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Quantum control of ion-atom collisions beyond the

ultracold regime

Maks Z. Walewski'*, Matthew D. Frye1, Or Katz?, Meirav Pinkas>, Roee Ozeri3, Michal Tomza'*

Tunable scattering resonances are crucial for controlling atomic and molecular systems. However, their use has so
far been limited to ultracold temperatures. These conditions remain hard to achieve for most hybrid trapped ion-
atom systems—a prospective platform for quantum technologies and fundamental research. Here, we measure
inelastic collision probabilities for Sr* + Rb and use them to calibrate a comprehensive theoretical model of ion-
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atom collisions. Our theoretical results, compared with experimental observations, confirm that quantum inter-
ference effects persist to the multiple-partial-wave regime, leading to the pronounced state and mass dependence
of the collision rates. Using our model, we go beyond interference and identify a rich spectrum of Feshbach reso-
nances at moderate magnetic fields with the Rb atom in its lower (f = 1) hyperfine state, which persist at tempera-
tures as high as 1 millikelvin. Future observation of these predicted resonances should allow precise control of the
short-range dynamics in Sr* + Rb collisions under unprecedentedly warm conditions.

INTRODUCTION

Cooling matter near absolute zero is one of the most reliable ways
to control intermolecular interactions. At ultracold temperatures,
two-body collisions become dominated by a single value of orbital
angular momentum L =0 (s-wave collisions), allowing collision
rates to be adjusted with tunable scattering resonances. Magneti-
cally and optically tunable Feshbach resonances have become an
established tool for probing interactions and controlling chemical
reactions of neutral atoms (I) and molecules (2-6) and only re-
cently have been observed in ultracold ion-atom collisions (7, 8).
However, resonant control of collisions remains a challenge for
most ion-atom systems, which cannot be easily cooled to the
single-partial-wave regime.

In jon-atom systems, the s-wave scattering regime is shifted
down to temperatures much lower than 1pK due to the long-range
nature of their interactions (9). At the same time, the oscillating
electric field of the radio frequency (rf) ion traps may heat the ion
during the collision and prevent the ion-atom pair from reaching
the ultracold regime (10-13).

At higher collision energies, the scattering state of the colliding
pair is a superposition of many partial wave contributions. This of-
ten leads to averaging of quantum effects such as resonances and
interference, which are therefore hard to observe. Consequently,
ion-atom collisions are usually treated by the essentially classical
Langevin model (14, 15) at even slightly elevated temperatures.
Reaching the ultracold regime has thus been considered a critical
condition for observing quantum scattering effects, including Fesh-
bach resonances, in ion-atom collisions (7, 16).

Contrary to that assumption, recent theoretical and experimen-
tal (17-20) studies suggest that signatures of quantum interference
can be observed in some exchange processes (18) high above the
ultracold regime due to the so-called partial-wave phase locking ef-
fect (19). In a collision between an ion and an atom in their S
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electronic ground states, the relevant process is spin exchange
(17, 19, 21). This is driven by the difference of scattering phases ac-
quired on scattering in the singlet and triplet electronic spin states
of the system. The partial-wave phase locking effect allows the
singlet-triplet phase difference to remain constant over a wide range
of partial waves and collision energies. In effect, the spin-exchange
cross sections for many partial waves vary in a concerted way, as if
they were dominated by a single partial wave. However, this effect
does not in itself suggest that collisional resonances persist to the
multiple-partial-wave regime.

Here, we present a joint experimental and theoretical study of
quantum effects in collisions between the Sr* ion and the Rb atom
beyond the ultracold regime. We measure the probability of two
types of scattering events—a hyperfine relaxation of one neutral
atom and a spin flip of a single ion—for all initial spin projections in
the f= 2 hyperfine state of the Rb atoms. We use the results to cali-
brate a comprehensive theoretical model of Sr* + Rb collisions. Us-
ing the calibrated model, we reveal that spin-flip probabilities in the
f=1 state of Rb can be controlled by magnetically tunable Feshbach
resonances far beyond the ultracold regime. We predict these effects
can be explored in available experimental setups up to temperatures
of about 1 mK, with as many as 15 partial waves contributing to in-
elastic cross sections.

RESULTS

Measuring inelastic collisions

The experimental setup is shown schematically in Fig. 1A and de-
scribed in detail in Materials and Methods; the apparatus is similar
to our previous work in refs. (13, 21-23). Briefly, a single **Sr* ion is
trapped in a linear segmented Paul trap. It is cooled by Doppler and
resolved sideband cooling and optically pumped into its initial spin
state [1) =| Sl/z» m,= +1/2). In a separate chamber, a cloud of
Rb atoms is loaded and cooled in a magneto-optical trap (MOT),
and about 10° atoms are loaded into a one-dimensional optical lat-
tice in any desired hyperfine and Zeeman state |f, m;). The atoms
are optically transported through the ion Paul trap using a traveling
lattice and can collide with the ion. The average number of collisions
per passage is low (~0.25), and multiple collisions are rare.
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Fig. 1. Experimental calibration of the theoretical model of Sr* + Rb collisions. (A) Experimental setup. The atomic cloud prepared in a specific hyperfine and Zeeman
state |f, m;) is optically transported to the ion’s chamber. The ion is detected by state-selective fluorescence. (B) Zeeman splitting of different hyperfine manifolds of an
87Rb atom in the electronic ground state, 5251/2. An example of hyperfine relaxation process is denoted by the red arrow. (C) 88Sr* energy levels scheme used for prepara-
tion and detection (repump lasers are not shown for simplicity). The cold-spin-flip process is shown by the blue arrow. (D) Example of a trajectory with multiple short-
range collisions due to the trap effect. lon and atom positions are projections of motion on one of the trap axes. (E) Calculated short-range probability of the hyperfine
relaxation for the spin-stretched initial state|2, 2)p, | 1)s,+ as a function of the spin-orbit scaling factor c,,. The measured value and its standard uncertainty are shown as a
horizontal line with a shadow. Fit to the experimental value yields c,, = 0.32(7). (F) Calculated probabilities of hyperfine relaxation (red) and cold spin flip (blue) for the
[2, = 2)gp| )5+ initial state as a function of the singlet-triplet phase difference A®. The bold lines show the results for the ab initio value of the singlet phase ®,, and the
shades behind them are for other values of @, from 0 to . The measured values are marked as dashed horizontal lines with standard uncertainties as shadows. Assuming

ab initio value of @, the minimum of y? = 6.12is obtained for A® = 0.20(2)x.

We can experimentally detect two outcomes of a scattering event.
The first is a hyperfine relaxation of the atom from the upper hyper-
fine manifold to the lower one (red arrow in Fig. 1B), which is mea-
sured by its impact on the ions motion via exothermic energy
release. The second is a spin flip of the ion without changing the at-
om’s hyperfine manifold (blue arrow in Fig. 1C), which we can ob-
serve by directly measuring the ion’s spin state. Both processes are
detected using electron-shelving and state-selective fluorescence
techniques, shown in Fig. 1C. For **sr*, ¥Sr*, and ¥Sr*, we use the
quantum logic technique described in ref. (21).

The measured probabilities of exothermic collisions in the ion
trap are enhanced by the formation of temporary ion-atom bound
states, which are induced by the ion trapping. These are very loose-
ly bound, and the ion-atom pair typically has a number of discrete
short-range collisions before breaking up (13); an example of this
dynamics is shown in Fig. 1D. For each of these collisions, there is
a probability p, of a given event (e.g., inelastic collision), which we
refer to as the short-range probability. We use molecular dynamics
simulations to establish the relationship between p, and the mea-
sured probabilities. It is hard to calibrate these measurements di-
rectly to give absolute rate coefficients, so instead we normalize
them to heating rates due to Langevin-type collisions. Owing to the
separation of length scales associated with the ion trap and with
the chemical forces acting on the colliding pair, the short-range
probabilities p, are suitable for comparison with our scattering
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calculations (13). The exact measurement and data analysis proto-
cols are detailed in the Materials and Methods section.

Quantum interference effects

The outcome of an inelastic Sr* + Rb collision is determined by two
complementary mechanisms: spin exchange and spin relaxation.
Spin exchange allows the transfer of spin between the atom and the
ion while keeping their total spin projection conserved. Its effect is
determined by interference between scattering on the singlet and
triplet potentials, and its cross section can be approximated as (24)

47 - .
|2 k—’; Z(2L+ 1)51n2AnL (1)
1=0

Osg ~ |(lP0ut |/S\at "S\ionl ‘Pin>
Here, ¥,, and ¥, are the initial and final spin states of the St™ + Rb
pair, §,, and §,,, are the electron spin operators of the atom and the
ion, k is the wave number, and An; denotes the difference of the
singlet and triplet scattering phase shifts for the given partial wave
L. The so-called partial-wave phase locking effect means that the
singlet-triplet phase difference An; remains constant over a wide
range of partial waves and energies (18-20), as long as the centrifu-
gal barrier for the given L is far enough below the scattering energy.
Although the individual phases vary strongly with energy and par-
tial wave, the conservation of this phase difference means that inter-
ference effects can persist in the spin-exchange cross section through
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averaging both over partial waves and over thermal energy spreads
to remarkably high temperatures. Spin relaxation, on the other
hand, allows the angular momentum to be transferred between the
spin and rotational degrees of freedom. In the case of Sr* + Rb col-
lisions, it is caused by a substantial second-order spin-orbit coupling
and is perturbative.

We focus now on collisions with Rb in its upper hyperfine state f= 2.
We measure hyperfine relaxation and cold-spin-flip losses experimen-
tally, as described above, and compare with theoretical calculations. We
perform ab initio calculations of the singlet and triplet interaction po-
tentials, along with the second-order spin-orbit coupling, using the
Molpro package. We then use these to perform coupled-channel calcu-
lations of the relevant scattering processes using the MOLSCAT pro-
gram. Full details are described in Materials and Methods.

The accuracy of ab initio electronic structure methods is insuf-
ficient for making exact predictions of the inelastic collision
probabilities measured here. Therefore, we introduce three free
parameters to control our calculated interaction potentials. We
allow scaling the ab initio second-order spin-orbit coupling by a
factor ¢, and introduce the singlet and triplet phase parameters
(®, and ®,); these are defined by the semiclassical phase integrals

D, = L:: \/ = 2pV,(R) / h*dR + n / 4. The integer part of ®; / & gives

the number of bound states for each potential, which is Ny = 133 for
the singlet and N; = 271 for the triplet potential. We control phases
®; by small scaling of the short-range parts of the corresponding
potential energy curves without changing the number of bound
states. Within the idea of phase locking, the difference between
these semiclassical phases is a good approximation for the phase
difference An;. According to Eq. 1, only this phase difference is im-
portant for spin exchange, so we fix the singlet phase to its ab initio
value of @, mod & = 0.045x; we have verified that it does not affect
the inelastic collision probabilities in the f = 2 state of Rb.

We calibrate the model by fitting the values of the spin-orbit cou-
pling scaling c,, and the phase difference A® = (®,—®,) mod .
The calibration can be performed as two separate fits for only two
initial spin states of the system. We first fit ¢, using the probability
of hyperfine relaxation from the |2, 2)g,| )5+ channel; we use this
spin state because it is spin stretched so cannot undergo spin ex-
change and is insensitive to A®. Here, we fit to the hyperfine relax-
ation only because we have a better estimation of measurement
errors for hyperfine relaxation than for the ion’s cold spin flip. The
comparison between the theory and experiment is shown in Fig. 1E
and yields ¢, = 0.32(7). In the same way, we fit the value of the
phase difference A® = 0.20(2)n to match the experimental hyper-
fine relaxation and the ion’s cold-spin-flip probabilities for the spin-
exchange-dominated |2, —2)g |1),+ initial spin state of the colliding
pair. Here, we need both the hyperfine relaxation and the ion’s cold-
spin-flip probability to determine A® unequivocally as seen from
Fig. 1F. We neglect the spin-orbit coupling when fitting A® to spare
computational time as its effect is minuscule compared with the spin
exchange for the chosen spin state.

We investigate the accuracy of our calibrated model by predict-
ing inelastic collision probabilities for other spin states and even
other isotopic combinations. In Fig. 2A, we show, in solid bars, the
short-range probabilities of the hyperfine relaxation and the ions
cold spin flip, calculated for the fitted values of ¢, and A®, and
compare them with the measured values for all initial spin pro-
jections in the fg, = 2 channel. There is a good agreement between
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the experimental data and the results of the scattering calcula-
tions, validating our calibrated model. We can also see the state
dependence predicted by the first factor in Eq. 1 in both the theory
and experiment.

Changing the Sr* isotope changes the reduced mass and, there-
fore, the phase integrals over the potential. These vary as \/ﬁ for
both potentials, and because of the different number of bound states
in each potential, the phase difference A® also scales similarly.

0.3

Hypefime relaxation
(without & with SO coupling)
Cold spinflip

(without & with SO coupling)

=]
=]
Z2

Bars used for fitting

12,-2) [2,-1) 2,0 [2,1) 12,2)

Reduced mass (u)

Fig. 2. Phase locking effect. (A) Short-range probabilities of hyperfine relaxation
(red bars) and cold spin flip of the ion (blue bars) calculated with the fitted values
of A® = 0.2z and ¢, = 0.32 for five initial spin states of Rb atoms, compared with
the measured values (yellow error bars). The 2851+ ion was prepared in the |1) spin
state. (B) Calculated probabilities of hyperfine relaxation averaged over the initial
spin states of the Sr* + Rb pair, plotted as a function of the reduced mass of the
system, and compared with experimental values from ref. (21). Here, we calculate
and use the trap-enhanced probabilities p ¢ in place of p, to enable comparison
with the experiment (see Materials and Methods). We show the results for two values
of the nuclear spin of the ion, i,,, = 0 (red line, corresponding to even isotopes) and
iion = 9/ 2(purpleline, corresponding to 87Sr)‘ (C) Partial-wave contributions to the
short-range probability of the |2,0)g, 1)+ = |1, 1)ps )+ transition, one of the
possible hyperfine relaxation pathways. The largest contribution comes from L = 8,
with up to 20 partial waves involved.
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Following Eq. 1, the result should be a sinusoidal variation in spin-
exchange cross sections as a function of p. In Fig. 2B, we present the
calculated trap-enhanced hyperfine relaxation probability, averaged
over the initial spin projections of the Rb atom and the Sr* ion, as a
function of the reduced mass of the colliding pair, treated as a pa-
rameter in the scattering calculations, and compare it with experi-
mental results from ref. (21). The sinusoidal shape of the curve for
even Sr* isotopes is distorted by the trap effects, which result in
larger enhancement of small short-range probabilities p, and lead to
sharper minima compared to the rounded maxima of the sin®(p)
function. Figure 2C shows how different partial waves contribute to
the short-range probability of one of the possible hyperfine relax-
ation pathways (|2, 0)gy |1 g+ = | 1, 1)gy|4)s,+), clearly showing that
the oscillations due to interference remain in phase over many par-
tial waves due to the phase locking effect. The periodic behavior of
the calculated probabilities as a function of both the reduced mass
(Fig. 2, B and C) and A® (Fig. 1F) is a clear indication of quantum
interference far beyond the ultracold limit, persisting over many
partial waves and across a broad energy range by the phase locking
mechanism.

Figure 2B shows a clear interference effect, but the periodicity
predicted by our calculations does not fully correspond to the val-
ues measured for different strontium isotopes. It is rather improb-
able that the deviations could be explained by the errors in the ab
initio potential energy curves or the corrections to the Born-
Oppenheimer approximation. To recover the correct periodicity,
we would have to scale the singlet and triplet potential energy
curves by at least 20% in opposite directions. That is far beyond the
expected errors for the electronic structure calculations as de-
scribed in Materials and Methods, which should not typically ex-
ceed a few percent. On the other hand, the mass shifts needed to
account for different periodicity are at least four orders of magni-
tude larger than the typical corrections to the Born-Oppenheimer
approximation for Rb and Sr (25). The deviations of the measured
values from the scattering calculations may suggest unaccounted
systematic effects from the Paul trap used to store the ion. This hy-
pothesis could be verified by weakening the trap or by investigating
systems with a larger ion-to-atom mass ratio, both of which would
reduce the probability of creating the bound states and possible
systematic errors. However, this approach requires radical changes
in the experimental sequence.

Quantum resonance effects

We now turn to effects that are dependent on the individual phases
@, and ®,, rather than just their difference A®. This requires reach-
ing a regime in which spin exchange according to Eq. 1 does not
dominate. This could be at sufficiently low temperatures in which
threshold and scattering length effects dominate, but such tempera-
tures are beyond the reach of current experiments. Instead, we look
at scattering in the lower hyperfine state of Rb atoms, fy, = 1, where
Eq. 1 does not hold because there are few outgoing channels, each
with very small energy release.

We measure the ion’s spin-flip probability for the atom-ion pair
prepared in the |1, — 1)y, |1)g,+ spin state as described above and
perform the corresponding scattering calculations using MOLSCAT.
In Fig. 3 (A and B), we show the calculated probability as a func-
tion of the singlet and triplet phases, ®; and ®,, together with a
few sections through the contour map for fixed values of the phase
difference A®. There is a broad dependence on the singlet phase for
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large phase differences, up to a factor of 2, but even for A® = 0.1,
there are numerous smaller sharp oscillations/peaks. For our fitted
A®g, = 0.2, there is moderate variation, and the theory predictions
agree with the experimental measurement for roughly half the range
of ®, mod . In Fig. 3C, we show how the calculated spin-flip prob-
ability varies with temperature between 0.1 and 10mK. Both the
broad variation and the sharp features become more pronounced at
lower temperatures but persist up to several millikelvins.

The arguments of the phase locking model apply only to the
phase difference and not to the variation of individual phases. Fea-
tures as a function of the individual phases are therefore expected to
average out at these temperatures, and their presence here is, at first
sight, unexpected. Figure 3C also shows a breakdown of the partial-
wave contributions at ' = 0.5mK. This shows that the contributions
of the partial waves peak at increasing phase @ in order. These cov-
er the entire cycle of phase at this temperature but not uniformly.
The variation in height and spacing of peaks creates the broad varia-
tion in p,, whereas individual peaks standing out above the back-
ground causes the sharper features. This is a very different behavior
than observed in Fig. 2C for f = 2 incoming states, where all partial
waves peaked together, and confirms that this effect is distinct from
the phase locking.

We attribute these features to the effect of Feshbach resonances
originating from molecular levels of |f =2, mg) g, |m)g,+ spin states.
These occur when a (quasi-)bound state is near the scattering en-
ergy and interacts with the incoming channel, and they greatly en-
hance inelastic scattering in their partial wave. Because of the large
binding energy (relative to their own f= 2 thresholds) and the very
strong coupling provided by the spin exchange, these resonances
have large underlying widths compared to the cold temperatures of
the experiment and so can survive thermal averaging (compare fig.
S1). As discussed above, the positions of the peaks shift only a little
between consecutive partial waves. This happens because the effec-
tive rotational constant for these states is small, compared both to
the vibrational and hyperfine splittings, so only a small change in @,
is needed to bring the next into resonance. At A® = 0.1z, these
resonances show up as individual sharp features, but at larger AD,
the increased coupling widens them so they overlap and form a
single broad variation through the cycle. At higher temperatures,
the number of resonances that contribute increases and they cover
the range of @, mod m more uniformly, leading to the effects be-
coming washed out. However, at lower temperatures, fewer reso-
nances contribute and they are more tightly clustered, enhancing
the variation.

No real experiment can vary @, but these Feshbach resonance
results nonetheless suggest that resonances may exist as a function
of a physically controllable parameter. We therefore calculate the
scattering as a function of the magnetic field B from 0 to 500 G. Our
calculations, presented in Fig. 3D, show a marked magnetic-field
dependence of the spin-flip probabilities for the experimental tem-
perature of 0.5mK. As shown in Fig. 3C and fig. S2, we are right at
the edge of temperatures that allow the observation of Feshbach
resonances and the resonances are much more pronounced for
T ~ 0.1mK. The enhancement due to chosen Feshbach resonances
reaches a factor of 2, and should be observable in modern hybrid
ion-atom experiments, even taking into account the intricate trap
effects (13). The interpretation of individual peaks is not simple, but
the overall pattern may act as a fingerprint, enabling us to determine
®,and ®, even at T = 0.5mK.
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Fig. 3. Feshbach resonances beyond the ultracold regime. The calculated short-range probability p, of a spin flip of the 88Sr* jon, where the ion-atom pair is prepared

exp _

in the [1)s,+|1, — 1)g, initial state, compared with the experimental value p;" = 0.1790(99) measured at an external magnetic field B = 3G. (A) Short-range probability

0

plotted as a function of both ®, and ®,, calculated at B8 = 3G from thermal averages at T, = 0.5mK, which corresponds to the experimental conditions. (B) Short-range
probability calculated at B = 3G and T, = 0.5mK as a function of @ for a few fixed values of A®, including the fitted A®g, = 0.2. In (B) and (C), the measured value is
marked as a dashed horizontal line with a shaded area marking its standard uncertainty. (C) Short-range probability calculated for the previously fixed value of A®g, = 0.2,
plotted for a range of temperatures from 0.1 to 10mK as a function of @,. We see the gradual loss of sensitivity to the singlet phase as the temperature rises. The probabil-

ity calculated for T,

(D) Short-range probability calculated at Texp

= 0.5mKis indicated by red dots, and the partial-wave contributions at this temperature are labeled by the value of L for the given partial wave.
= 0.5mK as a function of the magnetic field B for three arbitrarily chosen values of ® that would match the experimental

value measured at B = 3G. The latter is shown as a red point with an error bar representing the standard uncertainty.

DISCUSSION

We have presented a comprehensive model of collisions between
the Sr* ion and the Rb atom, capable of predicting inelastic colli-
sion probabilities in the multiple-partial-wave regime. As seen in
Fig. 2A, our scattering calculations agree with the measured values
for most spin states of the colliding pair, with deviations smaller
than the standard uncertainty of our measurements. The calcu-
lated hyperfine relaxation and cold-spin-flip probabilities depend
periodically on both A® and the reduced mass of the system, which
is a strong signature of interference persisting to temperatures many
orders of magnitude higher than the ultracold regime through
the phase locking mechanism. This allows us to determine highly
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sensitive short-range parameters controlling inelastic collision
rates and put conditions on the interaction potentials that govern
Sr* + Rb collisions.

The magnetic Feshbach resonances predicted by our model substan-
tially modify the spin-flip probabilities high above the ultracold regime
and should be observable in modern hybrid ion-atom systems at ap-
proachable temperatures. The calculated variation of the spin-flip rates is
marked under the conditions of the current experiment (T & 0.5mK),
but cooling the system to T' & 0.1 mK would result in much better reso-
lution and contrast, still well above the s-wave collision regime. This will
allow tuning the interactions of ion-atom pairs without the need to cool
deep into the ultracold regime, opening up previously unidentified
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avenues of control over hybrid ion-atom systems (9). Future measure-
ments of the spectrum of resonances should allow calibrating both the
singlet and triplet potential energy curves and would constitute the first
observation of magnetically tunable Feshbach resonances in the
multiple-partial-wave regime.

MATERIALS AND METHODS

Experimental apparatus

A cloud of *Rb atoms is loaded and cooled down in an MOT, followed
by a dark MOT stage and polarization gradient cooling, loading a cloud
of ~10° atoms into an optical lattice formed by two counterpropagating
off-resonant beams at 1064nm. The atoms are prepared in a specific
Zeeman state in the f= 1 or f= 2 hyperfine manifolds by a sequence of
microwave and optical pumping pulses. A **Sr* ion is trapped in a dif-
ferent vacuum chamber in a Paul trap made of linear segmented blades,
with secular trap frequencies ® = (0.49,1.21,1.44) X 2z MHz, and rf
Q¢ = 26.5 X 2 MHz. The ion is cooled down by Doppler cooling, fol-
lowed by a resolved sideband cooling scheme that cools the ion’s mo-
tion down to the ground state and pumping pulse that prepares it in
the[ 1) =|8,/,,m, = +1/2)state.

The atomic cloud is transported 25 cm down to the ion’s cham-
ber by changing the relative optical frequencies of the counter-
propagating optical lattice beams. The velocity of the atoms is
tuned to collide with the ion at a nominal velocity of 0.24m/s,
equivalent to an energy of about 300 uK X k; in the laboratory
frame of reference. The background magnetic field during the col-
lision is set at 2.97G.

To probe collisions in which the ion changes its spin and the atom
remains in the same hyperfine manifold after the cloud passage
through the ion trap, we apply the following sequence: two & pulses
using the shelving transition S, ,, —1/2) —|D;,, —5/2) first
and [S, ,, —1/2) —|Ds/,, +3/2) second with a 674-nm laser
and then detect fluorescence by driving the S, , — P, /, transition
with a 422-nm laser. If the atom remains in the same hyperfine man-
ifold, then the released energy is less than 1 mK and all transitions in
the sequence are driven efficiently; a bright (dark) ion indicates a spin

up (down) state. We repeat this experiment N, times and count how

many events of spin down N, are measured. We used N, = 2250 for
all configurations, except for the atomic state |f = 1,m; = —1) where
we used N, = 4500.

To probe collisions in which the atom changes its hyperfine man-
ifold, we first apply optical pumping pulses that ensure that the ion
populates the S, ,,, —1/2) state and then attempt to shelve the ion
into the D ;, manifold via two m pulses:|S, 5, +1/2) —[Ds 5, +5/2)
and |S1/2» +1/2) > |D5/2, —3/2) (21). Because of the internal
energy released during a change of a hyperfine state into the mo-
tional degrees of freedom in the relative atom-ion frame, about
AE,;~hx68GHz ~ 0.33K X ky in the center-of-mass frame of
reference, the shelving attempt fails at high efficiency, therefore
maintaining the ion in the ground state. Using detection of fluores-
cence by driving the S, , — P, ), transition with a 422-nm laser we
can identify such shelving failure events, N, indicating that a colli-
sion has occurred. We repeated both types of measurements for all
channels in two different configurations, one in which the excess micro-
motion energy is near zero and another when it is large (about 1K),
to enable estimation of the Langevin collision probability. The latter
technique was first proposed in ref. (23).
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Analysis of experimental data

We estimate the probability of a given scattering event from the ex-
perimental data with the aid of a numerical model detailed in refs.
(21, 23) to account for the various factors that affect the experimental
reading. This model numerically simulates the motion of the ion in
the trap including the experimental trapping parameters, micromo-
tion effects, and the initial temperature of the ion T. We assume that,
in a given passage of the atom cloud, the ion experiences Langevin
collisions drawn from a Poisson distribution with an average number
of events of k;. We consider a Langevin-type collision as an instanta-
neous elastic event in a random time where the ion’s position is main-
tained but its instantaneous velocity v, is updated to (23, 26)

v, = [1—r+(xrR((pL)] (Vi—Va) +v, (2)

where v, is the atom velocity that is randomly drawn from the
Maxwell-Boltzmann distribution with the temperature of 10 uK. The
mass ratio r = p/m; ~ 0.5, where p=mm, / (m;+m,) is the re-
duced mass, and R is the rotation matrix in the collision plane with
the scattering angle 0 < ¢; < n drawn from the distribution de-

scribed in ref. (23). The unitless factor a = \/ 14 2rAE [ (m; [V ? )

describes the increase in the ion’s speed v, , = r(vion —Vyiom ) in the
center-of-mass frame (21), gaining kinetic energy by the exothermic
process of hyperfine changing collisions. We set AE = AE; with a
probability py per collision and AE = 0 otherwise.

Owing to the trapping forces, any instantaneous change of the
ion’s velocity leads to a change of its oscillation amplitude in the trap
A, which is updated every collision using the formalism described
in refs. (21, 23, 27). Tracking this amplitude allows us to calculate
the detection probability of a hot (bright) Sr* ion after a detec-
tion pulse

3)

P, = cos? lg H]o(kiAi)]

assuming a long detection pulse compared to the motional cycle.
Here, k; denotes the components of the shelving beam wave number
along the modes axes, and Jj, is the zeroth-order Bessel function.
For each spin state, we run the simulation using different sets of
(Pnp ;) to match P, = N, /N, at both micromotion tempera-
tures; as expected, we find that P, is mostly determined by k; at the
high micromotion temperature and by py at the low micromotion
temperature. We repeat the simulation about 10° times, ensuring
convergence, and take average results. A typical value of the proba-
bility of a short-range (Langevin) collision per passage of the cloud
is k; = 0.25 for all channels, indicating that the probability of mul-
tiple collisions per passage of the cloud is small. The probabilities py
correspond to the yellow data points shown above the red bars in
Fig. 2A. We estimate T' ~ 0.55mK for all channels to match the inde-
pendent measurement of shelving failure of ions, when the atoms
are prepared in the f = 1 hyperfine manifold. This initial tempera-
ture effectively determines the collision energy of the atom-ion pair
and is consistent with the scale of micromotion heating and mag-
netic energy release from a spin flip. Because this is an effective for-
malism that does not discern finite technical fidelity of the process
from collision energy, we consider the uncertainty in T as a con-
tributor to the total error and add it in quadrature to the statistical
error, as shown in Fig. 2A. For cold collisions in which the ion flips
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its spin, we run a similar code but match P = Ny / N, with a unity
detection efficiency.

The probability of inelastic scattering events can be enhanced by
the trap-induced ion-atom bound states as described in ref. (13). A
strongly exothermic collision tends to break the bound state imme-
diately. In effect, the effective trap-enhanced probability of an exo-
thermic collision can be calculated from its short-range probability p,

pei= D, lZPMF(k)] (1=py)" "'y

n k>n

4)

Here, p.4 corresponds to either p or p,; extracted from the simu-
lation. PMF(n) is the probability mass function for having exactly
n collisions in the bound state before its dissociation in the ab-
sence of inelastic scattering, for either scattering channel, which
we estimate for our trapping configuration in ref. (13). We invert
the p.g(py) function to estimate the short-range probability p,
from the measured inelastic collision probabilities in Figs. 1 (E
and F), 2A, and 3.

The probability of hyperfine energy release for different stron-
tium isotopes presented in Fig. 2B were measured for a spin mixture
(21), and there is no obvious way to extract the short-range proba-
bility p, for a specific spin state or its state average from the mea-
sured data. Instead, we convert the results of the quantum scattering
calculations into the state-averaged trap-enhanced probability p.q
with the help of Eq. 4 and compare it with the experimental values.
In the case of strontium-87 with its nuclear spin ig, = 9 /2, the ions
energy levels are split into two hyperfine manifolds, f =4 or 5,
which differ by AE ~ 240mK. During the collision with a *Rb
atom, the hyperfine relaxation of the atom can be accompanied by
the hyperfine excitation of the ion. For *Sr", we take into account
the calculated probability of the hyperfine excitation exchange, but
we weight the resulting contribution by a factor of 0.6, which cor-
responds to the lower measurements efficiency for a smaller energy
release which we estimate for this configuration.

Electronic structure calculations

For calculating the needed potential energy curves at short range
(28), we make use of the ab initio methods implemented in Molpro
(29-31). The singlet (2)' =¥ potential energy curve was calculated at
internuclear distances R < 504, using the Davidson corrected inter-
nally contracted multireference configuration interaction method
(MRCI+Q) (32), and the triplet (1)°Z* curve was obtained with the
coupled-cluster method with single, double, and perturbative treat-
ment of triple excitations [CCSD(T)] (33, 34). In both cases, we use
the correlation-consistent polarized quintuple-zeta basis set with
weighted core and valence correlations (aug-cc-pwCV5Z) (35), with
bond functions added for better convergence to the complete basis
set limit near the potential minima. For both Rb and Sr*, the inner
shell electrons are replaced by the small-core relativistic energy-
consistent pseudopotentials ECP28MDF (36, 37). Our singlet (trip-
let) potential has a depth of800cm™! (6412cm™) and an equilibrium
distance of 14.1a, (9.3 4,); these may be compared to previous large-
core calculations (38), which gave depths of 960cm™ (6544cm™?)
and equilibrium distances of13.8a, (9.2a).

The second-order spin-orbit coupling coefficient A, (R) was
calculated using second-order perturbation theory from the non-
relativistic (1)°Z* and (1)’I1 electronic states of the Sr* + Rb
system as
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2 {’Z*H,, (1))

2 ©)
3 Viypn®) = Vs (R)

Ay (R) =

Here, ((1)32+|ﬁ50|(1)31'[) is the matrix element of the spin-orbit
interaction between (1)*Z* and (1)*II electronic states calculated us-
ing MRCI wave functions, and V(;(R) and V{;35+(R) are the asso-
ciated potential energy curves (17). The needed potential energy
curve for the (1)°I state was calculated using the MRCI+Q method
with the same basis set as for the (2)!=+ and (1)°Z* states. We show
the calculated potential energy curves and the second-order spin-
orbit coefficient in fig. S3 and give the values of the ab initio points
in data S1.

Long-range interactions

At large internuclear distances, the singlet (2)'Z* and triplet
(1)’X* potential energy curves attain the same long-range form
Vir(R) = Vipa(R) + Vi, (R), where

(ind) (ind) (ind)
V. «(R) = G % G (6)
ind - R4 R6 RS

is the induced part of the potential energy, coming from the interac-
tion of the charge of the ion with the induced multipole moments of
the neutral atom, and

(disp)
6

R6

(disp)
CS

Vdisp(R) == Q)

RS
is the dispersion potential, arising from the interaction of instanta-
neous multipole moments of both the ion and the atom.

We calculate the induction coefficients C™¥, C/"®, and C"®
from the static dipole, quadrupole, and octupole polarizabilities of
the Rb atom, «, = 319.8 (5) X 4me,a; (39), a, = 6479 (1) X 47e a;
(40), o3 = 2.381 (44) X 10° X 4n€0a(7) (40), and the charge of the ion,

g=eas C;:lf; = %qzan/ (471:60)2 (41). We use the dispersion coeffi-

cients C\™*) = 1.845(6) x 10°E, a8 and €™ = 1.8321(2) x 10°E, a8

as reported in ref. (41). Our total C,, C,, and Cg are calculated as
c,=Ccindy C,Sdmp)and evaluate to C, = 159.9E, aj,Cy = 5079.0 E, af,
and Cg = 302260 E, a;.

Parameterization of the ion-atom interactions

We adjust the potential energy curves used in the scattering calcula-
tions by tiny scaling of the short-range parts of the potential, which
were calculated ab initio. These are then interpolated and extrapo-
lated using a reciprocal-power reproducing kernel Hilbert space
(RKHS) method of Ho and Rabitz (42-44), with the leading terms
in the extrapolation constrained to the long-range coeflicients given
in the previous section, as described in ref. (43). We control the
RKHS method by specifying the integer parameters n =3, m = 1,
and s = 2. Here, n dictates the number of reciprocal power terms at
large internuclear separations, where the potential takes on the as-
ymptotic form Y3y — Cygepmar / REHD (43).

To adjust the potential, we multiply the calculated ab initio points
by a scaling factor before applying the RKHS. This allows us to effi-
ciently and smoothly vary the short-range portion of the potential
while leaving the accurately known long-range portion unaffected
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and thus adjust the phase parameters @, described in the main text.
On a technical level, we calculate the zero-energy scattering length
a; for each potential energy curve using MOLSCAT and obtain

the phase parameters as®; mod n = arctan( —a;h /4 /ZpC4) +xn/2

(45). The scaling factors we use differ from unity by at most 1.8 % for
the singlet and 0.6 % for the triplet potential energy curves and are
listed with the corresponding phases ®; in data SI.

Quantum scattering calculations

To obtain the inelastic collision probabilities, we calculate the free-
space inelastic and momentum-transfer rate coefficients by solving
the Schrodinger equation for the radial motion of the ion-atom pair.
The effective Hamiltonian used for the scattering calculations is the
same as that described in detail in ref. (46) for collisions of pairs of
alkali-metal atoms and is written as

~2
> hz d 2 d L
H = — —(R*— ) +
2puR? dR ( dR> 2uR?
+Hge + Hyy + H

Here, R is the internuclear separation, p the reduced mass, T is the
orbital angular momentum of the relative motion of the ion and

(8)

$s+s0

atom, H5r+ and HRb are the monomer Hamlltonlans, consisting of
the hyperfine and Zeeman terms, and V(R) contains the singlet
(2)'* and triplet (1)*~* molecular potential energy operators. The
electron spin-spin dipolar and second-order spin-orbit interactions
are modeled together as

A~ Eh(xz
Hss+so = T 3 Cso so (R)
(R/a)

x[8,8,—3(8,-¢x) (8- ER)]

)

where a is the fine-structure constant, A, (R) is the ab initio second-
order spin-orbit coefficient, ¢, is the scaling factor fixed to fit the
experimental data as shown in Fig. 1E, §,, s, are the electronic spin
operators of the atom and the ion, and € ; is a unit vector along the
internuclear axis.

For most of our calculations, we expand the angular degrees of
freedom of the scattering wave function in the uncoupled basis

ILM, 5 5,5 8, 05 S, Mg s iy M ) (10)

Here, L is the orbital angular momentum of the relative motion of
the ion and the atom, s,, s, and i,, i, are the electronic and nuclear
spins of the atom and the ion, and m_,, m,y,, m; ., m;} are their re-
spective projections on the quantization axis. Note that i, = 0 in all
our calculations with this basis, but we leave it in explicitly for gen-
erality. We use MOLSCAT (47, 48) to solve the resulting coupled
equations and calculate the S-matrices for given collision energies.
At small internuclear separations R from 5.54, in the classically for-
bidden region to 21.04,, where the long-range terms in the potential
start to dominate, we propagate the log-derivative matrix using the
diabatic modified log-derivative propagator of Manolopoulos (49)
with a fixed step size of 0.024,. At R =21.04,, we switch to the
log-derivative Airy propagator of Alexander and Manolopoulos
(50, 51) with an adaptive step size based on error estimates. The
calculated S-matrices are then transformed to a basis built from
atomic eigenfunctions
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|LML; (Sa’ ia) alMas (Sb’ lb)fbmb) (11)

At zero field, f, and f, are total spins of the atom and ion; these are
not strictly conserved in a magnetic field but are still nearly good
quantum numbers at the low fields used here, so are useful as labels;
their respective projections m,, my are good quantum numbers.

We calculate the rate coeflicients from the S-matrix elements for
50 values of the collision energy in the center-of-mass frame, rang-
ing from 0.4pK X ky to 4mK X kg in Figs. 1 (E and F) and 2, and
from 0.8 uK X ky to 80mK X kg in Fig. 3. We sum all L, M; contri-
butions and thermally average the results assuming a Maxwell-
Boltzmann distribution.

The momentum-transfer rate coeflicients are calculated from S-
matrices as (52, 53)

2E nfzz

k. (E) = Z [(4L+2)sin%5

(12)
- (4L+4)51n8Lsm6L+lcos(8L =041 )]

where the real partial-wave phase shifts §; are related to the diagonal
S-matrix elements for the given spin channel by S; =|S;| eXp(ZiSL )
The above expression is valid for channels with fully elastic scatter-
ing. Here, we approximate the momentum-transfer rate coefficients
for all the channels by k,,, (E) calculated for the |f =2, m, =2)p|1)g,+
spin state with neglected spin-spin and spin-orbit interactions. We
calculate the short-range probabilities p, as a ratio of the thermally
averaged inelastic and momentum-transfer rate coefficients. Then,
the effective trap-enhanced probabilities p 4 are calculated for Fig.
2B from p, as described above in Materials and Methods.

In the calculations of the hyperfine relaxation probability as a
function of the reduced mass in Fig. 2B, we expand the scattering
wave function in the basis of the total angular momentum of the
colliding complex

(L { [ (522 ) fas (Spit o] } Far) FME) (13)

where F,;, is the total spin of the atom-ion complex, F is the total an-
gular momentum of the colliding pair resulting from coupling the
orbital angular momentum L to the total spin F,;, and M, is the pro-
jection of F on the quantization axis. At a nonzero magnetic field, the
Zeeman terms couple states with different values of the total angular
momentum F. In the case of *’Sr* with the nuclear spin of iy, = 9/2,
this inflates the time needed to solve the coupled equations beyond
reasonable limits. On the other hand, at a small experimental mag-
netic field B = 2.97 G, the Zeeman states of both Rb and Sr* are near-
ly degenerate, with spacing lower or similar to the collision energy;
the energy scale for hyperfine relaxation is far larger than this (around
330mK X kg). We thus neglect the Zeeman interactions to perform
calculations in the total angular momentum basis set. We verify the agree-
ment between the calculations in the |f, mf) basis set at B=2.97G
and the total angular momentum basis set with neglected Zeeman
effect for *Sr™, where we can afford the direct comparison.

In both basis sets, we ensure numerical convergence with respect
to the grid parameters, collision energies used for thermal averag-
ing, and the number of included partial waves. Although we used
the total angular momentum basis set and neglected the Zeeman
interaction for a part of the calculations, the total computational
time needed for the project reached ~1.5mln hours X cpus, includ-
ing around 0.75mln hours X cpus for the final calculations pre-
sented here.
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Supplementary Materials
The PDF file includes:

Figs.S1to S3

Legend data S1

Other Supplementary Material for this manuscript includes the following:

Data S1
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