amplitude by account-
ing for the relative orientation of ̂k  with respect to the trap axes. In our 
trap apparatus, ̂k = 1

√2
( ̂y + ̂z)  and ̂uEMM = cos(19∘) ̂y + sin(19∘) ̂x , as was 

previously measured in another work54, using the trap coordinates ̂z  
for the axial and ̂x, ̂y  for the radial directions. The geometric factor is, 
therefore, ̂k ⋅ ̂uEMM = 0.667 . We can then calibrate the dependence  
of the EMM energy in equation (11) on the applied voltage in  
equation (13), yielding EEMM/ΔV2comp = 2.58 mK V–2.

MD simulation
Based on other work32,42,52, we solve Newton’s equations of motion for 
the atom and ion Hamiltonian:

H =
p̂2i
2mi

+
miΩ

2
RF

8 ∑
j

[aj + 2qj cos(ΩRFt)] ̂r2i, j

+
p̂2a
2ma

+ V(| ̂ri − ̂ra|)

, (14)

where mi(a) is the ion (atom) mass, ri(a),j is the ion (atom) position  
in the jth direction, V(| ̂ri − ̂ra|) is the atom–ion interaction potential,  
ΩRF is the RF used and aj and qj are the trap parameters in the jth  
direction. Unless stated otherwise, a = (−2.20, 0.83, 1.30) × 10−3 and 
q = (−0.134, 0.134, 0), reproducing the secular trapping frequencies of 
f = (1.10, 1.30, 0.48) MHz, as in the experiment. We use the asymptotic 
form of the atom–ion interaction potential V(r) = −2C4/r4 at all distances 
larger than 10 nm, where the coefficient C4 = 1.09 × 10−56 J m4 is predomi-
nantly determined by the neutral atom polarizability. The short-range 
atom–ion potential is modelled by an infinite wall at 10 nm. At this 
point, the particles collide in an elastic hard-sphere collision. Without 
SE, after the collisions, the velocities in the collision axis are changed 
assuming the conservation of momentum and energy in the 
centre-of-mass frame. Because the masses of 87Rb and 88Sr+ are nearly 
equal, the velocities are nearly equal, too, but change their sign in the 
centre-of-mass frame.

The atoms start their trajectory on a plane 1.2 μm from the centre 
of the trap and the ion has an initial temperature of 150 μK (unless 
stated otherwise) divided equally in the different secular motional 
modes. The velocity distribution of the atoms consists of two terms, 
a thermal term (T = 5 μK) and a constant velocity that corresponds 
to the velocity of the optical lattice. For each set of parameters, the  
total number of calculated trajectories is 104, out of which about 40% 
have at least one short-range collision. The confi dence bounds of  
the bound state and SE probabilities are 1σ of a binomial distribution.

The kinetic effect of an SE process is modelled by energy absorp-
tion or release after the hard-sphere collision. The probability of an SE 
to happen is calculated by the acceptance–rejection method, for  
the given p0SE value. If SE occurred, the momentum and energy is no 
longer conserved. The momentum is altered only along the collision 
axis, and the ion’s and atom’s velocities parallel to the collision axis 
after the collision are updated by

u∥i = v∥cm + 1
mi√

2ΔE
μ
+ ( |vi−va |

μ
)
2
,

u∥a = v∥cm − 1
ma√

2ΔE
μ
+ ( |vi−va |

μ
)
2
.

(15)

where ΔE = hB × 3.5 MHz, h is Planck’s constant, v∥cm in the centre-of-mass 
velocity parallel to the collision axis and 3.5 MHz G–1 is the Zeeman- 
energy gap in an SE transition when the ion and atom are in the  
electronic ground state.

Calculating the effective SE in presence of EMM. An EMM induced by 
a constant field can be introduced into the simulation by an additional 
acceleration term:

ẍ = eEd.c.

mi
, (16)

where e is the electron charge. Only radial EMM is assumed, divided 
equally between the radial modes. For EMM temperature TEMM in the 
jth mode, the electric field is

Ed.c.
j

= 2
√
4TEMM
miΩ2

miω
2
j

qje
. (17)

We then numerically calculate the probability density func-
tion of the number of short-range collisions n for a given EEMM, that 
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is, p(n, EEMM). This probability is calculated from 104 trajectories for  
each EEMM value. In the case of exothermic transition in the presence of 
a large enough magnetic field, we can assume that an SE event happens 
at most one time. The effective SE probability per Langevin collision 
is given by

peffSE (EEMM;p
0
SE) =

∞
∑
n=1

p(n, EEMM)(1 − p0SE)
n−1

p0SE. (18)

From this result, we calculate the amplification factor peffSE /p
0
SE  

(Extended Data Fig. 6) for different values of EMM energy and 
short-range SE.

Since the probability for a collision in a single passage platticeL   
is less than one, and there are contributions from hot collisions  
with probability pbgL , the effective observed probability from the  
simulation is given by

ppassSE (EEMM;p0SE) = platticeL peffSE + pbgL p0SE. (19)

Using maximum likelihood estimation, we find the p0SE value that maxi-
mizes the likelihood function.

Although the EMM is compensated throughout the experiment, 
the measured data are not centred around the zero voltage on the 
compensation electrode. Therefore, the centre of the curve was found 
before finding the short-range p0SE. The centre was found by a parabola 
fit to ppassSE  as a function of ΔVcomp. The centre is shifted by 0.2073 V  
on the compensation electrode, corresponding to 50 μK.

Since the EMM can be coupled to the secular motion in a colli sion, 
it can heat up the ion. This effect is modelled by finding the energy 
distribution of the ion after a collision in the presence of specific 
EMM and then calculating the shelving probability PD (ref. 47), with 
the parameters of the electrode that were used in this experiment. In 
the experiment, two shelving pulses are applied, and therefore, the 
double shelving probability is PDS = PD(2 − PD). Here PDS as a function of 
EMM energy for an exothermic transition at 16 G is shown in Extended 
Data Fig. 7. This SE probability from the simulation results is multiplied 
by the corresponding shelving efficiency and presented (Fig. 2).

A simplified model for the bound state
In this section, we describe a simple model for the bound state that 
describes the amplification of the observed exothermic SE probability 
in two regimes: zero and infinite magnetic fields. We use this model to 
get an estimation for the mean number of short-range collisions and 
the lifetime of the bound state directly from the experiment, without 
a full calculation of the trajectories of the particles, in contrast to the 
MD simulation.

Assume that a bound state consists of n short-range collisions, 
where n has a geometric distribution with probability p = 1/〈N〉. For 
each short-range collision, the SE probability p0SE is constant.

If there is no magnetic field, the short-range SE events are indepen-
dent. Therefore, for a given n, the number of SE events nSE has a binomial  
distribution. In the experiment, only an odd number of SE events 
are detected, and therefore, the effective measured SE probability is  
given by

peffSE (B = 0) =
∞
∑
n=1

(1 − p)n−1p
n

∑
nSE odd

B (nSE;n,p0SE) , (20)

where

B (nSE;n,p0SE) = ( n
nSE

)(p0SE)
nSE (1 − p0SE)

n−nSE (21)

is the binomial distribution. On the other hand, if the magnetic field is 
larger than the binding energy, only one exothermic SE event is allowed. 
In this case, the effective probability is

peffSE (B →∞) =
∞
∑
n=1

(1 − p)n−1p
n

∑
m=1

(1 − p0SE))
m−1

p0SE. (22)

Then, we can calculate the the ratio peffSE (B = 0)/peffSE (B →∞)  for  
any N and p (Extended Data Fig. 2). From the probability of exo-
thermic SE as a function of the magnetic field (Fig. 3), we can find the  
ratio peffSE (B = 0)/peffSE (B →∞) = 1.46(5)  (Extended Data Fig. 2, red-shaded 
region). On the other hand, the short-range SE probability was found 
in the fit to the exothermic data (Fig. 2, blue line). From crossing  
these two curves, we can estimate the mean number of short-range 
collisions, 〈N〉exp = 8(2). This value is similar to the value calculated by 
the full MD simulation at zero magnetic field, namely, 〈N〉MD ≈ 5.6(2) 
(Extended Data Fig. 8).

Evidently, both results give p0SE⟨N⟩ ≈ 1 . If the number of short- 
range collisions was larger than the exchange probability, that is, 
p0SE⟨N⟩ ≫ 1 , we would expect the exothermic SE rate to saturate at  
the Langevin rate at high magnetic fields and to approach half of  
the Langevin rate at low fields.

We estimate the time between subsequent collisions by solving 
the one-dimensional motion in the relative frame of reference. The 
Hamiltonian of the relative motion for a free atom–ion pair is

H = 1
2μ

̇r2 − C4
2r4 , (23)

where r is the relative atom–ion separation, μ is the reduced mass and 
C4 is the constant of the interaction. Assume that the initial energy of 
the system is negative (−E0 = − C4

2r4max
), that is, the particles are bound 

with the maximum distance rmax. This energy is a constant of motion 
and we can express the velocity as a function of position as

̇r = dr
dt

=
√
1
μ√

C4
r4

− 2E0. (24)

By integrating this equation, we can express the time of falling 
from a distance rmax to the origin by

t =
√

μ

C4
∫

0

rmax

r2dr

√1 − 2E0r4

C4

. (25)

The integral is analytically solvable and gives

t =
√

μ

9C4

√πΓ ( 7
4
)

Γ ( 5
4
)

r3max ≈ 1.8√
μ

9C4
r3max, (26)

where Γ(x) is the gamma function.
Assuming the binding is only due to the C4/2r4 potential,  

we can estimate the maximal distance between the particles as 
rmax = 4√C4/2Ebind = 27 nm. The falling time of two free particles in C4/2r4 
potential can be analytically calculated for the one-dimensional  
problem, and is given by t ≈ 1.8√

μ

9C4
r3max, which gives a falling time of  

t = 31 ns. Therefore, the period of oscillation is T = 62 ns, and we can 
estimate the lifetime of the molecule in the experiment as 0.5(1) μs.

Data availability
Source data are provided with this paper. Other data that support the 
findings of this study are available from the corresponding authors on 
a reasonable request.
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Extended Data Fig. 1 | Bound state probability in a Paul trap for different 
axial frequencies and atom’s mass. (a) Bound state probability as a function 
of radial trap frequency for axial frequency of ωax/2π = 3, 100, 480 kHz (red, 
blue, and green, respectively). The 3 kHz graph is the same as in Fig. 4. (b) Bound 
state probability as a function of the atom’s mass. All parameters, apart from the 

atom’s mass, are taken as in the experiment. The mass of the atom is changed 
without changing the polarization constant, C4. For both graphs, each point 
corresponds to 104 trajectories. Confidence bounds of 1σ are on the order of 
marker size.
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Extended Data Fig. 2 | Estimating the lifetime of bound state from the  
simple model. Contour lines are exothermic spin-exchange amplification, 
peff
SE
(B →∞)/peff

SE
(B = 0), calculated by the simple bound state model, for 

different mean number of short-range collisions, 〈N〉, and short-range spin-

exchange probability, p0SE. Red and blue bold lines are the measured ratios and 
short-range spin-exchange probability, respectively, with 1σ confidence bound in 
shaded area. The star is indicating the mean number of short-range collisions, 
〈N〉exp = 8(2).
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Extended Data Fig. 3 | Calibration of the number of Langevin collisions.  
The probability of observing the ion in a bright state after double shelving pulses 
with atoms (blue) and without (red) for different optical lattice velocities. When 
atoms are present, this probability is proportional to the probability of at least 

one Langevin collision in a lattice passage. Solid line is a fit to Eq. (4), with ρKL 
= 0.039(3) and pbg = 0.078(8). Error bars are binomial distribution standard 
deviation.
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Extended Data Fig. 4 | Rabi carrier thermometry after post-selecting SE events. (a-b) Exothermic transitions at 3 G (a) and 20 G (b). (c-d) endothermic transitions at 
3 G (c) and 20 G (d). Temperatures and contrast of the Rabi oscillation are written in Extended Data Table 1. Error bars are 1σ binomial standard deviation.
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Extended Data Fig. 5 | Calibration of the EMM amplitude projection along the shelving beam axis as a function of the applied voltage on an external electrode. 
Measured data (blue circles) is extracted from Eq. (12) and dashed line are a fit to Eq. (13), where γproj = 3.97(6) nm/V, V0 = − 74.68(2) V, and c = 2.8(2) nm with 1σ 
confidence bounds.
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Extended Data Fig. 6 | Amplification of the short-range spin exchange, based on the MD simulation. The amplification, peffSE /p
0
SE, is calculated by Eq. (18) for 

different EMM energies, EEMM, and short-range spin-exchange probabilities, p0SE, at zero magnetic field.
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Extended Data Fig. 7 | Double shelving (DS) efficiency after a collision in presence of EMM. For each EMM energy, the shelving probability is calculated by 
averaging 104 single collision events. Exothermic reaction releasing 2.7 mK (corresponding to the energy gap at 16 G), happens after each collision.

http://www.nature.com/naturephysics


Nature Physics

Article https://doi.org/10.1038/s41567-023-02158-5

Extended Data Fig. 8 | Mean number of short-range collisions in a bound state 
as a function of the magnetic field as calculated by the MD simulation. The 
mean number of collisions is calculated for the endothermic (blue), and 

exothermic (red) transitions, given short-range spin-exchange probability of 
p0SE = 0.12. Error bars are one standard deviation calculated by bootstrapping 
the data-set 10 times its size.
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Extended Data Table 1 | Thermometry measurements

Channel B [G] T (atoms) [mK] Contrast (atoms) T (bg) [mK] Contrast (bg)

Exothermic 3 1.3(5) 11.4(4) 0.24(3) 0.98(2)
Exothermic 20 4.4(4) 12.3(5) 0.41(5) 0.97(2)

Endothermic 3 1.2(2) 11.4(6) 0.21(2) 0.99(2)
Endothermic 20 1.5(4) 7.4(5) 0.24(4) 0.96(2)

Temperatures and contrasts fitted to Rabi cycles for different spin-exchange channels with the corresponding temperature and contrast measured on the same transition without atoms.
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