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Abstract

Fault tolerant quantum error-correction schemes require the implementation of high fidelity quan-

tum gates. The fidelity of a quantum gate is defined as the probability of being in the target final state

|ψ〉, following the gate, F =
〈
ψ
∣∣ρ̂ f inal

∣∣ψ〉where ρ̂ f inal is the density operator of the real final (mixed)

state. We designed and built a system that will implement high fidelity stimulated Raman gates on

single trapped ion-qubits. Our qubit levels are the two Zeeman states of the electronic ground level

of a 88Sr+ ion, separated by 2.8 MHz/G . Raman beams are generated by an External Cavity Diode

Laser, where the Laser diode used is a violet LD of 405 nm, off-resonance with the transitions to

levels at 422 nm and 408 nm. The two, co-propagating, Raman beams are the two polarization com-

ponents of the 405 nm light where one polarization component is phase modulated at the qubit Level

separation by an (electro optic modulator) EOM. The Rabi frequency is directly monitored by mixing

down the beat-note of the two Raman beams and actively stabilized using feedback control. A Field

Programmable Gate Array card is used to implement the control electronics with the advantage of

flexibility and better integration with the experiment. Classical noises are suppressed such that the

expected error (ε = 1−F ) is quantum limited due to spontaneous scattering of photons and smaller

than 10−4.
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Preface

This thesis describes my work over the past year. I have designed and built a laser system that will be

used to perform single qubit gates on a trapped ion qubit with high fidelity. The classical contribution

to the errors in the gate is estimated to be εc < 10−7. The gate be therefore quantum noise limited,

i.e. limited by the spontaneous scattering of photons from the ion with εs = 8× 10−6. The classical

noises have been attenuated by active feedback methods. The laser was not tested on the ion since the

state detection scheme was not yet fully implemented in the lab by the time this thesis was written, but

experiments demonstrating gate fidelity higher than 1−10−4, a threshold level for fault tolerant quantum

error processing are planned for the following months.

1 Quantum information processing

Since the middle of the last century, continuous technological and scientific progress has pushed the limits

of computer technology to produce faster and smaller processors. Today’s state of the art processors have

fundamental processing units (transistors) of the size of 45 nm. Current road-map for the semiconductor

industry shows planned transition to a 11 nm manufacturing process by the year 20221. This amazing

progress was foreseen by Intel’s co-founder Gordon Moore in 1965 when he predicted that the density

of transistors on a chip will double itself every two years. However, this progress will eventually run

itself down. The size of the fundamental computing units is bound to reach atomic sizes. At the atomic

scale the behavior of systems is not necessarily classical but rather can be governed by the laws of

quantum mechanics. As an example, the measurement of a memory bit state will no longer be predicted

deterministically. It is only the probability of different outcomes, determined by their respective quantum

amplitudes can be known. The usual paradigm of computers, namely the Turing Machine, can no longer

be realized on such physical systems. Quantum effects also holds the promise for a new kind of computer-

the quantum computer, a system that performs computations by using quantum mechanical principles for

it’s operations. As was pointed out by Richard Feynman in 1982, a full simulation of a large (more

than a few degrees of freedom) quantum mechanical system is inefficient on a classical computer, but

trivial on a quantum computer [1, 2]. At first these ideas were mainly a source of theoretical discussions,

but then it was discovered that utilizing the inherent parallelism of the quantum superposition principle,

1http://www.itrs.net/Links/2008ITRS/Update/2008_Update.pdf
http://en.wikipedia.org/wiki/11_nanometer
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solutions to problems that are considered unsolvable in classical computer science (or at least too time

consuming) can obtained. One major breakthrough by Shor’s factoring algorithm demonstrating [3, 4]

that a quantum computer should be able to efficiently factor large numbers to their prime constituents. If

ever implemented it will have a profound effect on cryptography, as it would render current methods for

public key encryption (such as RSA) obsolete.

Current research in the field of quantum information and quantum computers attempts to find so-

lutions to a number of basic problems, such as scalability (how to build quantum computers of many

degrees of freedom), decoherence (attempt to overcome decoherence hindering the performance of quan-

tum computers by loss of information), quantum algorithms (what kind of computations can be done with

a quantum computer) and communication (transferring information between quantum computers). This

thesis deals with only one simple building block of a quantum computer: the coherent control of the state

of a single quantum bit (qubit) without loss of information in the process.

1.1 Qubits

The basic building blocks of classical computers are bits (binary-digits). Bits can assume one of two

logical values usually denoted as 0 and 1. An array of several bits (a register) can represent 2N different

numbers or states. In contrast, qubit is a quantum two level system. Qubits have 2 well defined states,

similarly to the classical bits, but due to the principle of quantum superposition, they can be in any

superposition state |ψ〉 = α |0〉+ β |1〉 . A quantum register of N qubits spans a 2N dimensional Hilbert

space, meaning that we need 2N complex numbers to fully specify a state. This is in sharp contrast with

the classical case where only N numbers are needed to specify an N bit state. It is customary to represent

the state of a single qubit as a vector pointing on the surface of a unity sphere - the Bloch sphere.

Since qubit states are normalized to unity we can write without loss of generality |ψ〉 = cos(θ/2) |0〉+

eiφ sin(θ/2) |1〉 . The angles θ ,φ define the direction of the qubit vector. In this notation the |0〉 ( |1〉 ) (also

referred to as |↓〉 and |↑〉 ) state is represented by a vector pointing in the south (north) pole direction.

Equal superpositions (|α|2 = |β |2 = 1
2) are vectors lying on the Bloch sphere equatorial plane.

1.2 Quantum Gates

Large classical computations can be carried out using only one and two-bit gates. There is only one

possible classical single bit gate: the NOT gate. The NOT gate flips the state of the bit from 1 to 0 and

vice-versa. There are many different two-bit gates. Examples include the OR gate, the NAND gate and

2
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Figure 1: The Bloch Sphere

the AND gate with truth tables given in table 1. An important theoretical result states that any binary

function (the result of which is 0 or 1) of bits can be computed by a composition of NAND gates alone.

Therefore the NAND gate is a universal gate - any other gate can be decomposed into NAND gates [1].

A B out
0 0 0
1 0 1
0 1 1
1 1 1

(a) OR

A B out
0 0 0
1 0 0
0 1 0
1 1 1

(b) AND

A B out
0 0 1
1 0 1
0 1 1
1 1 0

(c) NAND

Table 1: OR,AND,NAND classical gates

Quantum computation also uses single and multiple qubit gates. The QNOT, the quantum analogue

of the classical NOT, is a gate that flips the state of the qubit: α |0〉+β |1〉 −→ α |1〉+β |0〉 . the simple

QNOT gate can be generalized to a rotation operator in the Bloch sphere, that operates on the spinor α

β

,

R̂(θ ,φ) =

 cos(θ/2) −ie−iφ sin(θ/2)

−ie−iφ sin(θ/2) cos(θ/2)

 ,

where QNOT gate is R̂(θ = π,φ = 0). The rotation operator can be represented in terms of the Pauli

matrices R̂(θ ,φ) = e
−iσ ·n̂θ

2 where σ is the Pauli vector (σx,σy,σz) and n̂ is a unit vector in the Bloch

sphere equatorial plane. Physically the angles θ and φ are determined by the strength and phase of the

interaction with the qubit, respectively. The main goal of this work is to implement such a single qubit

gate that will perform with a fidelity (defined in subsection 1.3) better than 1− 10−4. Rotations around

3



the x̂ (ŷ) axis in the Bloch sphere correspond to φ = 0 (π

2 ). Quantum gates involving two qubits also exist

but are outside the scope of this thesis. I will only mention the quantum controlled NOT gate (CNOT)

where the state of the target qubit is flipped conditioned on the control qubit state: |00〉 → |00〉 , |01〉 →

|01〉 , |10〉 → |11〉 , |11〉 → |10〉 here the first is the control qubit and the second is the target qubit. It

can be shown that any multiple qubit unitary operation can be composed of the CNOT together with the

single rotations , hence they form a universal gate set, similarly to the classical NAND [5].

1.3 Gate Fidelity

The fidelity of a quantum gate can be defined as the probability of measuring the qubit in the ideal target

state |ψ〉, F =
〈
ψ
∣∣ρ̂ f inal

∣∣ψ〉, and ρ̂ f inal is the actual density operator reached after the gate.

1.4 Fault Tolerance

Many computational algorithms rely on long sequences of gating operations. Suppose there is some error

probability p in any single gate, the error in the result of a computation is ε ≈ 1− (1− p)N where N is

the number of gates in the computation. The exponential dependence of the error on N prohibits large

scale computation. Noise is a fact of life and cannot be completely eliminated. Classical information

can be protected against the affect of noise by encoding it to “error correction codes” that are noise

resilient. These codes are usually met in the context of communication over noisy channels rather than

in computation, this is due to the fact that CMOS technology which is at the heart of modern processors

is very reliable, and errors are rare, estimated at bellow one error in every 1017 operations (for a 3 GHz

processor this is one error in 3 years of continuous operation). Quantum gates with such low noise are

probably not feasible even theoretically, due to quantum fluctuations. But we can use quantum error

correction to protect states and improve the fidelity of gates. Remarkably, it turns out that quantum

computation with an arbitrary low error can be achieved even with noisy gates, using certain error-

correction schemes and provided that the single gate error is bellow a certain threshold [1]. These ideas

are reminiscent of the Shannon noisy channel coding theorem that states that classical information can

be sent over a noisy channel with arbitrary low error rate provided that a strong enough coding scheme is

used [6]. In order to theoretically estimate the threshold for fault tolerant QIP it is necessary to assume

certain noise models, quantum error-correction protocols, architecture etc. These estimates are therefore

only rough guidelines for the fidelities with which quantum gates should be realized in the lab. In the

last few years fault tolerant error thresholds a high as 0.01 were calculated. It is believed however that

4



in order for fault tolerance to be experimentally feasible, quantum gates with significantly lower errors,

such as 10−4, should be realized.

1.5 Trapped Ion Qubits

The requirements for the implementation of a quantum information processor are nicely summarized by

the five criteria by Divincenzo[7]:

1. The qubits must be well-defined.

2. It must be possible to initialize the qubit to a pure state.

3. A universal set of quantum gates must be implemented.

4. Qubit specific measurements must be implemented.

5. Coherence times must be long with respect to gating and measurement times.

Among many systems considered as a physical qubit, cold trapped ions has all those features. Trapped

ions are well isolated from their environment, hence long coherence times are possible. The internal

degrees of freedom of trapped ions are easily initialized using optical pumping methods and are eas-

ily manipulated by laser or microwave radiation. It is possible to detect their state using fluorescence

spectroscopy methods. Hence cold trapped ions are considered as promising candidates for the imple-

mentation of quantum computing, and all of Divincenzo’s criteria, high fidelity gates [8], initialization

and readout [9, 10], long coherence times [11] and entanglement gate [12] has been demonstrated with

trapped ions.

2 The 88Sr+ Qubit

Strontium is an alkaline earth metal with 2 electrons in its valance orbital. We use 88Sr which is the most

abundant isotope of strontium (82% natural abundance). The singly ionized strontium ion has only one

electron in its valance orbital, 5S 1
2
, hence it resembles an alkali atom. 88Sr+ has no nuclear spin (it has 38

protons and 50 neutrons) and hence no hyperfine structure. The electronic ground state is therefore only

twice degenerate and is Zeeman splitted with 2.8 MHz/G. We use the two Zeeman splitted spin states of

the ground level to encode a physical qubit. Figure 2 presents a diagram of the relevant energy levels of
88Sr+.

5



Figure 2: Relevant 88Sr+ energy levels

transition wavelengths. Level lifetimes are given in parentheses.

2.1 Trapping

Applying forces on charged particles, is possible using electrostatic fields. However, a simple electro-

static trapping device is not possible as a consequence of the Laplace equation: ∇2φ =
(

∂ 2

∂x2 + ∂ 2

∂y2 + ∂ 2

∂ z2

)
φ =

0. If a trapping minimum of the potential exists in 2 directions there must be an anti-trapping maximum

in the third. The solution is to use time dependent fields to achieve an effective trapping potential. In

our experiments we use the “Linear RF-Paul Trap” invented by Wolfgang Paul [13]. Figure 3 shows the

configuration of a basic Paul trap. The ion is captured in the trapping region between the “end caps”

which are DC electrodes, held at RF ground. Two other electrodes are connected to a sinusoidal varying

voltage, typically of few hundred volts of amplitude. The other 2 electrodes are grounded. At each instant

of time the trap potential is an electric quadrupole; radially confining in one direction and anti-confining

in the other. However, with the correct choice of parameters, the ion can’t follow fast enough and remains

essentially at the center of the trap. A full treatment of the motion of the ion in the trap, both classical and

quantum, is given in references [14, 15]. An important result on cited here states the trapping potential

can be approximated as a simple harmonic potential, and that the motion of the ion in trap can be treated

as that of a quantum harmonic oscillator.

2.2 Laser cooling

The trapped ions are initially hot (≈ 600K) as they are emitted from a hot oven. The trap is deep enough

to capture them (≈ 1eV = 20kBT) but due to a Doppler broadening much wider than the qubit separation

they are useless as qubits, unless cooled. In order to cool the ions the method of Doppler laser cooling is

used. In the context of a single trapped ion “cooling” does not imply that the trapped ion is brought to

6



Figure 3: Schematic of a Paul Trap.
End-cap electrodes are held at a DC potential Vendcap and define the longitudinal axis of the trap. The two
RF electrodes (blue rods) are connected to a radio frequency potential of amplitude VRF and frequency
ΩRF . The other 2 electrodes (gray rods) are held at RF ground.

thermal equilibrium with a reservoir [16]. However, using ergodicity the ion’s average occupation of the

harmonic oscillator states over many cooling repetitions follows a Boltzmann distribution thus defining

a measure of temperature. After Doppler cooling on the S 1
2
→ P1

2
transition down to the Doppler cooling

limit of Td = h̄γ

2kB
= 5×10−4 K, with a trap frequency of 2 MHz, the average occupation of the quantum

harmonic oscillator is 〈n〉 ≈ 10. One interesting aspect of cooling a strongly trapped ion, in contrast with

the cooling of weakly trapped particles is that since the ion is trapped, a single laser beam is enough for

cooling in 3D and no elaborate configuration of the cooling beams is needed. As long as~k, the wave-

vector of the laser has a projection along each of the axes of the trap (i.e. is not parallel to any of the

axes), the ion will spend some of the time moving towards the laser and will therefore be cooled [17]. For

this cooling scheme to work the trap cannot be isotropic, and needs to have 3 different non-degenerate

axes.

2.3 Re-pumping

The excited state 5P1
2

has some probability to spontaneously decay to the metastable state 4D 3
2
. Similarly

5P3
2

level can decay to either of the D states, 4D 3
2

and 4D 5
2
. The branching ratio for these decays into

D is about 1/14 of the total decay rate [18]. Because the D states are metastable with lifetimes on the

order of 0.5 sec the cooling process is practically terminated when such decay occurs. This means that

during cooling or fluorescence detection, the ion may suddenly become “dark” and cease to interact

with the laser field. Since on the average this happens once in every 14 scattering events, and given the

7



short lifetimes of the P levels (τ = 1
γ
≈ 8ns) cooling sequences longer than few hundred nano-seconds

are not possible. In order to be able to cool or perform fluorescence detection, the population must be

re-pumped out of the D states. This is done with a laser beam of 1092 nm (1033 nm) resonant with the

4D 3
2
→ 5P1

2
(4D 5

2
→ 5P3

2
) transition. A numerical solution of the optical Bloch equations gives the steady

state populations of the different levels (5S 1
2
,5P 1

2
and 4D 3

2
) for different magnetic field strengths and for

different intensities and detuning of the 422 nm and 1092 nm lasers.

2.4 Qubit states

A constant magnetic field splits the 5S 1
2

level into two spin states. The state with electronic spin parallel

(anti-parallel) to the externally applied magnetic field is denoted (|↑〉) |↓〉. One disadvantage in using

Zeeman states as qubit levels is that fluctuations of the quantizing magnetic field will cause fluctuations in

the Zeeman separation between the qubit levels therefore dephasing superpositions. To reduce the affect

of magnetic noise dephasing we use servo stabilization of the magnetic field. Noises in the magnetic field

has been brought down to a level of 1 µG at 50 Hz, the dominant spectral component of magnetic field

noise.

2.5 State detection

The general state of the ion qubit can be written as |ψ〉= cos θ

2 |↑〉+ sin θ

2 eiφ |↓〉. Internal state detection

in trapped ions is typically done by state selective fluorescence. Here photons are scattered from a laser

beam only if the ion is in one of the qubit levels and the other qubit level is "dark". In the case where

the Zeeman splitting between the qubit levels is small compared with the natural width of the P1
2

and the

P3
2

levels, simple state selective fluorescence will not work as both qubit levels will be simultaneously

on resonance. Therefore we use the method of electron shelving: detection of the state of the ion is

done in two stages. First a 674 nm laser with a line-width narrower than the qubit level separation is

used to coherently transfer population from the |↑〉 state to the metastable (with lifetime of 0.4 sec) 4D 5
2

state. Then a laser beam on-resonance with the S 1
2
↔ P1

2
transition (422 nm) is turned on. If the ion-

qubit superposition collapses to the |↓〉 state, photons are scattered on the (S 1
2
↔ P1

2
) transition and are

collected on a photo-multiplier tube. While if the ion superposition collapses to the 4D 5
2

level then no

photons are detected. The scattered photons are detected by a photo-multiplier-tube (PMT) and counted.

If the number of scattered photons detected is larger than a threshold determined by the background

photon rate then the recorded result of the measurement is |↓〉 and otherwise it is |↑〉. Each measurement
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is repeated many times to gain statistics [10]. The above detection scheme only provides us with the

probability of finding a superposition in |↑〉 or |↓〉 states - the projection of the Bloch vector state on the

ẑ axis of the Bloch sphere . To measure the projections along x̂ (ŷ) a θ = π

2 pulse with φ = 0 (φ = π

2 ) is

applied prior to measurement. This pulse rotates the Bloch vector so x̂ (ŷ) component is now along ẑ, and

can be measured. Quantum state tomography uses measurements of the projection of identical copies of

a quantum state along three orthogonal directions to determine the direction of the Bloch vector on the

Bloch sphere, limited by statistics and the fidelity of the detection and the single qubit gates.

2.6 Trapped ion - light interaction

The interaction between an ion and an electric field of a laser can be written as [19]:

HI =−d ·E0ε̂L cos(kz̃−ωLt +φ), (1)

where d is the electric dipole operator, E0 is the electric field amplitude, ε̂L is the laser polarization vector,

k is the laser k-vector assumed parallel to the trap axis and z̃ is the ion position operator. Here we the

ion is assume a two level system, a reasonable approximation as long as the field is only resonant with

one transition of the ion and that the Rabi frequency is much smaller than the detuning to off-resonant

transitions. We define the Lamb-Dicke parameter η = kz0 where z0 =
√

h̄
2mω

is the extent of the ion

ground state wavefunction. In the Lamb-Dicke regime, where
〈
(â† + â)2〉η2 � 1, achieved by tight

trapping and cooling, the interaction Hamiltonian can be approximated by

Hint = h̄(Ωeiφ )σ+e−i(ωL−ω0)t [1+ iη(ae−iωzt +a†e−ωzt)]+h.c. (2)

where h̄ω0 is the energy separation between the two levels, Ω =−E0 〈↑ |d · ε̂L| ↓〉/(2h̄) is the on-resonance

Rabi frequency, σ+ = |↑〉〈↓| is a raising operator for the internal state and a† is a creation operator for

the quantum harmonic oscillator. For the case of Raman transitions induced by two beams with frequen-

cies ω1,2, we can replace ωL → ∆ω = ω1−ω2, k→ ∆k = k1− k2 [19]. For certain choices of ∆ω the

interaction is resonant. For example, for the case where ∆ω = ω0 +mωz a transition |↓〉 |n〉� |↑〉 |n+m〉

is induced. In this thesis we focus on carrier transitions where ∆ω = ω0 and η = 0. The condition on η

is fullfiled almost exactly since co-propagating beams are used and therefore ∆k ∼= 0.

9



2.7 Manipulation of the ion qubit state

Manipulation of the ion internal state can be implemented by the use of an electro magnetic field. In

the case where the levels of interest are Zeeman splitted spin states of the valance electron, typical level

separation is of the order of a few MHz (2.8 MHz/G). As the spin is a magnetic dipole, a magnetic field,

perpendicular to the quantization axis and oscillating at the qubit level separation (RF frequency) will

induce spin rotations. However - the long wavelength of such low frequency fields (100 m at 3 MHz)

prohibits single ions addressing. Furthermore, two ion gates require coupling to the motional degrees

of freedom of the trapped ions [19, 20]. This cannot be done using RF fields alone since the Lamb-

Dicke parameter kz0 will be essentially zero. An alternative method to couple between the qubit states

is indirect - a laser field is used as a carrier for the RF frequency via two-photon transitions. The short

wavelength of the laser enables single ion addressing and the larger wave-vector allows for a large Lamb-

Dicke parameter, required for coupling to motional degrees of freedom. The laser is modulated at the

RF frequency and sidebands are created. The ion then undergoes stimulated Raman2 transitions where

it absorbs a photon from one sideband and coherently emits it into the other sideband. For a detailed

analysis of this two-photon process see [21, 10]. The ion is modeled as a three level Λ system and two

light fields act on it with a frequency separation matching the separation between the two lower levels.

The third, excited level is removed from the coupled equations by the process of adiabatic elimination. In

a frame rotating at the frequency separation between the fields, the interaction Hamiltonian finally takes

the form (within the rotating wave approximation)

HI =
h̄ΩR

2
|↑〉〈↓|+ h̄Ω∗R

2
|↓〉〈↑|= h̄

2

 0 ΩR

Ω∗R 0

 , (3)

with a Rabi frequency ΩR that depends on the two fields. This is the same as the Hamiltonian in Eq. (2)

a for carrier transition, i.e. ∆n = 0. The Rabi frequency is calculated in the following subsection 2.7.1.

2.7.1 Calculation of the Raman transition Rabi frequency

Raman transition is a two photon process where a photon from one mode of the field is scattered into

another mode of the field. The difference in energy is transferred to the valance electron. Stimulated

2Sir Chandrasekhara Venkata Raman (7 November 1888 – 21 November 1970) was an Indian physicist who was awarded
the 1930 Nobel Prize in Physics for his work on the molecular scattering of light and for the discovery of the Raman effect,
which is named after him. (from wikipedia.com)
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↑
↓

e

(a) off-resonant Rayleigh
scattering

↑

e

↓
(b) off-resonant Raman scat-
tering

↑

e

↓
(c) Raman stimulated transition

Figure 4: off-resonant Raman transition and scattering and Rayleigh scattering

Raman transitions are the coherent counterpart of this two photon process. Since there is macroscopic

occupation of two modes of the field, scattering from one mode into the other is preferred by bosonic

amplification. The ion then coherently scatters photons from one mode to the other and gains/loses the

difference between the modes in momentum and energy. The end result is Rabi nutation of the internal

state of the trapped ion induced by the Raman field. The Rabi frequency of the Raman carrier transition

is given by [19]

ΩR =
ei∆φ

4h̄2 ∑
i

〈↑ |d ·E2ε̂2| i〉〈i |d ·E1ε̂1| ↓〉
∆i

, (4)

where |i〉 are the virtually excited intermediate states of the Raman transition, ∆φ is the phase difference

between the two Raman beams, d is the dipole operator of the ion, E j is the j’th beam electric field

amplitude and ε̂ j is its polarization. The laser detuning from the transition to level |i〉, is given by ∆i and

h̄ is Planck’s constant . In this expression it is assumed that ∆i� γi, i.e. the detunings are much larger

than the line-widths of the intermediate levels. The transition of interest is between the Zeeman levels of

11



Figure 5: Relevant energy levels for stimulated Raman transitions

the 5S 1
2

state. The laser used is at approximately 405.5 nm. In this case the only relevant intermediate

states are the Zeeman levels of the 5P1
2

and the 5P3
2
. Let us look on the transition between |↓〉 and |↑〉

(the m = ±1
2 levels of the 5S 1

2
state, respectively). To make this transition the valance electron has to

gain energy, so the emitted photon must be red w.r.t. the absorbed photon. Raman transitions between

|↑〉 and |↓〉 require two beams with a frequency difference that matches the qubit level separation. In

the notation of Eq. (4) beam 1 has the higher frequency, i.e. E1 = Eb (blue beam) and E2 = Er (red

beam). Both beams can be decomposed to their different polarization components. We therefore write

E1ε̂1→ Ebε̂b = Eb (b-σ̂- +b0π̂ +b+σ̂+) (“blue beam”) and E2ε̂2→ Erε̂r = Er (r-σ̂- + r0π̂ + r+σ̂+) (“red

beam”) in (4). Rewriting Eq. (4) more specifically for the atomic energy levels involved we have

ΩR =
ei∆φ

4h̄2 ∑
J= 1

2 , 3
2

m=J

∑
m=−J

〈↑ |d ·Erε̂r|5PJ,m〉〈5PJ,m |d ·Ebε̂b| ↓〉
∆J,m

(5)

the sum is a coherent addition of the processes described graphically in figure 6. The matrix elements in

(5) are evaluated with the Wigner-Eckart theorem, for details see A.1 in the appendix [22, 23]. We define

the reduced matrix element µ = |〈J′ ‖er‖J〉|=
√

3πε0h̄ c3

ω3
0
γ and the coupling constants gb,r = µEb,r

2h̄ . With

12



(a) (b)

(c) (d)

Figure 6: Clebsh-Gordan coefficient for relevant transitions

these we get the Rabi frequency (taking ωS1/2→P3/2
≈ ωS1/2→P1/2

= ω0 in µ)

ΩR =

= ei∆φ gbgr

b0r−

√
1
3

(
−
√

2
3

)
∆

+b+r0

√
2
3

(
−
√

1
3

)
∆

+b0r−

√
1
3

√
2
3

∆−ω f
+b+r0

√
2
3

√
1
3

∆−ω f

=

=−ei∆φ

√
2

3
gbgr (b0r−+b+r0)

ω f

∆
(
∆−ω f

) (6)
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Assuming a Gaussian beam with waist w0 and using the relation E2 = 4
ε0c

P0
πw2

0
we finally get the Rabi

frequency in terms of available laser power, beam waist and the detuning from the P3
2

energy level:

ΩR =−ei∆φ
√

2
c2

ω3
0

γ
1
h̄

P0

w2
0
(b0r−+b+r0)

ω f

∆
(
∆−ω f

) (7)

Using P0 = h̄ω0Γph in Eq. (7) or g2 = 3γ
λ 2

(2πw0)2 Γph in Eq. (6) we can write ΩR in terms of the laser beam

photon arrival rate Γph,

ΩR =−ei∆φ
√

2γ
λ 2

(2πw0)2 Γph
ω f

∆
(
∆−ω f

) (b0r−+b+r0) . (8)

2.8 Decoherence

Decoherence of the ion qubit can occur during a gating operation or during storage. Here we refer to

the former as “gating errors” and to the latter as “memory dephasing”. Memory dephasing is mainly

caused by fluctuations of the magnetic field. A detailed treatment of this effect can be found in [14]. The

emphasis of this thesis is on minimizing gating errors. In his 1975 paper [24], Mollow showed that the

effect of a coherent state field on an atom is equivalent to that of a classical field plus a quantum field

initially in the vacuum state. Accordingly, the error in gating operations can be thought of as comprised

of two parts - the fluctuations of the classical c-number (i.e. classical intensity and phase noises of the

laser) and the second part that originates from the quantum nature of the electromagnetic field - i.e., the

spontaneous scattering of photons [18]. An analysis of these two contribution follows.

2.8.1 Classical (technical) noises:

Technical noises are defined as all the noises present in the classical parameters of the laser interacting

with the ion. These noises are ideally correlated between the ion and an independent measurement of the

noisy parameter. Examples for this class of noises are fluctuations in the laser intensity resulting from

e.g. unstable coupling to an optical fiber or a noisy drive current. In principle, since the noise in the Rabi

frequency and that recorded on an independent detector are correlated, these noises can be compensated

and effectively removed from the beam. An analysis of how these noises affect the fidelity follows.

Let us suppose that the gating operation is a simple rotation of the state vector with an angle θ0 around

the x̂ axis of the Bloch sphere. An error in the amplitude of the Rabi frequency will result in an error in
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the rotation angle: θ = θ0 +∆θ . The phase of the Rabi frequency, i.e. the direction of the Rabi vector in

the equatorial plane is derived from the phase of the local RF oscillator that is assumed to be very stable.

Hence errors in the phase, are expected to be small and are neglected. Phase errors due to an optical path

difference are not an issue since the two Raman beams are co-propagating. The final state will therefore

differ from the ideal target state and we write ρ̂ f inal =
∣∣ψ f inal

〉〈
ψ f inal

∣∣. The fidelity is

F =
〈
ψideal|ψ f inal

〉〈
ψ f inal|ψideal

〉
= cos2(

∆θ

2
)

∆θ� π

2−→ 1− (∆θ)2

4
=⇒ εc = 1−F =

(
∆θ

2

)2

The error in the rotation angle is ∆θ =
´ tπ/2
−tπ/2

dt∆Ω . The mean square error (MSE) for the case

where the correlation time for the noise, τc is much longer than the pulse duration, τc� tπ , is
〈
∆θ 2〉 =

t2
π

〈
∆Ω2〉, since ∆Ω(t) remains approximately constant within time tπ . This is simply the MSE of the

Rabi frequency, multiplied by the square of the π time. The π time is inversely proportional to the

Rabi frequency, tπ = π

2ΩR
, so finally the classical errors are proportional to the relative noise of the Rabi

frequency:

εc,π =
(

π

4

)2
〈
∆Ω2〉
Ω2

R
. (9)

When the condition τc � tπ does not hold (the noise does not change slow enough) we have to

perform the double integral:

〈
∆θ

2〉=

tπ/2ˆ

−tπ/2

dt

tπ/2ˆ

−tπ/2

dt ′
〈
∆Ω(t)∆Ω(t ′)

〉
(10)

After a change of variables, t ′ = t + τ , we recognize RΩ(τ) = 〈∆Ω(t)∆Ω(t + τ)〉 as the auto-correlation

function of the noise. The auto-correlation R(τ) is related to S(ω), the noise power spectrum density, by

a Fourier relation [25]:

RΩ(τ) =
1

2π

ˆ
∞

−∞

dωeiωτSΩ(ω) =
ˆ

∞

−∞

d f ei2π f τSΩ( f ). (11)

Combining Eq. (10) and Eq. (11) using a general pulse shape w(t) (for a π pulse
´

∞

−∞
dt 〈ΩR〉w(t) = π

2 )

with a Fourier transform Fw(t) = W (ω), we get for the RMS error

〈
∆θ

2〉=
ˆ

∞

−∞

d f |W ( f )|2 SΩ( f ). (12)
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Assuming a “simple” window- i.e. a pulse that rises monotonously and then falls monotonously, the

function W (ω) is centered about DC and therefore Eq. (12) represents filtering out of high frequency

components of the noise. As an example, for the simple case of rectangular pulse of duration tπ :

〈
∆θ

2〉= t2
π

ˆ
∞

−∞

d f
(

sin(2π f tπ
2 )

2π
tπ
2

)2

SΩ(ω) =
π2

4

ˆ
∞

−∞

d f sinc2(π f tπ)
SΩ( f )

Ω2
R

(13)

Note that if we know the details of the power spectrum of the classical noises, and if significant power of

the noise is concentrated in a narrow band of frequencies, then it is advantageous to design such a pulse

w(t) to reject the noise in these frequencies [26].

2.8.2 Spontaneous Scattering:

The other source of errors is quantum in nature and results in spontaneous scattering of photons. Only

Raman scattering may induce errors since it changes the internal state of the ion and so we write ρ̂ f inal =

(1−PRaman) |ψideal〉〈ψideal|+ ρ̂error. Here ρ̂error = ∑i wi |i〉〈i| is the erroneous part of ρ̂ f inal with PRaman =

∑i wi, the probability for a Raman scattering event to occur. Some Raman scattering events may project

the ion to a state which is not orthogonal to the ideal final state and therefore the term ρ̂error may contain

some positive contribution to the fidelity, which we neglect [18].

The total rate for the off-resonant scattering of photons from the Raman beams is given by the sum

of probabilities Pi to occupy each intermediate state multiplied with it’s decay rate γi [18, 19]:

Γtotal = ∑
i

Piγi = ∑
i

∑
q={r,b}

∑
ms={↑,↓}

Pmsγi
∣∣〈ms

∣∣d ·Eqε̂q
∣∣ i〉∣∣2

∆2
i

. (14)

With γi = γ and gb = gr = g and neglecting the qubit separation ωm w.r.t. the detuning (ωm∼ few MHz, ∆∼

few THz), we get

Γtotal = γg2

[
P↓

(
1
3e2

0 + 2
3e2

+

∆2 +
2
3e2

0 + 1
3e2

+

(∆−ω f )2

)
+P↑

(
1
3e2

0 + 2
3e2
−

∆2 +
2
3e2

0 + 1
3e2
−

(∆−ω f )2

)]
=

= γ
g2

3

[(
P↓+P↑

)
e2

0

(
1

∆2 +
2

(∆−ω f )2

)
+
(
P↓e2

+ +P↑e2
−
)( 2

∆2 +
1

(∆−ω f )2

)]
=

= γ
g2

3

[
e2

0

(
1

∆2 +
2

(∆−ω f )2

)
+

(
e2
+ + e2

−
)

2

(
2

∆2 +
1

(∆−ω f )2

)]
, (15)

where the last step assumes that P↑ = P↓ = 1
2 , a reasonable assumption during a π pulse from |↓〉 to |↑〉.
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Another useful simplification is to take e2
0 = 1

2 , e2
± = 1/4, e.g. a linearly polarized beam with a~k vector

perpendicular to the quantization axis and a polarization at 45 degrees to the quantization axis. This is

the configuration used in the experiment. With that we get for the total scattering rate

Γtotal = γ
g2

3

(
1

∆2 +
5/4

(∆−ω f )2

)
. (16)

The total spontaneous scattering rate includes contributions from both Rayleigh and Raman scattering

processes, but only Raman scattering causes errors and reduces the fidelity [18]. The rate for the different

scattering processes is calculated from the Kramer-Heisenberg formula [27],

Γ
p
i→ f = γg2

p

∣∣∣∣∣∣a
(p,J=1/2)
i→ f

∆
+

a(p,J=3/2)
i→ f

∆−ω f

∣∣∣∣∣∣
2

, (17)

here gp = g · ep for p = 0,+,− and aJ
i→ f = ∑q ∑e∈J

〈 f |d·σ̂q|e〉〈e|d·σ̂k|i〉
µ2 , where aJ

i→ f is a sum over pair

products of appropriate Clebsch-Gordan coefficients (the matrix elements are normalized by the reduced

matrix elements). Raman scattering events are inelastic with i 6= f . Rayleigh scattering events are elastic

with i = f . The total rate for Raman scattering from |↓〉 to |↑〉 is given by the sum over polarizations:

Γtot
↓→↑ = ∑k Γp

↓→↑ . This is an in-coherent sum over p since in principle the scattered photon polarization and

wavelength can be detected, but are averaged on. Writing the |↓〉 → |↑〉 Raman scattering rate explicitly

we get

Γ
tot
↓→↑ = γ

g2
0

∣∣∣∣∣∣
−
√

2
3

√
1
3

∆
+

√
1
3

√
2
3

∆−ω f

∣∣∣∣∣∣
2

+g2
+

∣∣∣∣∣∣
−
√

1
3

√
2
3

∆
+

√
2
3

√
1
3

∆−ω f

∣∣∣∣∣∣
2=

=
2
9

γ(g2
0 +g2

+)
∣∣∣∣ ω f

∆(∆−ω f )

∣∣∣∣2 .

We assume equal population in the |↑〉 and |↓〉 states and get for the total Raman scattering rate,

Γ
tot
Raman =

1
2

Γ
tot
↓→↑+

1
2

Γ
tot
↑→↓ =

1
9

γ(2g2
0 +g2

+ +g2
−)
∣∣∣∣ ω f

∆(∆−ω f )

∣∣∣∣2 =

=
1
9

γg2(2e2
0 + e2

+ + e2
−)
∣∣∣∣ ω f

∆(∆−ω f )

∣∣∣∣2 =
γg2

6

∣∣∣∣ ω f

∆(∆−ω f )

∣∣∣∣2 , (18)

where in the last step we assume e2
0 = 1

2 , e2
± = 1

4 . The rate for Rayleigh scatterings is similarly calculated
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to be

Γ
tot
Rayleigh =

1
2

Γ
tot
↓→↓+

1
2

Γ
tot
↑→↑ =

=
γ

2

2g2
0

∣∣∣∣∣∣
√

1
3

√
1
3

∆
+

√
2
3

√
2
3

∆−ω f

∣∣∣∣∣∣
2

+(g2
+ +g2

−)

∣∣∣∣∣∣
√

2
3

√
2
3

∆
+

√
1
3

√
1
3

∆−ω f

∣∣∣∣∣∣
2=

=
γg2

2
1
9

(
2e2

0

∣∣∣∣ 3∆−ω f

∆(∆−ω f )

∣∣∣∣2 +(e2
+ + e2

−)
∣∣∣∣ 3∆−2ω f

∆(∆−ω f )

∣∣∣∣2
)

=

=
γg2

2
1
9

(∣∣∣∣ 3∆−ω f

∆(∆−ω f )

∣∣∣∣2 +
1
2

∣∣∣∣ 3∆−2ω f

∆(∆−ω f )

∣∣∣∣2
)

. (19)

The sum of the Raman and Rayleigh scattering rates calculated from the Kramers-Heisenberg formula is

of-course equal to the total scattering rate calculated earlier. The ratio of Raman to Rayleigh is

ΓRaman

ΓRayleigh
=

2ω2
f

9∆2 +3ω2
f −8ω f ∆

(20)

and for ∆�ω f reduces quadratically with ∆. We can also calculate the probability for a Raman scattering

event during a π gate. For this we have tπ = π

2|ΩR| and PRaman = tπΓRaman:

PRaman = εs =
π

2
1

2
√

2
1

b0r−+b+r0

γ

∆

∣∣∣∣ ω f

∆−ω f

∣∣∣∣ . (21)

PRaman is the total probability to Raman scatter a photon during a σx gate. However - this is only an upper

bound on the error since some Raman scattering events will return the qubit to the a state which isn’t

orthogonal to the state ideally obtained and these have some positive contribution to the fidelity. Some

scattering events transferr the ion to the 4D 5
2

or 4D 3
2

levels. These events occur with a branching ration

of f ≈ 1/14 and results in complete loss of coherence, and therefore an error εD, where εD = tπ f Γtot.

3 Experimental System and Methods

3.1 Linear Paul Trap

The trap we built is similar to the configuration of figure 3, it is made of tungsten needles (0.3mm and

0.2mm in diameter) held by alumina wafers with adequate holes. The trap is assembled in an octagonal
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shaped vacuum chamber with 6 available view-port windows for laser accessing and imaging. A pressure

is below 8×10−12 Torr and is achieved by a combined use of an ion pump, a Titanium sublimation pump

(TSP) and a non-evaporative getter pump. Strontium ions are created in the trap by photo-ionizing ther-

mally evaporated neutral Strontium atoms. A neutral strontium source is realized by resistively heating a

stainless steel tube containing solid strontium grains. A helical resonator (RF cavity) with Q≈ 70 is used

in order to obtain the necessary high voltage (200 V at 20 MHz) on the trap electrodes. We have measured

a secular harmonic frequency of ωr/2π = 2MHz in the radial direction and up to ωa/2π = 1Mhz in the

axial direction.

Figure 7: Ion trap.
Photo taken through one of the vacuum chamber view-ports. The trap electrodes are visible, together
with a strontium oven and the imaging system view-port, which is into the vacuum chamber in order to
maximize the solid angle of the objective.

3.2 Imaging System

All our planned experiments are based on the measurement of photons that are spontaneously scattered

by the ions. The direction of fluorescence collection is perpendicular to the magnetic field that defines

the quantization axis and the beams propagation direction. A 0.31 numerical aperture objective lens that

corrects for the view-port spherical aberrations collects the fluorescence light from the ion. A flipping

mirror switches between two possible measurements: either a diffraction limited imaging of the ions onto

a CCD camera, or single photon counting by two photomultiplier tubes (PMT) each on a different side

of a polarizing beam splitter (PBS) cube.
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Figure 8: Imaging System.
Photons are collected by a large numerical aperture objective (N.A.=0.31) and are either polarization
analyzed by a PBS and 2 counting PMTs or imaged on a EMCCD camera.

3.3 Lasers

Eight different lasers are needed to access all the relevant transitions of 88Sr and 88Sr+. They are listed

by their wavelengths and function in table 2.

Table 2: Lasers - listed by wavelength
Wavelength function

422 nm Doppler cooling and fluorescence detection on 5S 1
2
→ 5P 1

2
transition

408 nm Photon scattering on 5S 1
2
→ 5P 3

2
transition

461 nm A doubled 922 nm ECDL made by Toptica. Used for photo-ionization
405 nm (free running) Used for photo-ionization

405 nm (ECDL) Raman transitions between the 5S 1
2

qubit states
674 nm Electron shelving from 5S 1

2
to 4D 5

2

1092 nm Repumping from 4D 3
2

to 5P 1
2

1033 nm Repumping from 4D 5
2

to 5P 3
2

ECDL All the lasers used in the experiment are diode lasers. In general, diode lasers are relatively low

cost and offer good efficiency, stable operation, compact size and good noise characteristics. However,

free-running laser diodes emit a broad frequency spectrum and are prone to longitudinal mode-hops.

Even diodes that are sold as single mode diodes may exhibit mode-hopes with the slightest change of

temperature or drive current. Also, tuning the laser to an exact atomic transition wavelength in a stable

manner is impossible. Fortunately, stable single mode operation and tunability can be achieved by ex-

tending the diode laser internal cavity by additional frequency selective elements such as a diffraction
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Figure 9: Schematic diagram of the experimental system.
Diagram shows magnetic field direction relative to laser propagation and polarization directions. Beam
polarization is defined with respect to the quantizing magnetic field direction.

grating. A simplified schematic of this extended cavity laser is shown in figure 10a. The configuration

shown is called the “Littrow” configuration. A diffraction grating is used to reflect the laser beam back

into the laser diode and thus an extended cavity is closed between the grating and the back facet of the

diode. The grating acts as a spectral filter and efficiently reflects only a narrow band of wavelengths. The

spectral resolution of a diffraction grating is approximately given by ∆λ

λ
≈ λ

Nl
where Nl is the number of

lines illuminated by the beam. The frequency band can be selected by adjusting the angle of the grating

with respect to the laser beam. The free spectral range (FSR = c
2L , with L the length of the cavity and

c the speed of light) of the extended cavity is much smaller than that of the laser diode since it is much

longer than the internal cavity of the diode (typically ≈ few hundred µm). Ideally, as a result of mode

competition only one of the external cavity modes that enjoys the most gain will be selected by the laser.

The gain is a product of the internal mode structure, the gain profile, the grating wavelength selection

function and the external modes (see figure 10b). It is possible to tune the frequency of the laser by rotat-

ing the grating (to change the maximally reflected wavelength) or by changing the length of the external

cavity (to shift the modes of the cavity).

3.3.1 422 nm, Cooling and Detection

The 422 nm laser is a doubled diode laser manufactured by Toptica. The master laser is a 844 nm laser

that is doubled using a non-linear crystal. The doubling is done with high efficiency (≈ 10%) by placing

the crystal in a cavity and locking the cavity to the laser by the method of Pound-Drever-Hall. The

emission wavelength is locked to a Rubidium 87 line at 422 nm. By a lucky coincidence, the Rubidium

line is only 440 MHz red of the S 1
2
→ P1

2
transition of 88Sr+ used for Doppler cooling on the trapped ion

and for fluorescence detection.
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(a) Schematic of an ECDL in the Littrow
configuration. (b) Mode selection in ECDL.

Figure 10: Extended Cavity Diode Laser
graphics reprinted from http://www.toptica.com/products/itemlayer/32/BR-101-029-B-ProductCatalog-2008-04-SDL.pdf

(a) The output coupling of the laser is through the 0th order reflection from the grating, while the 1st order
mode diffraction is used for frequency selective optical feedback. (b) As a result of mode competition
only one of the external cavity modes that enjoys the most gain will be selected by the laser.

3.3.2 674 nm: Shelving

As mentioned in section 2.5 the detection scheme used must utilize a very narrow-band laser with line-

width smaller than 1 kHz that is tuned to the 5S 1
2
↔ 4D 5

2
transition. This is achieved by the method

of locking the laser to a very high finesse and stable cavity. We use an ultra low expansion glass (ULE)

cavity manufactured by ATF3 and designed by JILA [28]. This special cavity has an expansion coefficient

of < 10−8/◦C, at room temperature and finesse of about 100,000. In order to take advantage of these

qualities the cavity must be placed in a vacuum environment and isolated both thermally and acoustically.

3.3.3 1092 nm, 1033 nm: Re-pumps

These lasers are used to repump the ions from the D states as described in section 2.3.

3.3.4 405 nm,461 nm: Photo-ionization

The ionization of the neutral Strontium is done by two photon ionization. First a 461 nm laser (which

is a doubled 921 nm DL) transfers the ion to 5s5p1P1 level. Then a free-running 405 nm diode laser

transfers it to the auto-ionizing level 5p21D2. This method of ionization is more favorable than electron

bombardment due to its larger cross-section and since only Sr is ionized, while electron bombardment

3http://www.atfilminc.com/
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Figure 11: The S 1
2
→ P1

2
transition resonance as measured with the 422 nm laser.

The measurement shows fluorescence from the ion as the frequency of the 422 nm laser is scanned across
the resonance. The minimum in the fluorescence is due to dark resonance with the repumper laser and
it occurs at the repumper detuning. The flourecence spectrum is asymmetric with respect to positive and
negative detuning: when red detuned the laser cools the ion while blue detuned laser heats it.

will ionize everything in their path, increasing the probability something other than Sr is trapped. This

method also virtually eliminates charging of the trap electrodes and nearby structures that will cause stray

electric fields and excess micro-motion [29].

Figure 12: Photo-ionization- relevant levels of Sr
reprinted from Berkeland et-al, http://arxiv.org/PS_cache/quant-ph/pdf/0607/0607055v1.pdf

3.3.5 405.5 nm: Raman Transition

The design and construction of this laser is the focus of this thesis. The laser was built in-house from a

violet Ga-Ni LD in the Littrow-ECDL configuration. The construction of this laser and the methods used

to stabilize the Raman transition Rabi frequency are detailed in subsection 3.4.
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3.4 Stabilized Raman Laser

The following section describes the construction of the laser, the methods used for passive stabilization of

its output, the modulation of the laser that creates the sidebands needed for the Raman transition and the

methods used for measuring and stabilizing the Rabi frequency of the Raman transition. The demands for

stability follow from the desired fidelity. To achieve an error of 10−4 both the detuning and the intensity

must be stabilized to 0.5%. While this level of stability is relatively easy to achieve for the detuning

(0.5% of ∆−ω f is ≈ 22GHz), it is a challenge to stabilize the intensity to such a level. A schematic

diagram of the laser system is given in figure 13.

Figure 13: Raman-laser system, optical setup
The beam emerging from the ECDL is modematched by lenses L1 and L2 to the single mode optical
fiber. Transmission efficiency through the fiber is close to 40%. The Fabre-Perot (FP) cavity is used to
monitor the laser to verify that it is operating as single longitudinal mode. At the fiber output the laser is
modulated by an EOM. The beam then enters the vacuum chamber. A pick-off window is used to sample
the beam. The sample is measured by two photo detectors, D1 and D2, one is used for the servo control
and the other is an independent sensor.

3.4.1 ECDL

The laser is an ECDL built in the Littrow configuration. The diode used is a blue-violet laser diode

bought from Toptica. It is similar to laser diode used in blu-ray format optical storage devices. Figure 14

shows a photo of the laser.

The design is a standard one and almost identical to the one described in [30]. A few minor improve-

ments on the basic design are:
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Figure 14: ECDL photo

1. The external cavity base-plate was insulated from the heat-sink by means of a Teflon plate. A
thermo electric cooler (TEC) for temperature control of the base-plate and laser diode was attached
to the heat-sink and the base-plate through a window in the Teflon insulation plate. The Teflon
plate helps to prevent thermal fluctuations transferred from the heat-sink to the laser. The only heat
conduction path is through the TEC, and is controlled by a servo circuit.

2. The entire apparatus was enclosed in an air-tight perspex box. Sealing the laser from the external
atmosphere prevents fluctuations in the density of intra-cavity air causing fluctuations in the optical
length of the external cavity - and hence frequency fluctuations. Before sealing the laser a jump
of the laser frequency of about 10 MHz was observed each time the lab door was opened - see
figure 15b (the lab is over-pressured with respect to the building). These jumps have completely
disappeared once the laser was sealed.

3. The perspex box was covered with Polystyrene foam casing to further improve thermal insulation.
The effect of insulation is apparent in sub-figure 15a where the wavelength of the laser during a
removal and reinstalling of the casing was measured.

With the above modifications very good wavelength stability of the ECDL was obtained. Measure-

ments made with a weak 5mW diode (not the diode finally used in the experiments) and strong (70%)

optical feedback from a 2400 lines/mm holographic grating showed drifts smaller than 300MHz over a

period longer than 22 hours as shown in figure 15c. For the final version of the laser a higher power

LD with maximal output of 60 mW was used. Using strong optical feedback with this diode resulted the
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Figure 15: Wavelength meter measurements, 5 mW ECDL, 70% optical feed-back
(a) Thermal insulation removed just before 0.2 hours and and replaced just after 0.2 hours. (b) Red circle
shows where lab door was opened and then closed. (c) wavelength drifts over a 22hour period.

phenomenon of coherence collapse [31]: The laser, while tuneable with rotation of the grating, showed

a very wide-band spectral feature (more than 1 GHz, the FSR of the Fabry-Perot cavity used in analy-

sis). Moreover, interference fringes from the beam were of diminished visibility. As a solution a much

weaker optical feedback was used in the final version of the laser. The grating used for the weak feed-

back on the high power laser is a holographic grating of 1200 lines/mm [Thorlabs part GH13-12V] and

the second order of diffraction obeys the Littrow condition. Using the second order allowed for very

weak optical feedback into the diode (feedback is ~4 %) while keeping frequency selectivity identical to

a 2400 lines/mm grating. This relatively weak optical feedback degraded the stability of the laser, com-

pared with the stability obtained with the low power strong feedback version used for the results in figure

15. However, there is no reason to believe that the improvements made to the stability by minimizing

environmental effects on the laser do not contribute to the more powerful laser we now use.
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3.4.2 Modulation, Creation of Sidebands

The laser is coupled to a polarization maintaining single mode optical fiber. At the output of the fiber

the laser beam passes through an electro optical modulator (EOM) with the direction of polarization at

45 degrees to the axes of the EOM. The performance of an electro-optic modulator can be understood

very simply as that of a retardation plate with electrically adjustable retardation4. In this configuration

changes in the voltage applied to the EOM causes changes to the polarization of the output. The laser is

modulated at about 3 MHz and sidebands at multiples of the modulation frequency are created to induce

stimulated Raman transitions on the ion. To reach the relatively high voltage amplitude required (Vλ/2

of the EOM is close to 120 V) a simple serial LC circuit with Q ≈ 7, FWHM of 400 kHz and resonant

frequency of 3 MHz is used where the capacitance of 80 pF is entirely that of the EOM crystal and an

inductor of 33 µH.

The initial (unmodulated) laser field is described by a classical electric field oscillating with angular

frequency ω0 = 2πc
λlaser

, ~E(t) =~εE0 cos(ω0t +kz+φ), we choose kz+φ = 0 at the ion. The beam is passed

through an EOM with axes x̂, ŷ. The axes are aligned such that ε̂ = x̂+ŷ√
2

. In the basis of the EOM axes we

can write:

~Ein(t) =
x̂√
2

E0 cos(ω0t)+
ŷ√
2

E0 cos(ω0t) (22)

The field emerging from the modulator has a relative phase between the two polarizations, that depends

on the applied voltage,

~Eout(t) =
x̂√
2

E0 cos(ω0t +φx)+
ŷ√
2

E0 cos(ω0t +φy). (23)

Assuming the x̂ axis is parallel to the magnetic field applied at the position of the ion, ~B||x̂, we can write

x̂ = π̂ and ŷ = i σ̂++σ̂−√
2

. The phase of each of the polarizations components x̂, ŷ is

φx,y = φbx,y +φdcx,y +βx,y sin(ωmt +φr f ), (24)

where φb is the phase retardation caused by the (thermally induced) static birefringence in the EOM,

φdc = π
Vdc
Vλ/2

is phase induced by the DC component of the applied voltage and β = π
V0

Vλ/2
. The applied

RF voltage amplitude is V0 and Vλ/2 is the half wave voltage for the EOM. The total applied voltage is

V (t) = Vdc +V0 sin(ωmt + φr f ). The static birefringent phase can be added to the dc term in the voltage

4http://www.linos.com/pages/home/shop-optik/elektro-optik/lasermodulatoren/
technische-erlaeuterungen/
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induced birefringence so φb +φdc→ φb. In these terms the field is

~Eout(t) =
π̂√
2

E0

∞

∑
n=−∞

Jn(βx)cos
(
(ω0 +nωm) t +φbx +nφr f

)
+ (25)

+ i
σ̂+ + σ̂−

2
E0

∞

∑
n=−∞

Jn(βy)cos
(
(ω0 +nωm) t +φby +nφr f

)
, (26)

where we use the following identity

cos(ω0t +φb +β sin(ωmt +φr f )) = Re{eiω0t+iφb+iβ sin(ωmt+φr f )}=

= Re{eiω0teiφb
∞

∑
n=−∞

Jn(β )ein(ωmt+φr f )}=
∞

∑
n=∞

Jn(β )cos((ω0 +nωm)t +φb +nφr f ). (27)

We now calculate the Rabi frequency for stimulated Raman transitions, with the modulation scheme

presented above. Using Eq. (6) and adding contributions from all the sidebands, we get:

ΩR =−ieiφr f

√
2

3
gbgr

ω f

∆
(
∆−ω f

) ∞

∑
n=−∞

1
2
√

2

[
Jn(βx)Jn−1(βy)ei(φbx−φby) + Jn(βy)Jn−1(βx)ei(φby−φbx)

]
. (28)

Using the Bessel function identities Jn(x+ y) = ∑
k=∞
k=−∞

Jk(x)Jn−k(y) and Jn(−x) = (−1)nJn(x), we get

Jn(x− y) =
∞

∑
k=−∞

Jk(x)Jk−n(y). (29)

Applying to the above ∑
n=∞
n=−∞ Jn(βy)Jn−1(βy) = J1(βx−βy) we finally reach,

ΩR = sin(φbx−φby)
gbgr

3
ω f

∆
(
∆−ω f

)J1(βx−βy)eiφr f . (30)

βx,βy accounts for different modulation indices for the x,y axes. For the case where only the index of one

of the axes is modulated we take β ≡ βx−βy and

ΩR = sin(φbx−φby)
gbgr

3
ω f

∆
(
∆−ω f

)J1(β )eiφr f . (31)

With the Rabi frequency calculated here we get for the probability to scatter a Raman photon during a π
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pulse (assuming we set ∆φb = 0 with proper choice of φdc):

PRaman =
π

2
1
2

1
J1(β )

γ

∆

∣∣∣∣ ω f

∆−ω f

∣∣∣∣ , (32)

which depends on the fraction of light in the first order sidebands through the modulation index β .

symbol parameter calculated value
ΩR Rabi Frequency 2π×13kHz
tπ π pulse time 20 µs

Γtotal Total scattering rate 1.44sec−1

ΓRaman Raman scattering rate 0.4sec−1

εs Spontaneous scattering error 8×10−6

ΓRaman
ΓRayleigh

Raman to Rayleigh ratio 0.33

Table 3: Values of different rates calculated from theory.
Here we assume a Gaussian laser beam with a waist of 20µm, a wavelength of 405.5 nm, a total power of
2 mW and J1(β ) =

√
2J1(βmax).

3.4.3 Indirect Measurement of the Rabi Frequency

The Rabi frequency in Eq. (31) can be written in terms of the laser intensity I0 , the static phase φb, the

modulation index β and the detuning ∆,

ΩR =
c2

ω3
0

γ
ω f

∆
(
∆−ω f

) π

2h̄
sin(φb)I0J1(β )eiφr f . (33)

Since we wish to keep the overall Rabi frequency stable, not just the intensity, a simple intensity noise-

eater will not be enough on its own because it will not compensate for fluctuation in β and φb. However,

if we are able to measure a signal proportional to the Rabi frequency continuously, a direct stabilization

of the Rabi frequency is possible. This indeed can be done by the following method; We place a polarizer

parallel to the incoming beam after the EOM. Using Eq. (23) the resulting field after the polarizer is,

~EPBS,|| =
(

~Eout ·
x̂+ ŷ√

2

)
x̂+ ŷ√

2
=
[

1√
2

E0 cos(ω0t +φx)+
1√
2

E0 cos(ω0t +φy)
]

x̂+ ŷ√
2

. (34)
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The intensity is proportional to |E|2, averaged over t > 2π

ω0
,

~EPBS,|| ·~EPBS,|| =
1
2

E2
0
[
cos2(ω0t +φx)+ cos2(ω0t +φy)+2cos(ω0t +φx)cos(ω0t +φy)

]
⇓

I ∼
1
2

E2
0 [1+ cos(φx +φy)] . (35)

With φx,y defined above we get that the intensity after a PBS,

I ∼
1
2

E2
0

[
1+ cos(φb +φdc)

(
J0(β )+2

∞

∑
n=1

J2n(β )cos(2n(ωmt +φr f ))

)

+2sin(φb +φdc)
∞

∑
n=0

J2n+1(β )sin((2n+1)(ωmt +φr f ))

]
. (36)

The signal measured by a photo-detector is proportional to the intensity. This signal is multiplied (mixed)

by a local oscillator Asin(ωmt +φLO) locked to the oscillator driving the EOM with relative φLO and and

then low pass filtered. The filtered mixed down signal is proportional to the Rabi frequency,

V = K× I0 sin(φb +φdc)J1(β )sin(φLO), (37)

with K including the quantum efficiency of the photo-detector, the trans-impedance gain and some con-

version factor of the mixer.
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3.4.4 Feedback
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Figure 16: Raman laser - feedback scheme.
An EOM is modulating the beam to create sidebands. A pick-off window then samples the beam, before
entering the vacuum chamber. The sampled beam is measured by D1, the servo system photo detector
and D2, an independent detector. The voltage output of D1 is mixed down by a LO phase-locked to
the modulation oscillator. An error signal is generated and passed to the FPGA card, which generate a
control voltage passed to the external AM input of the modulating oscillator.

We aim to minimize the noise in the Rabi frequency ΩR. The noise results from several factors. The main

source is intensity noise caused by fluctuations of the coupling efficiency to the optical fiber. Other causes

are thermally induced drifts of φb, the static birefringent phase of the EOM, and frequency drifts of the

laser (to a smaller extent). The measured signal V contains also noises from the detection electronics and

shot noise from the photo-detector. These extra noises that are not correlated to the noises of the “real”

Rabi frequency seen by the ions, limits the best achievable performance of the system. Ideally, the only

limiting factor should be the shot noise in the detected signal. For this case the system will be quantum

noise limited. We show in figures 20 and 17 that the performance of our stabilization system is close to

that fundamental limit. Measurements of the noise spectrum in V shows that all the power of the noise is

concentrated in the low frequency band (few hundred Hz). At higher frequencies the noise flattens out.

Measurements of the scaling of the noise power with the intensity of the signal revealed the spectraly flat

noise at higher frequencies to be shot noise, together with some intensity independent noise (assumed to

be electronic noise from the detector circuit). With these results the feedback system is designed to have
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a significant gain in frequencies where the noise is acoustic and is correlated between the detector and

the ion. The gain falls fast at higher frequencies so that the amount of noise that is injected into the laser

beam is minimal [32].

The base-band (i.e. centered around DC) signal V is amplified and then subtracted from a reference

voltage provided by the field programmable gate array (FPGA) card that is used for implementing the

control system . The difference signal is then amplified once more and passes to the analog to digital

converter (ADC) of the FPGA card. Passing the amplified error signal to the FPGA, instead of the raw

measurement, improves the signal to digital quantization noise after the analog to digital conversion. Care

was taken in order not to create ground loops and high impedance differential amplifiers were used for

electrical separation of the signals to and from the FPGA and those originating at the optical setup. For

more details refer to section 3.4.5. The signal was processed digitally and a control voltage is produced

by the FPGA digital to analog converter (DAC) which is then applied as an input to the signal generator

external amplitude modulation port, changing the amplitude of the RF signal modulating the laser beam.

By constantly changing the amplitude of the modulation it is possible to counteract amplitude noises in

the Rabi frequency. Formally, changing the amplitude of the modulating signal is equivalent to changing

the modulation index β . Taking β → β0 + ∆β , ΩR → 〈ΩR〉+ ∆ΩR to account for the control and the

noise we have to first order in β

ΩR ∼ I0 sin(φopt)J1(β0)+ I0 sin(φopt)J′1(β0)∆β +∆ΩR =

= 〈ΩR〉
(

1+
J′1(β0)
J1(β0)

∆β

)
+∆ΩR. (38)

Ideally we would like ∆β = − ∆ΩR
〈ΩR〉 ×

J1(β0)
J′1(β0)

, then the noise would be canceled to first order. We assume

that the noise is small enough in amplitude so that the control action ∆β is also small and contributions

from higher orders of J1(β ) are negligible. This also implies that it is desirable to choose β0 such that

the gain J′1(β0)
J1(β0)

and the normalized second derivative J′′1 (β0)
J1(β0)

is small. However, we would also like a high

value of ΩR ∼ J1(β0). These two constraints are contradictory since working near the maximum of J1 (to

maximize the Rabi frequency) implies small values of its first derivative. We make the compromise of

working close to 70% of the maximal value. In applying the control over the measured Rabi frequency

rather than on the laser intensity alone we gain from two aspects. First, it is better conceptually to control

a variable which is as similar as possible to the actual Rabi frequency. Since the Rabi frequency is a

multiplication of several factors besides the intensity, fluctuations in those factors are not compensated
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when stabilizing the intensity alone. A second reason is that in looking at a demodulated signal we are

getting away from low frequency electrical noises in the electronics (“1/f noises”). Thus we improve the

signal to noise ratio in the measurement and consequently improve the feedback. This effect is apparent in

figure 17 that shows measurement of the modulated-then-demodulated signal together with measurement

of the intensity noises without the electro-optic modulator present in the beam path (referred in the figure

as “noEOM”). Here RIN is relative intensity noise with respect to the shot-noise. The shot-noise level

was measured by subtracting the electronic back-ground (measured with the beam blocked) from the

signal and taking the asymptote as the shot noise.
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(a) Background noise density.
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(b) Excess noise normalized to shot-noise.
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(c) Contribution from both excess and background
noises.

Figure 17: Noise spectrum, both with and without demodulation
(a) Base-band measurement exhibits much greater background noise, compared with the demodulated
signal. (b) Base-band measurement exhibits more excess noise. (c) Base-band shows stronger fluctua-
tions over a greater bandwidth.

The most of the feedback loop is implemented digitally with a FPGA. We use a method outlined

in [33] where the feedback is divided into two parallel paths, one responsible for maintaining a stable

operation (very low frequency noise rejection) and the second is more wide-band, allowing for correction
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of faster noise components. This is really just a P-I controller (Proportional - Integral), but with gain role-

off also on the proportional signal path. This scheme worked well and allows for very stable operation

(slow drifts are eliminated) and noise suppression up to about 2 kHz. The digital filters are simple,

single pole infinite impulse response (IIR) systems, which are described by the difference equation (39),

connecting the input at the discrete time-step n, x[n] to the output y[n],

y[n] = ay[n−1]+ (1−a)x[n]. (39)

Equation (39) is implemented in a straight-forward fashion in the FPGA (figure 18b). The frequency

response is obtained by applying the z -transform X(z) = ∑
∞
n=0 X [n]z−n, on the difference equation and

evaluating it for z = iω[34]. We get

H(eiω) =
Y (eiω)
X(eiω)

=
1−a

1−ae−iω , (40)

where ω = 2π
f
fs

is the discrete frequency. Approximating H(iω) for frequencies f � fs we get H(iω)≈
1−a

1−a(1−iω) = 1
1+i ω

1−a
, the frequency response of an analog single-poled low-pass filter, with corner fre-

quency ωc = 1−a. A screen-shot of the control system Labview program is in figure 18a.

3.4.5 Electronics

In order to fully take advantage of the FPGA capabilities, some signal conditioning is needed prior to

the A/D sampling done by the FPGA card. The ADC used has 16 bits of resolution and full scale of

20 volts. This implies a voltage resolution of 0.3 mV. With the active feedback the noise remaining in

the signal cannot be controlled to better than 0.3mV in amplitude, even under ideal conditions. We

can effectively lower this limit by amplifying the signal before A/D conversion, but with a demodulated

signal of approximately 500mV the best we can do is a gain factor of 20. But, if the error signal is

generated before the analog to digital conversion then the feedback will have the effect of bringing it to a

mean value of 0 V. It is then possible to amplify the signal so that the noise will be measured with greater

resolution. This is done by generating a reference voltage in the FPGA using it’s DAC (digital to analog

converter) and using an analog circuit for the subtraction. The resulting signal is then amplified by a

factor of approximately 80. This procedure improved the resolution of the measurement to about 4 µV .

Another problem encountered is ground loops caused by the fact that the computer hosting the FPGA

is placed fairly far away from the optical setup. This in turn results 50Hz (and multiples) noise on the
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(a) FPGA target VI

(b) Digital filter

Figure 18: Labview VI programs- digital implementation of control

signals. This problem was largely solved by introducing a high impedance differential amplifier on the

reference signal produced by the FPGA. Moreover, the long cables were vulnerable to RF noises picked

up from a noisy environment (AOM and EOM driven by amplified RF sources, the RF feeding the ion

trap, etc.). These noises alone should not present a problem (since they are way outside the bandwidth of

interest) but they can cause some dc bias in the electronics due to rectification5. Introduction of simple

passive differential and common mode filters at the input of the amplifier took care of most of this effect.

Implementing the control digitally requires sampling the signal. To avoid aliasing of high frequency

noises to the low frequency base-band, an anti-aliasing filter is placed at the output of the amplifier,

before the ADC.

The open loop (FPGA output to FPGA input through modulator and detector) transfer function is

dominated by a single pole at 25 kHz. The pole is at a frequency much higher than the dominant compo-

nents of noise we are trying to eliminate, so it does not affect the performance of the servo system. This

single pole behavior is caused by the frequency response of the external AM input of the signal generator.

5 http://www.analog.com/library/analogDialogue/Anniversary/14.html
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4 Results

4.1 Performance of the Rabi frequency Servo Control System

4.1.1 Noise Characteristics
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(a) Vnoise vs. Vdc for intensity signal (no modulation or de-
modulation)
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(b) Vnoise vs. Vdc for demodulated signal

Figure 19: Dependence of noise floor on detected beam power.
Noise density is linear with beam intensity - signature of shot noise. Moreover, the fitted linear slope
matches the calculation for shot noise density.

The noise consists mostly of very low frequency fluctuations where most of the energy of the noise is

contained below 1 Hz. At higher frequencies the noise is dominated by the noise floor of the detector and

the photo-current shot-noise, which are both white in the BW concerned. Figure 19 shows measurement

of the noise density in a band dominated by white noises plotted against beam power measured by the

same photo detector. The measurements are fitted to a linear function and the slope was compared

with that expected from shot-noise. The expected shot noise noise density is calculated from the shot

noise formula [35]. Vsn,rms =
√

2BeIdcGtrans-imp =
√

2BeVdcGtrans-imp where B is the bandwidth of the

measurement, e is the electron charge, Idc is the photo current at the photo diode (proportional to the

beam intensity) and Gtrans-imp is the trans-impedance gain of the amplifier following the photo diode. For

the shot noise power density we get

Psn =
V 2

sn,rms

B
= 2eGtrans-impVdc (41)

This relation is true for the noise density in an unmodulated beam but also for the noise in the modulated-

then-demodulated signal, provided that Gtrans-imp is calibrated to include voltage conversion factors from
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the mixer, as is justified in the appendix A.2. From the measured noise density it is apparent that it

is linear with the beam intensity. Moreover, the proportionality constant extracted from the fitted lin-

ear slope, (24.8± 0.4nVrmsHz−1 for unmodulated beam and 80.0± 1.6nVrmsHz−1 for the modulated-

then-demodulated beam), is in good agreement with what expected from Eq. 41 (25.6nVrmsHz−1 and

82.6nVrmsHz−1 accordingly). The small discrepancies are attributed to the poor signal to noise in the

measurement (shot noise is of the order of detector electronic noise) and to the nonlinearities in the de-

tection electronics. The performance of the Rabi frequency stabilization system was characterized using

the experimental setup depicted in figure 16. The modulated laser beam was measured using two fast

photo-detectors (Newfocus 125 MHz Si photo-detector 1801-FS), one used in the feedback loop (“in-

loop” detector) that provides the signal for the feedback system and a second independent detector used

to assess the performance of the feedback system. The signal from both detectors is mixed down and low

pass filtered. The spectrum of both signals is measured using a FFT spectrum analyzer (SR760). Some

measurements are given in figure 20.
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4.1.2 Performance of the Feedback Loop
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(b) 12kHz span.
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(c) 390Hz span.

Figure 20: Noise spectra for different span widths, independent sensor
BG: Back ground measurement where light is blocked. FB-ON,FB-OFF: feedback system is operating
or idle, y axis in log scale. (a) The feedback system has no effect for frequencies > 10kHz. (b) There is
some injected noise between 2 kHz and 10 kHz due to feedback gain being lager than unity. (c) Clearly
show suppression of the noise in this frequency band.

The three sub-figures of figure 20 show the noise spectral density, as measured on FFT spectrum analyzer

for different resolutions. The blue curves shows the measurement with the light blocked. The red and

green lines shows the noise with the feedback system operating and idle, respectively. The noises at

high frequencies are white (independent of frequency) and are measured to be the sum of the photo-

current shot-noise together with the electronic noise floor of the detector (details in subsection 4.1.1).

The spectral features at 62 kHz and 75 kHz are of unknown origin but since they exist even when the

photo detector is blocked are most probably due to electronic pick up and have nothing to do with the

38



ion. The action of the feedback system is evident on the plots for frequency spans of 390 Hz and 12 kHz.

A significant attenuation of the noise is achieved for frequencies below 2kHz. Between 2kHz and 10kHz

the feedback is creating excess noise. In this range of frequencies, the noise is uncorrelated between the

in-loop detector and the independent detector used for this measurement, but there is still significant gain

of the feedback system so electrical noises from the detection circuit are injected into the system. Ideally

the gain should have been much smaller in this region but this is technically very difficult to achieve.

Above 12kHz there is no effect of the feedback (FB). For a more quantitative measurement of the effect

of the FB we estimate the classical error accumulated over frequency using Eq.(12). The noise energy

density up to a certain BW is integrated and then the noise from a reference high frequency band is

subtracted: εc,measured = 1
V 2

dc

[
Var(LPFBW{V})− BW

re f BW ×Var(BPFre f BW{V})
]
. The result is the energy

of the noise from classical fluctuations in the beam only. The electronic noises from the detector are

not seen by the ion and the shot-noise is already accounted for by the spontaneous scattering error. We

have succeeded in reducing the classical noises in the beam (not including beam pointing noises on the

ion, which are out of the scope of this work) to a level lower than the errors expected from spontaneous

scattering of photons.

(a) Feed back OFF (b) Feed back ON

Figure 21: Classical Errors as function of BW (log-log scale)
(a) Feedback off: classical errors in the presence of active stabilization reaching an asymptote of
8×10−6 for BW greater than 50 kHz. (b) Feedback on: classical errors reaching a level of 1×10−8 for
BW exceeding few Hertz and leveling off at 4×10−8 for BW greater than 100 Hz. In both cases most of
the noise energy is contained below 1 Hz. The feedback attenuated the overall error by a factor of ~270.
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4.2 Measurement of the Spontaneous Scattering Rate

422nm

5S1/2

5P3/2

5P1/2

4D5/2

4D3/2

408nm

1092nm

1033nm

674nm

“Λ”

“dark”

422nm

5S1/2

5P3/2

5P1/2

4D5/2

4D3/2

408nm

1092nm

1033nm

674nm

“Λ”

“dark”

Figure 22: Definition of the ”Λ” and “dark” states.
The Λ state is the subspace containing 5S 1

2
,5P 1

2
and 4D 3

2
. The dark, or non-fluorescing state is the

metastable 4D 3
2
.

We are able to estimate the actual spontaneous scattering rate, by measuring the rate the ion decays into

the metastable state 4D 5
2
. The three levels 5S 1

2
,5P 1

2
and 4D 3

2
form a Λ configuration. As long as only

the 422 nm and 1092 nm lasers are operating the ion will continuously fluoresce at a rate determined

by the steady state population of the P 1
2
. When 408 nm radiation is present, there is some population

buildup in the P 3
2

state, outside the Λ configuration. This population can spontaneously decay either

to the S 1
2

state (and return to the Λ) or to the D 5
2

state (with a branching ratio of 1/14 [18]). If the ion

decays to the D 5
2

fluorescence from the 422 nm laser stops, until the metastable 4D 5
2

state decays with

τ ≈ 0.4S back into the Λ configuration. These quantum jumps can be detected and the rate at which they

occur is measured. This rate, when multiplied by the branching ratio will provide an estimate of the total

spontaneous scattering rate. When we attempt to perform this measurement, we find a scattering rate

2 orders of magnitude higher than expected from off resonance scattering by the 405.5 nm laser beam

alone. This led to the conclusion that light resonant with the 408 nm 5P 1
2
→ 5P 3

2
transition is present in

the beam. Indeed, after the placing a diffraction grating of 2400 lines/mm to spectraly filter the laser beam

before the optical fiber leading to the ion-trap, the measured rate of the dark periods dropped significantly

to a level close to what predicted by calculation, see details in subsection 4.2.1. The 408 nm light present
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in the Raman laser is used to measure the lifetime of the 4D 5
2

metasable state. We also use the high rate

of dark events to better align the laser to illuminate the ion (by maximizing the quantum jump rate) and

to measure the beam width at the ion position (the laser is far from saturating the transition).

4.2.1 Spontaneous Scatterings due to Off-resonant Light

As mentioned, a grating is used to filter out light resonant with the 5P 1
2
→ 5P 3

2
transition. A single ion is

trapped and investigated. The experimental pulse sequence is 8 ms long and is repeated continuously for

1 hour (450,000 measurements). The pulse sequence was structured as follows:

1. 2 ms cooling pulse (using off-resonant 422 nm light)

2. 4 ms Raman laser pulse.

3. The sequence ends with a 2 ms detection pulse where photons scattered from 422 nm resonant light

are counted by a PMT.

If the ion was transferred into the metastable state during the Raman pulse, it will not fluoresce during

the subsequent detection pulse and the PMT counted photons at the background level, averaged at about

10 counts/2ms. If on the other hand the ion was not transferred to the metastable state, then it fluoresces

during the detection pulse and an average of 60 photons/2ms are detected. The low scattering rate resulted

27 quantum jumps. This did not allow for any elaborate statistical analysis. However, the mean time

between quantum jumps can be taken as an estimate of the time between scattering events (assuming

constant probability for scattering per unit time). This resulted Tscatter = 65± 12sec or Rscatter = 1/T =

0.0154± 0.0030sec−1 . The rate calculated from measured laser power (960 µW), beam width at the

ion (≈ 40µm) and atomic parameters place this rate at 0.012sec−1, consistent with our measurement.

Repeating the calculation for beam width w = 37 µm the exact measured quantum jump rate is obtained.

This is reasonable when taking into account that the beam width was not measured with high accuracy.

These results reassure that including the filtering diffraction grating in the setup indeed attenuates the

on-resonance 408 nm radiation to undetectable level and that this will not be a limiting factor in future

experiment. The expected error due to Raman photon scattering is thus verified to be that given in the

table 3.
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4.2.2 Measurements of the Lifetime of the 4D 5
2

Metastable State

We use the same system, this time with the grating set to select only the 408 nm light from the laser. We

get a high rate of quantum jumps events, enabling us to accumulate enough data to measure the lifetime

of the 4D 5
2

metastable state with good statistical accuracy. We also demonstrate photon antibunching of

the 674 nm radiation field by looking at the statistics of the recovery time of the ion from the dark state.

A single ion was trapped for this experiment. The experimental pulse sequence was 8 ms long and was

repeated continuously for 1 hour (600,000 measurements). This time the 408 nm pulse was concurrent

with a cooling pulse. The pulse sequence is:

1. 4 ms cooling pulse (using off-resonant 422 nm light) + 408 nm light

2. 2 ms detection pulse where photons scattered from the 422 nm resonant light are counted by a
PMT.
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Fluorescence signal showing quantum jumps

Figure 23: Observed fluorescence signal.
Quantum jumps to the D 5

2
level are indicated by the sudden reduction of fluorescence to background

levels.
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Figure 24: Histogram of number of photon counted in 2 ms
The left-most peak is due to background counts in the absence of an fluorescence. The middle and right
peak are due to fluorescence. The wavelength of the 1092 nm repump changed during the measurements,
resulting 2 distinct peaks. The 2 fluorescence peaks are well separated from the dark counts peak. A
threshold is set at the minimum of the histogram, at 24 counts so any bin with less than 24 detected
photons is considered dark and any bin with more than that number is considered bright.

After setting a threshold between dark and bright events the times at which quantum jumps (at which

the ion goes dark) and decays of the metastable 4D 5
2

(ion goes bright) occur are recorded. The duration

of the each dark period is recorded and binned by the number of time samples it lasted, where each time

sample is at the length of a single pulse sequence, 6 ms. We end up with 3117 dark events of different

durations. The method of extended maximum likelihood is used to extract the lifetime from the data.

Assuming exponential decay, the probability per unit time of an ion in the dark state to decay to the

Λ configuration and continue to fluoresce is p(t,τ) = 1
τ
e−t/τ . Here τ is the lifetime of the 4D 5

2
state.

The probability of a measuring a dark duration that belongs in the i’th bin (the dark time durations are

naturally binned by the number of time samples they lasted. this is a result of the finite time resolution of

the measurement) is given by Pi = 1
τ

´ its
(i−1)ts dte−t/tau = 2sinh( ts

2τ
)e−ti/τ ≈ ts

τ
e−ti/τ . Here ts is the sample

time (same as bin) duration assumed much smaller than the lifetime τ � ts and ti is the time assigned to

the i’th bin ti = (i− 1
2)ts. Although the every dark period observed in the experiment was also observed

to decay, it is beneficial to include a finite acceptance window T in the analysis. Defining a window of M

samples we have T = Mts. The probability for a decay to be registered outside the acceptance window
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is PM+1 = 1
τ

´
∞

Mts
dte−t/τ = e−Mts/τ . In a of measurement where a single object undergoes a series of

creations and decays (in contrast with estimation of lifetimes from a macroscopic sample) and where all

the decays are accounted for, the number of decaying “particles”, N0 is known exactly. The likelihood

function is the probability to have n1 events in the first bin, n2 events in the second bin, ... , nM+1 events

in the last bin, and is given by the multinomial distribution:

L = P{ni} =

 N0

n1, ..,ni, ..,nM+1

Pn1
1 Pn2

2 · · ·P
nM+1
M+1 = (2sinh(

tb
2τ

))
∑

M
i=1 ni × e−

1
τ ∑

M
i=1 nitie−MtbnM+1/τ . (42)

The sum ∑
M
i=1 ni = N is just the number of events in the acceptance window, while ∑

M
i=1 niti = Nt̄ where

t̄ is just the mean time of events in the acceptance window. With this definition, the numbers of events

outside the acceptance window is NM+1 = N0−N. For convenience the log-likelihood is maximized

instead of the likelihood:

ln(L) = (terms that do not contain τ)+N ln(2sinh(
tb
2τ

))− Nt̄
τ
−Mtb

τ
(N0−N). (43)

Demanding that the derivative with respect to τ vanishes to find the lifetime that maximizes the probabil-

ity for a measurement:

∂ lnL
∂τ

=− tb
2τ2

1
tanh( tb

2τ
)
+

t̄
τ2 +

Mtb(
N0
N −1)
τ2 = 0. (44)

Approximating x
tanh(x) ≈ 1 + 1

3x2 (x = tb
2τ

) and noting that with the known values for tb,τ: x ≈ 2 · 10−5

(this is justified since the error on the estimator far exceeds this number) we can take for the estimator

the following expression:

τ̂ = t̄ +Mtb(
N0

N
−1). (45)

This estimator for τ̂ is unbiased assuming that 1
〈N〉 ≈

〈 1
N

〉
(which is a good approximation for N � 1).

The error in this estimator for τ is,

∆τ̂ =

√(tb
2

)2
+

σ2
{ti<T}
N

+
(

MtbN0

N2

)2 N(N0−N)
N0

=

√(tb
2

)2
+

σ2
{ti<T}
N

+
(

Mtb
N

)2

N0(
N0

N
−1). (46)

Here the fluctuations in the average accepted times are assumed independent from the fluctuations in the

number of accepted events, and the number of accepted events is assumed to be drawn from a binomial
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distribution. The probability of an event to be accepted (rejected) is p = 1− e−T/τ (q = 1− p). The

mean number of accepted events is N = N0 p. The variance in number of accepted events is according to

same distribution is var{N}= N0 p(1− p) = N (N0−N)
N0

. The analysis was done for acceptance windows of

different lengths. The result is shown in figure 26.
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Figure 25: Histogram of measured decay times.
Filled circles are the actual measurements while the solid line is calculated for the estimated value for
τ = 395±10ms.

Looking at the histogram in figure 25 we see that the frequency of counts at times larger than about

1500 ms (≈ 3.5× τ) is higher than expected for an exponential decay with the measured lifetime. This

we believe is due to reshelving of the ion during a measurement: because Raman pulses are present even

when the ion is in the dark state, there is some probability for an ion to decay from the shelved state and be

re-shelved during one bin. This will not be detected because this event will take place between detection

pulses. A reshelving event serves to decrease the total number of counted events in a time bin which will

tend to increase the mean time of dark events and the estimate of the lifetime. The way these reshelving

events are treated in the analysis is by introducing a finite acceptance window. We only use events short

enough so that reshelving events do not occur with high probability. The effect of including time bins that

have more and more reshelving events is evident in figure 26. We see “jumps” in the estimated lifetime

at acceptance window lengths of approximately 400 ms and 800 ms- close to one and two lifetimes. For

the estimated lifetime we take the result just before the first such “jump”- τ̂ = 395±10ms.
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Figure 26: Maximum likelihood estimation for τ .
Maximum likelihood estimator with changing acceptance window length. The solid line is the estimation
for τ while the area between the dashed lines gives the 1σ error bound for the estimation.

In figure 27 we plot past measured values of τ vs. the measurement year. In this work we measure a

value in agreement with most of the previous results, specifically with the much more accurate result by

NPL (2006): τNPL = 390.8±1.6ms [36].

1986

1991

1996

2001

2006

300 350 400 450

measured lifetime [ms]

ye
ar

 o
f m

ea
su

re
m

en
t

this work

Sinclair (2006)

Tordoir (2000)

Barwood (1993)

Madej (1990)

Gertz (1990)

Figure 27: Past measurements of 4D 5
2

lifetime.
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4.2.3 Second Order Coherence of 674 nm Field

We can use the quantum jumps we observed to demonstrate photon anti-bunching in our system, i.e.

the existence of a light field with second order coherence, g(2)(t) = 〈n(0)n(t)〉
〈n〉2

that is smaller than unity

as t → 0. The second order coherence is the normalized auto-correlation function of the intensity. For

classical fields the definition of intensity leads to g(2)(t) < g(2)(0) and g(2)(0) > 1, while for quantum

fields, the definition of the intensity in terms of operators allows all possible values of g(2)(0). Therefore-

an observation of g(2)(0)<1 and more generally g(2)(0) < g(2)(t > 0) is a clear signature of the quantum

nature of the observed field [37].

Every time the meta-stable 4D 5
2

decays into the Λ “state” a single 674nm photon is emitted. Since we

detect those decay events with efficiency close to 100% (neglecting the rare multiple-decay, caused by

reshelving) we know the time those 674 nm photons were emitted. By looking of the normalized mean

number of 674 nm photons emitted at time t after a 674 nm photon is emitted, we can have a measurement

of the second order coherence of the 674 nm field. The form of g(2)(t) is plotted in figure 28 and shows

clear signature of photon anti-bunching: the probability to emit a 674 nm photon right after one was

emitted is smaller than at later times. From the solution of rate equations for the Λ and 4D 5
2

states,

a theoretical prediction for g(2) is obtained, g(2) = 1− e−(R+γ)t . Here R is the rate of quantum jumps

(inverse of the mean time of bright periods) and γ = 1/τ is the lifetime of the metastable state .
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Figure 28: Second order coherence of 674 nm radiation.
Second order coherence of 674 nm radiation, deduced by observation of the decay times of the 4D 5

2

metastable state. The theoretical curve, g(2) = 1−e−(R+γ)t , is obtained from the solution of rate equations
for the Λ and 4D 5

2
states and treating the system as a two level system. Here R is the rate of quantum

jumps (inverse of the mean time of bright periods) and γ = 1/τ, where τ is the measured lifetime of the
metastable state .

5 Conclusions

We have designed and built a laser system that will be used to perform single qubit gates on a trapped

ion qubit with high fidelity. Not including errors originating from laser beam pointing instability on the

ion we estimate that the classically contribution to the errors in the gate is lower than 10−7. The gate will

be therefore quantum noise limited, i.e. limited by the spontaneous scattering of photons from the ion

with εs = 8× 10−6 (for a 405.5 nm laser). The classical noises have been attenuated by the application

of active feedback methods and utilize a field programmable gate array card. The laser was not tested on

the ion since the state detection scheme was not yet fully implemented in the lab by the time this thesis

was written.

Radiation at 408 nm present in the laser beam was detected by looking at indirect shelving of the ion

in the D 5
2

metastable state and was attenuated to undetectable level by a filtering diffraction grating and

a single-mode optical fiber.

It is planned to measure the fidelity of the rotation gate by the methods outlined in [8]. When the
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final stage of the project will be successfully implemented, we will have demonstrated a single qubit

gate of fidelity exceeding the fidelity required for quantum error correction and fault tolerant quantum

computing.

Further work is probably needed to obtain the desired high fidelity gates. A better, more stable ECDL

is being designed for use as the source of the Raman beams. It will utilize a stainless-steel commercial

mirror mount with better thermal and mechanical stability than the apparatus we use now which was

built in house and is made of Aluminum. The extended cavity will be made of Invar to further reduce

thermally induced noises.
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A Appendix

A.1 Calculating Electric Dipole Matrix Elements

When calculating the Rabi frequency of a Raman transition, we have to evaluate terms of the form〈
Jm f

∣∣erq2

∣∣J′m′〉〈J′m′ ∣∣erq1

∣∣Jmi
〉
, where the right matrix element is for the absorption process and the

left one is for stimulated emission. Using the Wigner-Eckart theorem on the stimulated emission term

we have

〈
Jm
∣∣erq
∣∣J′m′〉=

〈
J ‖er‖J′

〉〈
J′1m′q|Jm

〉
, (47)

where 〈J ‖er‖J′〉 is the reduced matrix element and 〈J′1m′q|Jm〉 is the appropriate CG coefficient. Using

the identity6,

〈 j1 j2m1m2| j1 j2 jm〉= (−1) j+ j1−m−m1

√
2 j +1
2 j1 +1

〈 j j2m-m2| j1m1〉 , (48)

to exchange between the initial and final total angular momentum (J↔ J′), we get

〈
Jm
∣∣erq
∣∣J′m′〉=

〈
J ‖er‖J′

〉
(−1)J+J′−m−m′

√
2J +1
2J′+1

〈
J 1m-q|J′m′

〉
. (49)

Taking the hermitian conjugate of the LHS:

〈
Jm
∣∣erq
∣∣J′m′〉† =

〈
J′m′

∣∣er−q
∣∣Jm

〉
=
〈
J′ ‖er‖J

〉〈
J 1m-q|J′m′

〉
, (50)

and remembering that dipole matrix elements for between bound states are real we get

〈
J ‖er‖J′

〉
(−1)J+J′−m−m′

√
2J +1
2J′+1

=
〈
J′ ‖er‖J

〉
. (51)

The (−1)J+J′−m−m′ is just 1 for transitions with integer spin difference. We get that the reduced matrix

element changes between absorption and emission (here J′ is the higher energy level),

(2J′+1)
∣∣〈J′ ‖er‖J

〉∣∣2 = (2J +1)
∣∣〈J ‖er‖J′

〉∣∣2 . (52)

6http://functions.wolfram.com/07.38.17.0060.01
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The reduced matrix element of the emission [22]:

∣∣〈J ‖er‖J′
〉∣∣2 =

2J′+1
2J +1

3πε0h̄
c3

ω3
0

1
τ

(53)

and for the absorption it is, ∣∣〈J′ ‖er‖J
〉∣∣2 = 3πε0h̄

c3

ω3
0

1
τ
, (54)

where τ is the lifetime of the excited level. Note that the degeneracy factor of 2J′+1
2J+1 does not appear in

this expression.

To conclude: when we need to evaluate terms like
〈
Jm f

∣∣erq2

∣∣J′m′〉〈J′m′ ∣∣erq1

∣∣Jmi
〉

we can make the

job easier by taking the conjugate of the emission term, making it an absorption term with q→−q. We

can then use the simpler CG coefficient for absorption and need not pay attention for degeneracy factors

and get

〈
Jm f

∣∣erq2

∣∣J′m′〉〈J′m′ ∣∣erq1

∣∣Jmi
〉

= 3πε0h̄
c3

ω3
0

1
τ

〈
J 1m f -q2|J′m′

〉〈
J 1miq1|J′m′

〉
A.2 Modulated Laser Statistics

The voltage signal at the photo-detector output is given by v(t) = G× i(t) = G e
Td

N(t) where G is the

trans-impedance gain of the detector amplifier, e is the electron charge, Td is the time constant of the

detector and N(t) is the number of photons detected during time Td . N(t) is a Poissonian random number

with rate ηTdΓ(t) where η is the quantum efficiency of the detector and Γ(t) is the time dependent rate of

arrival of photons to the detector. When the laser intensity is modulated it is the rate of arrival of photons

that depends on time. For example, simple amplitude modulation yields,

Γ(t) = Γ0(1+Am sin(ωmt)), (55)

where Γ0 = P0
h̄ωlaser

is the average rate of photon arrival (P0 is the average power in the beam), 0≤ Am ≤ 1

is the modulation amplitude and ωm = 2π fm is the modulation frequency. In the servo scheme used we

measure the demodulated signal, which is obtained by mixing the detected signal with a local oscillator

(LO) and low-pass-filtering the result. The mixed signal is given by vIF(t) = ALO sin(ωmt)v(t) where ALO

is the amplitude of the LO. In the frequency domain this signal has the form VIF( f ) = 1
2iALO(V ( f − fm)−

V ( f + fm)). The filtered signal is simply VLP( f ) = HLP( f )VIF( f ), where HLP is the frequency response
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of the low-pass filter (LPF). We first look at the mean demodulated signal for the simple modulation in

Eq. (55):

〈vLP(t)〉= LPF{〈v(t)〉 ·ALO sin(ωmt)}= LPF{G〈i(t)〉 ·ALO sin(ωmt)}=

= LPF{G e
Td
〈N(t)〉 ·ALO sin(ωmt)}=

= LPF{G e
Td

ηTdΓ0(1+Am sin(ωmt)) ·ALO sin(ωmt)}=,

= GeηΓ0
AmALO

2
=

AmALO

2
vDC. (56)

GeηΓ0 = vDC is the measured voltage zero modulation, Am = 0. We are interested in the auto-covariance
function of the demodulated noise: CLP(t1,t2) = 〈∆vLP(t1)∆v∗LP(t2)〉 where ∆x(t) = x(t)− 〈x(t)〉. The
auto-covariance function can be written in terms of the Fourier transforms

CLP(t1, t2) =
〈ˆ

d f1e−i2π f1t1∆VLP( f1)
ˆ

d f2ei2π f2t2∆V ∗LP( f2)
〉

=
ˆ

d f1

ˆ
d f2e−i2π( f1t1− f2t2) 1

4
A2

LOHLP( f1)H∗LP( f2)〈(∆V ( f1− fm)−∆V ( f1 + fm))(∆V ∗( f2− fm)−∆V ∗( f2 + fm)〉 . (57)

We need to evaluate terms of the form 〈∆V ( f1)∆V ∗( f2)〉. To do this we transform again to the time

domain,

〈∆V ( f1)∆V ∗( f2)〉=
ˆ

dt1

ˆ
dt2e−i2π( f1t1− f2t2) 〈∆V (t1)∆V (t2)〉 (58)

with ∆V (t) = G e
Td

∆N(t). Due to separation of timescales (the detector is fast w.r.t. the modulation

frequency and the LP filter, i.e. Td � 2π

ωm
, Td � 2π

ωLP
) the auto-covariance of the photon number can be

approximated by 〈∆N(t1)∆N(t2)〉 ≈ Td 〈N(t1)〉δ (t1− t2) = ηT 2
d Γ(t1)δ (t1− t2) (see page 390 of [25]).

Where in the first step the Poissonian nature of N(t) is used. We then get

〈∆V ( f1)∆V ∗( f2)〉= G2e2
η

ˆ
dt1

ˆ
dt2e−i2π( f1t1− f2t2)Γ(t1)δ (t1− t2) =

= G2e2
η

ˆ
dt1e−i2π( f1− f2)t1Γ(t1)≡ G2e2

ηΓ̂( f1− f2). (59)

The expression for the auto-correlation function contains three terms of this form. These are

G2e2
η
(
2Γ̂( f1− f2)− Γ̂( f1− f2−2 fm)− Γ̂( f1− f2 +2 fm)

)
. (60)
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With Γ̂( f ) = Γ0 (δ ( f )+Amδ ( f − fm)) (the fourier transform of Eq. (55)) and assuming that the LP filter,

HLP, is chosen to reject fm, the only term contributing in (57) is 2Γ̂( f1− f2) and the other two are rejected

by the LP filter. We end up with

CLP(t1, t2) =
1
2

A2
LOG2e2

ηΓ0

ˆ
d f1e−i2π(t1−t2) f1 |HLP( f1)|2 (61)

and we immediately get the power spectrum of the noise signal S( f ) = 1
2A2

LOG2e2ηΓ0 |HLP( f )|2 =
1
2A2

LOGevDC |HLP( f )|2 where in the last step we recognize the DC voltage seen on the detector as vDC =

GiDC = GeηΓ0. We note that since CLP(t1, t2) = CLP(t1− t2) (the noise auto-correlation function only

depends on the time difference) the noise is stationary, and it resembles a white noise process in the BW

of the LP filter.

We repeat the derivation the case of unmodulated beam (Am = 0), and detection voltage signal v(t)

passed through the same low pass filter HLP, result in v′LP(t) . This time no mixing-down of the signal is

required. The auto-covariance is again

C′LP(t1, t2) =
〈ˆ

d f1e−i2π f1t1∆V ′LP( f1)
ˆ

d f2ei2π f2t2∆V ∗LP( f2)
〉

,

and we get a power spectrum S′( f ) = GevDC |HLP( f )|2. This is the same power spectrum obtained for

the modulated-then-demodulated noise, without the prefactor A2
LO
2 which is the result of the mix-down

process.
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