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P H Y S I C S

Quantum control of ion-atom collisions beyond the 
ultracold regime
Maks Z. Walewski1*, Matthew D. Frye1, Or Katz2, Meirav Pinkas3, Roee Ozeri3, Michał Tomza1*

Tunable scattering resonances are crucial for controlling atomic and molecular systems. However, their use has so 
far been limited to ultracold temperatures. These conditions remain hard to achieve for most hybrid trapped ion-
atom systems—a prospective platform for quantum technologies and fundamental research. Here, we measure 
inelastic collision probabilities for Sr+ + Rb and use them to calibrate a comprehensive theoretical model of ion-
atom collisions. Our theoretical results, compared with experimental observations, confirm that quantum inter-
ference effects persist to the multiple-partial-wave regime, leading to the pronounced state and mass dependence 
of the collision rates. Using our model, we go beyond interference and identify a rich spectrum of Feshbach reso-
nances at moderate magnetic fields with the Rb atom in its lower (f = 1) hyperfine state, which persist at tempera-
tures as high as 1 millikelvin. Future observation of these predicted resonances should allow precise control of the 
short-range dynamics in Sr+ + Rb collisions under unprecedentedly warm conditions.

INTRODUCTION
Cooling matter near absolute zero is one of the most reliable ways 
to control intermolecular interactions. At ultracold temperatures, 
two-body collisions become dominated by a single value of orbital 
angular momentum L = 0 (s-wave collisions), allowing collision 
rates to be adjusted with tunable scattering resonances. Magneti-
cally and optically tunable Feshbach resonances have become an 
established tool for probing interactions and controlling chemical 
reactions of neutral atoms (1) and molecules (2–6) and only re-
cently have been observed in ultracold ion-atom collisions (7, 8). 
However, resonant control of collisions remains a challenge for 
most ion-atom systems, which cannot be easily cooled to the 
single-partial-wave regime.

In ion-atom systems, the s-wave scattering regime is shifted 
down to temperatures much lower than 1μK due to the long-range 
nature of their interactions (9). At the same time, the oscillating 
electric field of the radio frequency (rf) ion traps may heat the ion 
during the collision and prevent the ion-atom pair from reaching 
the ultracold regime (10–13).

At higher collision energies, the scattering state of the colliding 
pair is a superposition of many partial wave contributions. This of-
ten leads to averaging of quantum effects such as resonances and 
interference, which are therefore hard to observe. Consequently, 
ion-atom collisions are usually treated by the essentially classical 
Langevin model (14,  15) at even slightly elevated temperatures. 
Reaching the ultracold regime has thus been considered a critical 
condition for observing quantum scattering effects, including Fesh-
bach resonances, in ion-atom collisions (7, 16).

Contrary to that assumption, recent theoretical and experimen-
tal (17–20) studies suggest that signatures of quantum interference 
can be observed in some exchange processes (18) high above the 
ultracold regime due to the so-called partial-wave phase locking ef-
fect (19). In a collision between an ion and an atom in their 2S 

electronic ground states, the relevant process is spin exchange 
(17, 19, 21). This is driven by the difference of scattering phases ac-
quired on scattering in the singlet and triplet electronic spin states 
of the system. The partial-wave phase locking effect allows the 
singlet-triplet phase difference to remain constant over a wide range 
of partial waves and collision energies. In effect, the spin-exchange 
cross sections for many partial waves vary in a concerted way, as if 
they were dominated by a single partial wave. However, this effect 
does not in itself suggest that collisional resonances persist to the 
multiple-partial-wave regime.

Here, we present a joint experimental and theoretical study of 
quantum effects in collisions between the Sr+ ion and the Rb atom 
beyond the ultracold regime. We measure the probability of two 
types of scattering events—a hyperfine relaxation of one neutral 
atom and a spin flip of a single ion—for all initial spin projections in 
the f = 2 hyperfine state of the Rb atoms. We use the results to cali-
brate a comprehensive theoretical model of Sr+ + Rb collisions. Us-
ing the calibrated model, we reveal that spin-flip probabilities in the 
f = 1 state of Rb can be controlled by magnetically tunable Feshbach 
resonances far beyond the ultracold regime. We predict these effects 
can be explored in available experimental setups up to temperatures 
of about 1mK, with as many as 15 partial waves contributing to in-
elastic cross sections.

RESULTS
Measuring inelastic collisions
The experimental setup is shown schematically in Fig. 1A and de-
scribed in detail in Materials and Methods; the apparatus is similar 
to our previous work in refs. (13, 21–23). Briefly, a single 88Sr+ ion is 
trapped in a linear segmented Paul trap. It is cooled by Doppler and 
resolved sideband cooling and optically pumped into its initial spin 
state ∣↑⟩ =∣S1∕2,mz = + 1∕2⟩. In a separate chamber, a cloud of 
87Rb atoms is loaded and cooled in a magneto-optical trap (MOT), 
and about 106 atoms are loaded into a one-dimensional optical lat-
tice in any desired hyperfine and Zeeman state ∣f ,mf⟩. The atoms 
are optically transported through the ion Paul trap using a traveling 
lattice and can collide with the ion. The average number of collisions 
per passage is low (~0.25), and multiple collisions are rare.
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We can experimentally detect two outcomes of a scattering event. 
The first is a hyperfine relaxation of the atom from the upper hyper-
fine manifold to the lower one (red arrow in Fig. 1B), which is mea-
sured by its impact on the ion’s motion via exothermic energy 
release. The second is a spin flip of the ion without changing the at-
om’s hyperfine manifold (blue arrow in Fig. 1C), which we can ob-
serve by directly measuring the ion’s spin state. Both processes are 
detected using electron-shelving and state-selective fluorescence 
techniques, shown in Fig. 1C. For 84Sr+, 86Sr+, and 87Sr+, we use the 
quantum logic technique described in ref. (21).

The measured probabilities of exothermic collisions in the ion 
trap are enhanced by the formation of temporary ion-atom bound 
states, which are induced by the ion trapping. These are very loose-
ly bound, and the ion-atom pair typically has a number of discrete 
short-range collisions before breaking up (13); an example of this 
dynamics is shown in Fig. 1D. For each of these collisions, there is 
a probability p0 of a given event (e.g., inelastic collision), which we 
refer to as the short-range probability. We use molecular dynamics 
simulations to establish the relationship between p0 and the mea-
sured probabilities. It is hard to calibrate these measurements di-
rectly to give absolute rate coefficients, so instead we normalize 
them to heating rates due to Langevin-type collisions. Owing to the 
separation of length scales associated with the ion trap and with 
the chemical forces acting on the colliding pair, the short-range 
probabilities p0 are suitable for comparison with our scattering 

calculations (13). The exact measurement and data analysis proto-
cols are detailed in the Materials and Methods section.

Quantum interference effects
The outcome of an inelastic Sr+ + Rb collision is determined by two 
complementary mechanisms: spin exchange and spin relaxation. 
Spin exchange allows the transfer of spin between the atom and the 
ion while keeping their total spin projection conserved. Its effect is 
determined by interference between scattering on the singlet and 
triplet potentials, and its cross section can be approximated as (24)

Here, Ψin and Ψout are the initial and final spin states of the Sr+ + Rb 
pair, ŝat and ŝion are the electron spin operators of the atom and the 
ion, k is the wave number, and ΔηL denotes the difference of the 
singlet and triplet scattering phase shifts for the given partial wave 
L. The so-called partial-wave phase locking effect means that the 
singlet-triplet phase difference ΔηL remains constant over a wide 
range of partial waves and energies (18–20), as long as the centrifu-
gal barrier for the given L is far enough below the scattering energy. 
Although the individual phases vary strongly with energy and par-
tial wave, the conservation of this phase difference means that inter-
ference effects can persist in the spin-exchange cross section through 
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Fig. 1. Experimental calibration of the theoretical model of Sr+ + Rb collisions. (A) Experimental setup. The atomic cloud prepared in a specific hyperfine and Zeeman 
state ∣f ,mf⟩ is optically transported to the ion’s chamber. The ion is detected by state-selective fluorescence. (B) Zeeman splitting of different hyperfine manifolds of an 
87Rb atom in the electronic ground state, 52S1∕2. An example of hyperfine relaxation process is denoted by the red arrow. (C) 88Sr+ energy levels scheme used for prepara-
tion and detection (repump lasers are not shown for simplicity). The cold-spin-flip process is shown by the blue arrow. (D) Example of a trajectory with multiple short-
range collisions due to the trap effect. Ion and atom positions are projections of motion on one of the trap axes. (E) Calculated short-range probability of the hyperfine 
relaxation for the spin-stretched initial state ∣2, 2⟩Rb∣↑⟩Sr+ as a function of the spin-orbit scaling factor cso. The measured value and its standard uncertainty are shown as a 
horizontal line with a shadow. Fit to the experimental value yields cso = 0.32(7). (F) Calculated probabilities of hyperfine relaxation (red) and cold spin flip (blue) for the 
∣2, −2⟩Rb∣↑⟩Sr+ initial state as a function of the singlet-triplet phase difference ΔΦ. The bold lines show the results for the ab initio value of the singlet phase Φs, and the 
shades behind them are for other values of Φs from 0 to π. The measured values are marked as dashed horizontal lines with standard uncertainties as shadows. Assuming 
ab initio value of Φs, the minimum of χ2 = 6.12 is obtained for ΔΦ = 0.20(2)π.
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averaging both over partial waves and over thermal energy spreads 
to remarkably high temperatures. Spin relaxation, on the other 
hand, allows the angular momentum to be transferred between the 
spin and rotational degrees of freedom. In the case of Sr+ + Rb col-
lisions, it is caused by a substantial second-order spin-orbit coupling 
and is perturbative.

We focus now on collisions with Rb in its upper hyperfine state f = 2. 
We measure hyperfine relaxation and cold-spin-flip losses experimen-
tally, as described above, and compare with theoretical calculations. We 
perform ab initio calculations of the singlet and triplet interaction po-
tentials, along with the second-order spin-orbit coupling, using the 
Molpro package. We then use these to perform coupled-channel calcu-
lations of the relevant scattering processes using the MOLSCAT pro-
gram. Full details are described in Materials and Methods.

The accuracy of ab initio electronic structure methods is insuf-
ficient for making exact predictions of the inelastic collision 
probabilities measured here. Therefore, we introduce three free 
parameters to control our calculated interaction potentials. We 
allow scaling the ab initio second-order spin-orbit coupling by a 
factor cso and introduce the singlet and triplet phase parameters 
(Φs and Φt); these are defined by the semiclassical phase integrals 
Φi = ∫∞

Rcl

√

− 2μVi(R)∕ℏ
2dR + π∕4. The integer part of Φi ∕π gives 

the number of bound states for each potential, which is Ns = 133 for 
the singlet and Nt = 271 for the triplet potential. We control phases 
Φi by small scaling of the short-range parts of the corresponding 
potential energy curves without changing the number of bound 
states. Within the idea of phase locking, the difference between 
these semiclassical phases is a good approximation for the phase 
difference ΔηL. According to Eq. 1, only this phase difference is im-
portant for spin exchange, so we fix the singlet phase to its ab initio 
value of Φs mod π = 0.045π; we have verified that it does not affect 
the inelastic collision probabilities in the f = 2 state of Rb.

We calibrate the model by fitting the values of the spin-orbit cou-
pling scaling cso and the phase difference ΔΦ =

(
Φt−Φs

)
mod π. 

The calibration can be performed as two separate fits for only two 
initial spin states of the system. We first fit cso using the probability 
of hyperfine relaxation from the ∣2, 2⟩Rb∣↑⟩Sr+ channel; we use this 
spin state because it is spin stretched so cannot undergo spin ex-
change and is insensitive to ΔΦ. Here, we fit to the hyperfine relax-
ation only because we have a better estimation of measurement 
errors for hyperfine relaxation than for the ion’s cold spin flip. The 
comparison between the theory and experiment is shown in Fig. 1E 
and yields cso = 0.32(7). In the same way, we fit the value of the 
phase difference ΔΦ = 0.20(2)π to match the experimental hyper-
fine relaxation and the ion’s cold-spin-flip probabilities for the spin-
exchange-dominated ∣2, −2⟩

Rb
∣↑⟩

Sr
+ initial spin state of the colliding 

pair. Here, we need both the hyperfine relaxation and the ion’s cold-
spin-flip probability to determine ΔΦ unequivocally as seen from 
Fig. 1F. We neglect the spin-orbit coupling when fitting ΔΦ to spare 
computational time as its effect is minuscule compared with the spin 
exchange for the chosen spin state.

We investigate the accuracy of our calibrated model by predict-
ing inelastic collision probabilities for other spin states and even 
other isotopic combinations. In Fig. 2A, we show, in solid bars, the 
short-range probabilities of the hyperfine relaxation and the ion’s 
cold spin flip, calculated for the fitted values of cso and ΔΦ, and 
compare them with the measured values for all initial spin pro-
jections in the fRb = 2 channel. There is a good agreement between 

the experimental data and the results of the scattering calcula-
tions, validating our calibrated model. We can also see the state 
dependence predicted by the first factor in Eq. 1 in both the theory 
and experiment.

Changing the Sr+ isotope changes the reduced mass and, there-
fore, the phase integrals over the potential. These vary as 

√
μ for 

both potentials, and because of the different number of bound states 
in each potential, the phase difference ΔΦ also scales similarly. 
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Fig. 2. Phase locking effect. (A) Short-range probabilities of hyperfine relaxation 
(red bars) and cold spin flip of the ion (blue bars) calculated with the fitted values 
of ΔΦ = 0.2π and cso = 0.32 for five initial spin states of Rb atoms, compared with 
the measured values (yellow error bars). The 88Sr+ ion was prepared in the ∣↑⟩ spin 
state. (B) Calculated probabilities of hyperfine relaxation averaged over the initial 
spin states of the Sr+ + Rb pair, plotted as a function of the reduced mass of the 
system, and compared with experimental values from ref. (21). Here, we calculate 
and use the trap-enhanced probabilities peff in place of p0 to enable comparison 
with the experiment (see Materials and Methods). We show the results for two values 
of the nuclear spin of the ion, iion = 0 (red line, corresponding to even isotopes) and 
iion = 9∕2 (purple line, corresponding to 87Sr). (C) Partial-wave contributions to the 
short-range probability of the ∣2, 0⟩Rb∣↑⟩Sr+ → ∣1, 1⟩Rb∣↓⟩Sr+ transition, one of the 
possible hyperfine relaxation pathways. The largest contribution comes from L = 8, 
with up to 20 partial waves involved.
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Following Eq. 1, the result should be a sinusoidal variation in spin-
exchange cross sections as a function of μ. In Fig. 2B, we present the 
calculated trap-enhanced hyperfine relaxation probability, averaged 
over the initial spin projections of the Rb atom and the Sr+ ion, as a 
function of the reduced mass of the colliding pair, treated as a pa-
rameter in the scattering calculations, and compare it with experi-
mental results from ref. (21). The sinusoidal shape of the curve for 
even Sr+ isotopes is distorted by the trap effects, which result in 
larger enhancement of small short-range probabilities p0 and lead to 
sharper minima compared to the rounded maxima of the sin2(μ) 
function. Figure 2C shows how different partial waves contribute to 
the short-range probability of one of the possible hyperfine relax-
ation pathways 

�
∣2, 0⟩

Rb
∣↑⟩

Sr
+ → ∣1, 1⟩

Rb
∣↓⟩

Sr
+

�
, clearly showing that 

the oscillations due to interference remain in phase over many par-
tial waves due to the phase locking effect. The periodic behavior of 
the calculated probabilities as a function of both the reduced mass 
(Fig. 2, B and C) and ΔΦ (Fig. 1F) is a clear indication of quantum 
interference far beyond the ultracold limit, persisting over many 
partial waves and across a broad energy range by the phase locking 
mechanism.

Figure 2B shows a clear interference effect, but the periodicity 
predicted by our calculations does not fully correspond to the val-
ues measured for different strontium isotopes. It is rather improb-
able that the deviations could be explained by the errors in the ab 
initio potential energy curves or the corrections to the Born-
Oppenheimer approximation. To recover the correct periodicity, 
we would have to scale the singlet and triplet potential energy 
curves by at least 20% in opposite directions. That is far beyond the 
expected errors for the electronic structure calculations as de-
scribed in Materials and Methods, which should not typically ex-
ceed a few percent. On the other hand, the mass shifts needed to 
account for different periodicity are at least four orders of magni-
tude larger than the typical corrections to the Born-Oppenheimer 
approximation for Rb and Sr (25). The deviations of the measured 
values from the scattering calculations may suggest unaccounted 
systematic effects from the Paul trap used to store the ion. This hy-
pothesis could be verified by weakening the trap or by investigating 
systems with a larger ion-to-atom mass ratio, both of which would 
reduce the probability of creating the bound states and possible 
systematic errors. However, this approach requires radical changes 
in the experimental sequence.

Quantum resonance effects
We now turn to effects that are dependent on the individual phases 
Φs and Φt, rather than just their difference ΔΦ. This requires reach-
ing a regime in which spin exchange according to Eq. 1 does not 
dominate. This could be at sufficiently low temperatures in which 
threshold and scattering length effects dominate, but such tempera-
tures are beyond the reach of current experiments. Instead, we look 
at scattering in the lower hyperfine state of Rb atoms, fRb = 1, where 
Eq. 1 does not hold because there are few outgoing channels, each 
with very small energy release.

We measure the ion’s spin-flip probability for the atom-ion pair 
prepared in the ∣1, −1⟩

Rb
∣↑⟩

Sr
+ spin state as described above and 

perform the corresponding scattering calculations using MOLSCAT.  
In Fig. 3 (A and B), we show the calculated probability as a func-
tion of the singlet and triplet phases, Φs and Φt, together with a 
few sections through the contour map for fixed values of the phase 
difference ΔΦ. There is a broad dependence on the singlet phase for 

large phase differences, up to a factor of 2, but even for ΔΦ = 0.1π, 
there are numerous smaller sharp oscillations/peaks. For our fitted 
ΔΦfit = 0.2π, there is moderate variation, and the theory predictions 
agree with the experimental measurement for roughly half the range 
of Φs mod π. In Fig. 3C, we show how the calculated spin-flip prob-
ability varies with temperature between 0.1 and 10mK. Both the 
broad variation and the sharp features become more pronounced at 
lower temperatures but persist up to several millikelvins.

The arguments of the phase locking model apply only to the 
phase difference and not to the variation of individual phases. Fea-
tures as a function of the individual phases are therefore expected to 
average out at these temperatures, and their presence here is, at first 
sight, unexpected. Figure 3C also shows a breakdown of the partial-
wave contributions at T = 0.5mK. This shows that the contributions 
of the partial waves peak at increasing phase Φs in order. These cov-
er the entire cycle of phase at this temperature but not uniformly. 
The variation in height and spacing of peaks creates the broad varia-
tion in p0, whereas individual peaks standing out above the back-
ground causes the sharper features. This is a very different behavior 
than observed in Fig. 2C for f = 2 incoming states, where all partial 
waves peaked together, and confirms that this effect is distinct from 
the phase locking.

We attribute these features to the effect of Feshbach resonances 
originating from molecular levels of ∣f =2,mf⟩Rb∣ms⟩Sr+ spin states. 
These occur when a (quasi-)bound state is near the scattering en-
ergy and interacts with the incoming channel, and they greatly en-
hance inelastic scattering in their partial wave. Because of the large 
binding energy (relative to their own f = 2 thresholds) and the very 
strong coupling provided by the spin exchange, these resonances 
have large underlying widths compared to the cold temperatures of 
the experiment and so can survive thermal averaging (compare fig. 
S1). As discussed above, the positions of the peaks shift only a little 
between consecutive partial waves. This happens because the effec-
tive rotational constant for these states is small, compared both to 
the vibrational and hyperfine splittings, so only a small change in Φs 
is needed to bring the next into resonance. At ΔΦ = 0.1π, these 
resonances show up as individual sharp features, but at larger ΔΦ, 
the increased coupling widens them so they overlap and form a 
single broad variation through the cycle. At higher temperatures, 
the number of resonances that contribute increases and they cover 
the range of Φs mod π more uniformly, leading to the effects be-
coming washed out. However, at lower temperatures, fewer reso-
nances contribute and they are more tightly clustered, enhancing 
the variation.

No real experiment can vary Φs, but these Feshbach resonance 
results nonetheless suggest that resonances may exist as a function 
of a physically controllable parameter. We therefore calculate the 
scattering as a function of the magnetic field B from 0 to 500 G. Our 
calculations, presented in Fig. 3D, show a marked magnetic-field 
dependence of the spin-flip probabilities for the experimental tem-
perature of 0.5mK. As shown in Fig. 3C and fig. S2, we are right at 
the edge of temperatures that allow the observation of Feshbach 
resonances and the resonances are much more pronounced for 
T ≈ 0.1mK. The enhancement due to chosen Feshbach resonances 
reaches a factor of 2, and should be observable in modern hybrid 
ion-atom experiments, even taking into account the intricate trap 
effects (13). The interpretation of individual peaks is not simple, but 
the overall pattern may act as a fingerprint, enabling us to determine 
Φs and Φt even at T = 0.5mK.
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DISCUSSION
We have presented a comprehensive model of collisions between 
the Sr+ ion and the Rb atom, capable of predicting inelastic colli-
sion probabilities in the multiple-partial-wave regime. As seen in 
Fig. 2A, our scattering calculations agree with the measured values 
for most spin states of the colliding pair, with deviations smaller 
than the standard uncertainty of our measurements. The calcu-
lated hyperfine relaxation and cold-spin-flip probabilities depend 
periodically on both ΔΦ and the reduced mass of the system, which 
is a strong signature of interference persisting to temperatures many 
orders of magnitude higher than the ultracold regime through 
the phase locking mechanism. This allows us to determine highly 

sensitive short-range parameters controlling inelastic collision 
rates and put conditions on the interaction potentials that govern 
Sr+ + Rb collisions.

The magnetic Feshbach resonances predicted by our model substan-
tially modify the spin-flip probabilities high above the ultracold regime 
and should be observable in modern hybrid ion-atom systems at ap-
proachable temperatures. The calculated variation of the spin-flip rates is 
marked under the conditions of the current experiment (T ≈ 0.5mK), 
but cooling the system to T ≈ 0.1mK would result in much better reso-
lution and contrast, still well above the s-wave collision regime. This will 
allow tuning the interactions of ion-atom pairs without the need to cool 
deep into the ultracold regime, opening up previously unidentified 
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in the ∣↑⟩Sr+ ∣1, −1⟩Rb initial state, compared with the experimental value pexp

0
= 0.1790(99) measured at an external magnetic field B = 3G. (A) Short-range probability 

plotted as a function of both Φs and Φt, calculated at B = 3G from thermal averages at Texp = 0.5mK, which corresponds to the experimental conditions. (B) Short-range 
probability calculated at B = 3G and Texp = 0.5mK as a function of Φs for a few fixed values of ΔΦ, including the fitted ΔΦfit = 0.2π. In (B) and (C), the measured value is 
marked as a dashed horizontal line with a shaded area marking its standard uncertainty. (C) Short-range probability calculated for the previously fixed value of ΔΦfit = 0.2π, 
plotted for a range of temperatures from 0.1 to 10mK as a function of Φs. We see the gradual loss of sensitivity to the singlet phase as the temperature rises. The probabil-
ity calculated for Texp = 0.5mK is indicated by red dots, and the partial-wave contributions at this temperature are labeled by the value of L for the given partial wave. 
(D) Short-range probability calculated at Texp = 0.5mK as a function of the magnetic field B for three arbitrarily chosen values of Φs that would match the experimental 
value measured at B = 3G. The latter is shown as a red point with an error bar representing the standard uncertainty.
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avenues of control over hybrid ion-atom systems (9). Future measure-
ments of the spectrum of resonances should allow calibrating both the 
singlet and triplet potential energy curves and would constitute the first 
observation of magnetically tunable Feshbach resonances in the 
multiple-partial-wave regime.

MATERIALS AND METHODS
Experimental apparatus
A cloud of 87Rb atoms is loaded and cooled down in an MOT, followed 
by a dark MOT stage and polarization gradient cooling, loading a cloud 
of ~106 atoms into an optical lattice formed by two counterpropagating 
off-resonant beams at 1064nm. The atoms are prepared in a specific 
Zeeman state in the f = 1 or f = 2 hyperfine manifolds by a sequence of 
microwave and optical pumping pulses. A 88Sr+ ion is trapped in a dif-
ferent vacuum chamber in a Paul trap made of linear segmented blades, 
with secular trap frequencies ω = (0.49,1.21,1.44) × 2πMHz, and rf 
Ωrf = 26.5 × 2πMHz. The ion is cooled down by Doppler cooling, fol-
lowed by a resolved sideband cooling scheme that cools the ion’s mo-
tion down to the ground state and pumping pulse that prepares it in 
the ∣↑⟩ =∣S1∕2,mz = + 1∕2⟩ state.

The atomic cloud is transported 25 cm down to the ion’s cham-
ber by changing the relative optical frequencies of the counter-
propagating optical lattice beams. The velocity of the atoms is 
tuned to collide with the ion at a nominal velocity of 0.24m∕s, 
equivalent to an energy of about 300 μK × kB in the laboratory 
frame of reference. The background magnetic field during the col-
lision is set at 2.97G.

To probe collisions in which the ion changes its spin and the atom 
remains in the same hyperfine manifold after the cloud passage 
through the ion trap, we apply the following sequence: two π pulses 
using the shelving transition ∣S1∕2, − 1∕2⟩ → ∣D5∕2, − 5∕2⟩ first 
and ∣S1∕2, − 1∕2⟩ → ∣D5∕2, + 3∕2⟩ second with a 674-nm laser 
and then detect fluorescence by driving the S1∕2 − P1∕2 transition 
with a 422-nm laser. If the atom remains in the same hyperfine man-
ifold, then the released energy is less than 1mK and all transitions in 
the sequence are driven efficiently; a bright (dark) ion indicates a spin 
up (down) state. We repeat this experiment Nexp times and count how 
many events of spin down Nd are measured. We used Nexp = 2250 for 
all configurations, except for the atomic state ∣f = 1,mf = −1⟩ where 
we used Nexp = 4500.

To probe collisions in which the atom changes its hyperfine man-
ifold, we first apply optical pumping pulses that ensure that the ion 
populates the ∣S1∕2, − 1∕2⟩ state and then attempt to shelve the ion 
into the D5∕2 manifold via two π pulses: ∣S1∕2, + 1∕2⟩ → ∣D5∕2, + 5∕2⟩ 
and ∣S1∕2, + 1∕2⟩ → ∣D5∕2, − 3∕2⟩ (21). Because of the internal 
energy released during a change of a hyperfine state into the mo-
tional degrees of freedom in the relative atom-ion frame, about 
ΔE

hf
≈ h × 6.8GHz ≈ 0.33K × k

B
 in the center-of-mass frame of 

reference, the shelving attempt fails at high efficiency, therefore 
maintaining the ion in the ground state. Using detection of fluores-
cence by driving the S1∕2 → P1∕2 transition with a 422-nm laser we 
can identify such shelving failure events, Ngs, indicating that a colli-
sion has occurred. We repeated both types of measurements for all 
channels in two different configurations, one in which the excess micro-
motion energy is near zero and another when it is large (about 1K), 
to enable estimation of the Langevin collision probability. The latter 
technique was first proposed in ref. (23).

Analysis of experimental data
We estimate the probability of a given scattering event from the ex-
perimental data with the aid of a numerical model detailed in refs. 
(21, 23) to account for the various factors that affect the experimental 
reading. This model numerically simulates the motion of the ion in 
the trap including the experimental trapping parameters, micromo-
tion effects, and the initial temperature of the ion T. We assume that, 
in a given passage of the atom cloud, the ion experiences Langevin 
collisions drawn from a Poisson distribution with an average number 
of events of κL. We consider a Langevin-type collision as an instanta-
neous elastic event in a random time where the ion’s position is main-
tained but its instantaneous velocity vi is updated to (23, 26)

where va is the atom velocity that is randomly drawn from the 
Maxwell-Boltzmann distribution with the temperature of 10μK. The 
mass ratio r = μ∕mi ≈ 0.5, where μ = mima ∕

(
mi+ma

)
 is the re-

duced mass, and  is the rotation matrix in the collision plane with 
the scattering angle 0 ≤ ϕL ≤ π drawn from the distribution de-
scribed in ref. (23). The unitless factor α =

√

1 + 2rΔE∕
(
m

i
∣v

ion
∣2
)

 
describes the increase in the ion’s speed vion ≡ r

(
vion−vatom

)
 in the 

center-of-mass frame (21), gaining kinetic energy by the exothermic 
process of hyperfine changing collisions. We set ΔE = ΔEhf with a 
probability phf per collision and ΔE = 0 otherwise.

Owing to the trapping forces, any instantaneous change of the 
ion’s velocity leads to a change of its oscillation amplitude in the trap 
Ai, which is updated every collision using the formalism described 
in refs. (21, 23, 27). Tracking this amplitude allows us to calculate 
the detection probability of a hot (bright) Sr+ ion after a detec-
tion pulse

assuming a long detection pulse compared to the motional cycle. 
Here, ki denotes the components of the shelving beam wave number 
along the modes axes, and J0 is the zeroth-order Bessel function.

For each spin state, we run the simulation using different sets of 
(phf, κL) to match Pb = Ngs ∕Nexp at both micromotion tempera-
tures; as expected, we find that Pb is mostly determined by κL at the 
high micromotion temperature and by phf at the low micromotion 
temperature. We repeat the simulation about 105 times, ensuring 
convergence, and take average results. A typical value of the proba-
bility of a short-range (Langevin) collision per passage of the cloud 
is κL ≈ 0.25 for all channels, indicating that the probability of mul-
tiple collisions per passage of the cloud is small. The probabilities phf 
correspond to the yellow data points shown above the red bars in 
Fig. 2A. We estimate T ≈ 0.55mK for all channels to match the inde-
pendent measurement of shelving failure of ions, when the atoms 
are prepared in the f = 1 hyperfine manifold. This initial tempera-
ture effectively determines the collision energy of the atom-ion pair 
and is consistent with the scale of micromotion heating and mag-
netic energy release from a spin flip. Because this is an effective for-
malism that does not discern finite technical fidelity of the process 
from collision energy, we consider the uncertainty in T as a con-
tributor to the total error and add it in quadrature to the statistical 
error, as shown in Fig. 2A. For cold collisions in which the ion flips 

vi →
[
1− r+αr

(
φL

)](
vi−va

)
+ va (2)

Pb = cos2

[
π

2

∏

i

J0
(
kiAi

)
]

(3)
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its spin, we run a similar code but match Psf = Nd ∕Nexp with a unity 
detection efficiency.

The probability of inelastic scattering events can be enhanced by 
the trap-induced ion-atom bound states as described in ref. (13). A 
strongly exothermic collision tends to break the bound state imme-
diately. In effect, the effective trap-enhanced probability of an exo-
thermic collision can be calculated from its short-range probability p0

Here, peff  corresponds to either psf  or phf  extracted from the simu-
lation. PMF(n) is the probability mass function for having exactly 
n collisions in the bound state before its dissociation in the ab-
sence of inelastic scattering, for either scattering channel, which 
we estimate for our trapping configuration in ref. (13). We invert 
the peff

(
p0
)
 function to estimate the short-range probability p0 

from the measured inelastic collision probabilities in Figs. 1 (E 
and F), 2A, and 3.

The probability of hyperfine energy release for different stron-
tium isotopes presented in Fig. 2B were measured for a spin mixture 
(21), and there is no obvious way to extract the short-range proba-
bility p0 for a specific spin state or its state average from the mea-
sured data. Instead, we convert the results of the quantum scattering 
calculations into the state-averaged trap-enhanced probability peff 
with the help of Eq. 4 and compare it with the experimental values. 
In the case of strontium-87 with its nuclear spin i87 = 9∕2, the ion’s 
energy levels are split into two hyperfine manifolds, f = 4 or 5, 
which differ by ΔE ≈ 240mK. During the collision with a 87Rb 
atom, the hyperfine relaxation of the atom can be accompanied by 
the hyperfine excitation of the ion. For 87Sr+, we take into account 
the calculated probability of the hyperfine excitation exchange, but 
we weight the resulting contribution by a factor of 0.6, which cor-
responds to the lower measurements efficiency for a smaller energy 
release which we estimate for this configuration.

Electronic structure calculations
For calculating the needed potential energy curves at short range 
(28), we make use of the ab initio methods implemented in Molpro 
(29–31). The singlet (2)1Σ+ potential energy curve was calculated at 
internuclear distances R ≤ 50a0 using the Davidson corrected inter-
nally contracted multireference configuration interaction method 
(MRCI+Q) (32), and the triplet (1)3Σ+ curve was obtained with the 
coupled-cluster method with single, double, and perturbative treat-
ment of triple excitations [CCSD(T)] (33, 34). In both cases, we use 
the correlation-consistent polarized quintuple-zeta basis set with 
weighted core and valence correlations (aug-cc-pwCV5Z) (35), with 
bond functions added for better convergence to the complete basis 
set limit near the potential minima. For both Rb and Sr+, the inner 
shell electrons are replaced by the small-core relativistic energy-
consistent pseudopotentials ECP28MDF (36, 37). Our singlet (trip-
let) potential has a depth of 800cm−1 (6412cm−1) and an equilibrium 
distance of 14.1a0 (9.3a0); these may be compared to previous large-
core calculations (38), which gave depths of 960cm−1 (6544cm−1) 
and equilibrium distances of 13.8a0 (9.2a0).

The second-order spin-orbit coupling coefficient λso(R) was 
calculated using second-order perturbation theory from the non-
relativistic (1)3Σ+ and (1)3Π electronic states of the Sr+ + Rb 
system as

Here, ⟨(1)3Σ+∣Ĥ
so
∣(1)3Π⟩ is the matrix element of the spin-orbit 

interaction between (1)3Σ+ and (1)3Π electronic states calculated us-
ing MRCI wave functions, and V(1)3Π(R) and V(1)3Σ+(R) are the asso-
ciated potential energy curves (17). The needed potential energy 
curve for the (1)3Π state was calculated using the MRCI+Q method 
with the same basis set as for the (2)1Σ+ and (1)3Σ+ states. We show 
the calculated potential energy curves and the second-order spin-
orbit coefficient in fig. S3 and give the values of the ab initio points 
in data S1.

Long-range interactions
At large internuclear distances, the singlet (2)1Σ+ and triplet 
(1)3Σ+ potential energy curves attain the same long-range form  
VLR(R) = Vind(R) + Vdisp(R), where

is the induced part of the potential energy, coming from the interac-
tion of the charge of the ion with the induced multipole moments of 
the neutral atom, and

is the dispersion potential, arising from the interaction of instanta-
neous multipole moments of both the ion and the atom.

We calculate the induction coefficients C(ind)
4

, C(ind)
6

, and C(ind)
8

 
from the static dipole, quadrupole, and octupole polarizabilities of 
the Rb atom, α1 = 319.8 (5) × 4πϵ0a

3

0
 (39), α2 = 6479 (1) × 4πϵ0a

5

0
 

(40), α3 = 2.381 (44) × 105 × 4πϵ0a
7

0
 (40), and the charge of the ion, 

q = e as C(ind)
2n+2

=
1

2
q2αn ∕

(
4πϵ0

)2 (41). We use the dispersion coeffi-

cients     C(
disp)

6
= 1.845(6) × 103Eha

6
0     and     C(disp)

8
= 1.8321(2) × 105Eha

8
0
 

as reported in ref. (41). Our total C4, C6, and C8 are calculated as 
Cn= C

(ind)
n + C

(disp)
n  and  evaluate   to  C4

= 159.9E
h
a
4

0
, C6

= 5079.0E
h
a
6

0
,  

and C8
= 302260E

h
a
8

0
.

Parameterization of the ion-atom interactions
We adjust the potential energy curves used in the scattering calcula-
tions by tiny scaling of the short-range parts of the potential, which 
were calculated ab initio. These are then interpolated and extrapo-
lated using a reciprocal-power reproducing kernel Hilbert space 
(RKHS) method of Ho and Rabitz (42–44), with the leading terms 
in the extrapolation constrained to the long-range coefficients given 
in the previous section, as described in ref. (43). We control the 
RKHS method by specifying the integer parameters n = 3, m = 1, 
and s = 2. Here, n dictates the number of reciprocal power terms at 
large internuclear separations, where the potential takes on the as-
ymptotic form 

∑n−1

k=0
− Cs(k+m+1) ∕R

s(k+m+1) (43).
To adjust the potential, we multiply the calculated ab initio points 

by a scaling factor before applying the RKHS. This allows us to effi-
ciently and smoothly vary the short-range portion of the potential 
while leaving the accurately known long-range portion unaffected 

peff =
∑

n

[
∑

k≥n

PMF(k)

]
(
1−p0

)n−1
p0 (4)

λ
so(R) =

2

3

∣⟨(1)3Σ+∣Ĥ
so
∣(1)3Π⟩∣2

V(1)3Π(R) − V(1)3Σ+(R)
(5)

Vind(R) = −
C(ind)
4

R4
−

C
(ind)
6

R6
−

C
(ind)
8

R8
. . . (6)

Vdisp(R) = −
C
(disp)
6

R6
−

C
(disp)
8

R8
. . . (7)
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and thus adjust the phase parameters Φi described in the main text. 
On a technical level, we calculate the zero-energy scattering length 
ai for each potential energy curve using MOLSCAT and obtain 
the phase parameters as Φi mod π = arctan

�
−aiℏ∕

√
2μC4

�
+ π∕2 

(45). The scaling factors we use differ from unity by at most 1.8% for 
the singlet and 0.6% for the triplet potential energy curves and are 
listed with the corresponding phases Φi in data S1.

Quantum scattering calculations
To obtain the inelastic collision probabilities, we calculate the free-
space inelastic and momentum-transfer rate coefficients by solving 
the Schrödinger equation for the radial motion of the ion-atom pair. 
The effective Hamiltonian used for the scattering calculations is the 
same as that described in detail in ref. (46) for collisions of pairs of 
alkali-metal atoms and is written as

Here, R is the internuclear separation, μ the reduced mass, L̂ is the 
orbital angular momentum of the relative motion of the ion and 
atom, ̂Sr

+ and ̂Rb are the monomer Hamiltonians, consisting of 
the hyperfine and Zeeman terms, and V̂ (R) contains the singlet 
(2)1Σ+ and triplet (1)3Σ+ molecular potential energy operators. The 
electron spin-spin dipolar and second-order spin-orbit interactions 
are modeled together as

where α is the fine-structure constant, λso(R) is the ab initio second-
order spin-orbit coefficient, cso is the scaling factor fixed to fit the 
experimental data as shown in Fig. 1E, ŝa, ŝb are the electronic spin 
operators of the atom and the ion, and e⃗ R is a unit vector along the 
internuclear axis.

For most of our calculations, we expand the angular degrees of 
freedom of the scattering wave function in the uncoupled basis

Here, L is the orbital angular momentum of the relative motion of 
the ion and the atom, sa, sb and ia, ib are the electronic and nuclear 
spins of the atom and the ion, and ms,a,ms,b,mi,a,mi,b are their re-
spective projections on the quantization axis. Note that ib = 0 in all 
our calculations with this basis, but we leave it in explicitly for gen-
erality. We use MOLSCAT (47, 48) to solve the resulting coupled 
equations and calculate the S-matrices for given collision energies. 
At small internuclear separations R from 5.5a0 in the classically for-
bidden region to 21.0a0, where the long-range terms in the potential 
start to dominate, we propagate the log-derivative matrix using the 
diabatic modified log-derivative propagator of Manolopoulos (49) 
with a fixed step size of 0.02a0. At R = 21.0a0, we switch to the 
log-derivative Airy propagator of Alexander and Manolopoulos 
(50, 51) with an adaptive step size based on error estimates. The 
calculated S-matrices are then transformed to a basis built from 
atomic eigenfunctions

At zero field, fa and fb are total spins of the atom and ion; these are 
not strictly conserved in a magnetic field but are still nearly good 
quantum numbers at the low fields used here, so are useful as labels; 
their respective projections ma,mb are good quantum numbers.

We calculate the rate coefficients from the S-matrix elements for 
50 values of the collision energy in the center-of-mass frame, rang-
ing from 0.4μK × kB to 4mK × k

B
 in Figs. 1 (E and F) and 2, and 

from 0.8μK × kB to 80mK × k
B in Fig. 3. We sum all L,ML contri-

butions and thermally average the results assuming a Maxwell-
Boltzmann distribution.

The momentum-transfer rate coefficients are calculated from S-
matrices as (52, 53)

where the real partial-wave phase shifts δL are related to the diagonal 
S-matrix elements for the given spin channel by SL =∣SL∣ exp

(
2iδL

)
. 

The above expression is valid for channels with fully elastic scatter-
ing. Here, we approximate the momentum-transfer rate coefficients 
for all the channels by km(E) calculated for the ∣f =2,mf =2⟩

Rb
∣↑⟩

Sr
+ 

spin state with neglected spin-spin and spin-orbit interactions. We 
calculate the short-range probabilities p0 as a ratio of the thermally 
averaged inelastic and momentum-transfer rate coefficients. Then, 
the effective trap-enhanced probabilities peff are calculated for Fig. 
2B from p0 as described above in Materials and Methods.

In the calculations of the hyperfine relaxation probability as a 
function of the reduced mass in Fig. 2B, we expand the scattering 
wave function in the basis of the total angular momentum of the 
colliding complex

where Fab is the total spin of the atom-ion complex, F is the total an-
gular momentum of the colliding pair resulting from coupling the 
orbital angular momentum L to the total spin Fab, and MF is the pro-
jection of F on the quantization axis. At a nonzero magnetic field, the 
Zeeman terms couple states with different values of the total angular 
momentum F. In the case of 87Sr+ with the nuclear spin of i87 = 9∕2, 
this inflates the time needed to solve the coupled equations beyond 
reasonable limits. On the other hand, at a small experimental mag-
netic field B = 2.97G, the Zeeman states of both Rb and Sr+ are near-
ly degenerate, with spacing lower or similar to the collision energy; 
the energy scale for hyperfine relaxation is far larger than this (around 
330mK × k

B). We thus neglect the Zeeman interactions to perform 
calculations in the total angular momentum basis set. We verify the agree-
ment between the calculations in the ∣ f ,mf ⟩ basis set at B = 2.97G 
and the total angular momentum basis set with neglected Zeeman 
effect for 88Sr+, where we can afford the direct comparison.

In both basis sets, we ensure numerical convergence with respect 
to the grid parameters, collision energies used for thermal averag-
ing, and the number of included partial waves. Although we used 
the total angular momentum basis set and neglected the Zeeman 
interaction for a part of the calculations, the total computational 
time needed for the project reached ~1.5mln hours × cpus, includ-
ing around 0.75mln hours × cpus for the final calculations pre-
sented here.

� = −
ℏ
2

2μR2

d

dR

(

R
2 d

dR

)

+
�L
2

2μR2
+ �V (R) +

+ �
Sr

+ + �
Rb

+ �
ss+so

(8)

�
ss+so=

[
E
h
α2

(
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0

)3 −c
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λ
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]

×
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(
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)(
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(9)
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k
m(E) =

√
2E

μ

πℏ2

μE

Lmax−1∑

L=0

[
(4L+2)sin2δL+
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(
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Supplementary Materials
The PDF file includes:
Figs. S1 to S3
Legend data S1

Other Supplementary Material for this manuscript includes the following:
Data S1
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