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1 Abstract

Trapped ions provide a very simple, yet highly controllable and reproducible quantum system, with
very long coherence time and many to many interactions easily achievable. They have been used in
many fields of physics and technology, and also offer great promise for the future, in the search for
new physics and in applications such as precision measurements, quantum information processing and
more.
In this thesis, I describe the implementation of trapping a single Yb+ ion, and the experiments used to
characterize and understand the system. I first discuss the design and construction of the apparatus,
which was a major part of this work, and then the spectroscopy measurements taken and its analysis.
The ion is trapped in a linear Paul trap, using RF electrodynamic fields, it is manipulated mostly with
lasers in the UV and IR, and measured optically with an EMCCD camera. This thesis includes the
designing of the trap, and the electronics needed for it. Then, it goes over the design and implementation
of the optics and electronics needed for producing and stabilizing the required laser sources. It also
covers, more briefly, the other aspects needed, which include the vacuum system design, the imaging
system (detection optics) and lastly the production of the ions themselves.
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3 Introduction

In the last 40 years or so, experiments with trapped ions have provided contributions to many fields
in physics with applications in quantum information processing, precision measurements (metrology),
geodesy, communications and more. Largely this is attributed to the trapped ions tight spatial localiza-
tion, isolation from external perturbations and relative ease of coherent control of internal and external
degrees of freedom with high fidelity.
The need for more accurate and precise frequency standards and clocks has continued unbated for
centuries, and the contributions of accurate time and frequency measurements to all sorts of fields of
technology and science can hardly be overestimated. Historically, the prime application for clocks has
been in navigation [1], and today it is hard to imagine our world without the use of Global Navigation
Satellite Systems (GNSS), and looking forward, navigation systems based on better clocks may have
unpredicted applications (for example, measuring small strains in Earth’s crust for use in earthquake
prediction[1] and many more).

The first caesium atomic clock, developed in 1955 [2] demonstrated use of transitions between dis-
crete energy levels of an isolated atomic system, and provided a much more stable and accurate reference
time than any standard using celestial bodies. These systems are highly reproducible, therefore making
them ideal references for frequency standards, an idea attributed to Maxwell, and captured nicely in a
text written by Lord Kelvin [3]:
”The recent discoveries ... indicate to us natural standard pieces of matter such as atoms of hydrogen
or sodium, ready made in infinite numbers, all absolutely alike in every physical property. The time
vibration of a sodium particle corresponding to any one of its modes of vibration is known to be abso-
lutely independent if its position in the universe, and it will probably remain the same so long as the
particle itself exists.”

The caesium clock uses two hyperfine split levels, which resigns in the Microwave regime of electro-
magnetic waves, and while it is understood for some time that there are several advantages gained from
moving to higher frequency standards, technical difficulties of counting oscillations in the THz frequency
regime halted the transition into optical standards. Major developments in the field of femto-second
lasers, and the invention of the frequency comb were able to bridge the gap between the optical and
RF regimes, allowing experimentalists to finally count oscillation frequency of optical transitions, and
consequently led the begining of the field of optical atomic clocks, improving the existing microwave
clocks uncertainty by several orders of magnitude.

Other than lots of practical applications benefit, atomic clocks attract scientists with the ability
to very precisely control and explore a simple quantum system. Some of exciting possibilities is to
unveil dynamics that were not expected, and occur from ”new physics” (i.e., physics not portrayed by
current Standard Model), for example, current interest exists to explore the ideas of change in time of
the relative strength of the fundamental forces [4][5][6], existence of new fundamental interactions [7]
and new force carriers [8].

This thesis is divided into three parts, the first part consists of the theory behind trapping, produc-
ing, cooling and manipulating ions. The second part describes the experimental setup and apparatus
used in this work. and the last part shows the relevant results for characterizing the system.
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4 Theoretical background

4.1 Linear Paul Trap

4.1.1 Potential definition

According to Laplace equation, stable trapping of charged particles in free space using only DC fields
is not possible, as there is no local minimum. The Paul trap, named after its inventor W. Paul[9], uses
oscillating electric fields to overcome this fundamental limitation. In these traps, electrodes are driven
with static (DC) and oscillating (RF) voltages, and are geometrically aligned to create an approximate
quadrupolar spatial electric potential φ(x, y, z, t) in the center of the trapping region:

Φ(~r, t) =
1

2

(
U sxx

2 + U syy
2 + U sz z

2
)

+
1

2
cos(Ωt)

(
URFx x2 + URFy y2 + URFz z2

)
(4.1)

The potential has to fulfill the Laplace equation ∇2Φ = 0 at every instant of time, which leads to the
following geometric restrictions:

U sx + U sy + U sz = 0 ; URFx + URFy + URFz = 0 (4.2)

There are a few choices of producing a three-dimensional confinement albeit the restrictions. One
popular such choice is the linear Paul trap, in which RF fields are applied only in two radial direction
and confining along the third axial direction is done by purely static potential, giving:

−(U sx + U sy ) = U sz > 0 ; URFx = −URFy ; URFz = 0 (4.3)

This can be implemented using 2 DC voltage end-caps which statically confine the ions along the z-
axis (the trap axis), and 4 RF linear electrodes, forming a time-varying quadrupolar potential, which
dynamically confine in the x-y plane (see 5.1).

4.1.2 Classical equations of motion

The classical equations of motion of a charged particle with mass m and charge Q that arise from such
potential can be written as 3 de-coupled Ordinary Differential Equations (ODEs):

ẍi = −Q
m

(U si + URFi cos(Ωt)) (4.4)

These equations can be transformed into the standard form of the Mathieu differential equation:

d2x

dτ2
+ (ai − 2qi cos(2τ)) = 0

where: τ ≡Ωt

2
, ai ≡

4QU si
mΩ2

, qi ≡
2QURFi
mΩ2

(4.5)

The general class of stable solutions to the Mathieu equation follows from the Floquet theorem[10]:

xi(τ) = Aie
iβiτ

∞∑
n=−∞

C
(i)
2ne

i2nτ +Bie
−iβiτ

∞∑
n=−∞

C
(i)
2ne
−i2nτ (4.6)

Ai and Bi are some constants that are chosen to satisfy boundary conditions, but the characteristic

exponents βi and coefficients C
(i)
2n are functions of only ai and qi. By inserting the general solution Eq.

4.6 into the Mathieu equation Eq. 4.5, one obtains a recursion relation[11]:

C
(i)
2n+2 −D2nC

(i)
2n + C

(i)
2n−2 = 0 (4.7)
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This relations yields connections between βi, C
(i)
2n and ai, qi, which can be expressed as a continued

fraction:

βi = ai − qi

 1

D0 − 1
D2− 1

...

+
1

D0 − 1
D−2− 1

...

 (4.8)

This can be evaluated numerically for βi and the coefficients can be extracted by truncation the con-
tinued fraction for desired precision.

4.1.3 Stability analysis

A trapped particle will be stable in a 3D system, if in all three dimensions solutions simultaneously
obey[12]:

0 ≤ βi ≤ 1, ∀i ∈ {x, y, z} (4.9)

Thus, one can draw the stability region for each dimension in the plane ai − qi. And the special
stable region that contains all points (ai, qi) = (0, 0) for all i is often called the lowest stability
region, most common traps work inside this region.
In linear Paul traps, there exists a line on which the oscillating field is zero, usually denoted the ẑ axis,
or the axial direction, in this direction qz = 0, and confinement is due to az > 0 (the solution in ẑ is
stable for any az > 0), and we’re left with finding the stable regions for the x̂− ŷ plane. All a’s and q’s
are coupled through Laplace equation (Eq. 4.3) in the following manner:

qy = −qx
ay = −ax − az

(4.10)

Which allows us to plot the stability regions as a function of only qx and ax for a given az, such a plot
is shown in fig. 1 [11][13], where stability in all dimensions is obtained in the overlapped regions.

Figure 1: Stability region as a function of ax and qx. (a) The stability for both x and y are shown
where the stable region for the entire system is seen as the overlap of both regions portrayed in black.
(b) Shows a zoom in on the main (lowest) stability region
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4.1.4 Ion trajectory

As mentioned, ion trap experiments are working in the lowest stability region (fig. 1 (b)), where
q2, |a| << 1. For which the lowest order approximation of the ion trajectory can be found by truncating
at C±4 ≈ 0, which yields (assuming Ai = Bi):

βi ≈
√
ai + q2

i

/
2

x(t) ≈ Ai cos

(
βiΩt

2

)[
1 +

qi
2

cos(Ωt)
] (4.11)

The trajectory consists of harmonic oscillations at frequency ωi = βiΩ/2 << Ω (which is called the
secular motion, superposed with ’intrinsic micro-motion’ oscillation at the trap drive frequency Ω and
with amplitude proportional to the secular motion with a q/2 proportionality factor. When ions are
laser-cooled to sub-mK temperature, for many purposes this can be ignored, and the motion will be
approximately a simple 3D harmonic oscillator motion with trap frequencies of ωx, ωy, ωz << Ω. Figure
2 shows a plot of this type of motion.

Figure 2: Ion trajectory simulation. The superimposed secular micro-motion on top of the slow har-
monic oscillations is visible. The main energetic increase occurs at the positions which are furthest
away from the RF null voltage

Excess micro-motion The fast oscillations of the ion at the trap drive frequency, described above,
are called intrinsic micro-motion. It is an inherent effect of dynamical trapping and it is proportional
to the ion harmonic amplitude, and thus gets smaller and smaller as we cool the ion.
There is another kind of micro-motion which is not proportional to the ion amplitude, and it is called
excess micro-motion. It arises from stray electric at the trap center. So, for example if there exists a
uniform static electric field Es, it will add an extra term for the EOM (Eq. 4.4, which is proportional
to the dot product ~E · ~x, resulting in a static displacement of the ion position in each axis according to
the projection of the static field on the axis, resulting in the following trajectory:

x(t) ≈
(
x

(i)
0 +Ai cos

(
βiΩt

2

))[
1 +

qi
2

cos(Ωt)
]

(4.12)
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As we can see, the oscillating electric field at position x0 results in Excess micro-motion (with amplitude

1/2 x
(i)
0 qi which is not coupled to harmonic amplitudes (and thus does not decrease when the ion is

cooled). This needs to be taken into consideration when designing a Paul trap, to allow for DC electric
fields to be applied to compensate for such stray fields and reduce the excess micro-motion.

4.2 Ion-light interaction

For almost all trapped ion experimental situations it is valid and common to treat the internal degrees
of freedom of the ion interacting with the laser field as a two level system (assuming the off-resonance
coupling to other levels is negligible) in harmonic potential. The laser field is treated classically, which
can be justified by the large number of photons used in these experiments. The total Hamiltonian of
the system is:

H = Hm +He +Hi (4.13)

where Hm is the motional Hamiltonian, He is the internal electronic Hamiltonian and HI is the inter-
action of the ion with the applied light fields.
The two atomic electronic levels are separated by energy ~ω0 and denoted |e〉 and |g〉 for the excited
and ground state respectively giving:

He =
~ω0

2
(|e〉 〈e| − |g〉 〈g|) =

~ω0

2
σz (4.14)

When trap parameters are chosen s.t. ai, qi << 1 in all dimensions (see 4.1), it is safe to approximate
the motion of the ion as a motion of a 3-D static harmonic potential. For simplicity we’ll treat this in
only one dimension (say x̂), but it is easy to generalize:

Hm = ~ωx
(
a†a+

1

2

)
(4.15)

Where ωx is the trap frequency.

For the last term, it is assumed to be sufficient to treat the interaction of the ion and the light with
the leading order in the multi-pole expansion, justified by the fact that the size of the wavefunction
of the ion is much smaller than the laser field’s wavelength. In this work we only consider dipole
allowed transitions, so we use the familiar dipole approximation. This gives the following interaction
Hamiltonian:

Hi =
~Ω

2
(|g〉 〈e|+ |e〉 〈g|)

(
ei(kx̂−ωlt+φ) + e−i(kx̂−ωlt+φ)

)
=

~Ω

2
(σ+ + σ−)

(
ei(kx̂−ωlt+φ) + e−i(kx̂−ωlt+φ)

)
Ω =

eE0

~
| 〈e|~r · ε̂|g〉|

(4.16)

Where Ω is the Rabi frequency given by the dipole approximation, ωl is the laser’s angular frequency
and k is the laser’s wavenumber.
The Hamiltonian is time dependent, and it is very convenient to move to the interaction picture with
the free Hamiltonian H0 = Hm + He and the interaction Hi, and then applying the rotating-wave
approximation (RWA), i.e., disregarding terms that oscillate very fast, when the laser frequency is
close to the transition frequency δ ≡ ωl − ω0 << ω0. Further, we define the Lamb-Dicke parameter
η = k

√
~/2mωx and under the assumptions that η << 1, |ai|, q2

i << 1 we get the simpler interaction
Hamiltonian [11]:

Hi(t) =
~Ω0

2
σ+ exp

{
iη
(
âe−iωxt + â†eiωxt

)}
ei(φ−δt) + h.c (4.17)

Where we defined the scaled Rabi frequency as Ω0 = Ω/(1 + qi/2).
We can expand the exponent in Eq. 4.17, to get detuning dependent coupling of different motional
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quanta states coupled with the electronic transition (sidebands). In the Lamb-Dicke regime (η2(2n +
1) << 1, where n is the motional quanta), we expand only to the lowest order in η, thus getting only
three resonances.
The first one is received for zero detuning (δ = 0), and is called the carrier resonance:

Hcar =
~Ω0

2

(
σ+e

iφ + σ−e
−iφ
)

(4.18)

This Hamiltonian will give rise to transitions which retain motional quanta (|n〉 |g〉 ↔ |n〉 |e〉) with Rabi
frequency of Ω0.
The two other resonances are called first red and blue sidebands:

Hrsb =
~Ω0η

2

(
aσ+e

iφ + a†σ−e
−iφ
)

Hbsb =
~Ω0η

2

(
a†σ+e

iφ + aσ−e
−iφ
) (4.19)

They occur at a detuning of δ = −/ + ωx, with Rabi frequencies of Ωn,n−1 = Ω0
√
nη and Ωn,n+1 =

Ω0

√
n+ 1η for the red and blue sidebands respectively. The red sideband couples the states |n〉 |g〉 ↔

|n− 1〉 |e〉, while the blue couples |n〉 |g〉 ↔ |n+ 1〉 |e〉.
In most dipole transitions and for typical Paul traps, the natural linewidth of the transition is larger
than the trap secular frequency (Γ > ωi), which is called the unresolved sideband regime (in order to
get to motional ground state and 1µK temperature a use of a resolved sideband cooling laser is needed,
usually an quadrupole transition is used), and in this regime we can no longer disregard spontaneous
emission.
Spontaneous emission arises from coupling of the excited state to the E.M vacuum (which we don’t get
since we treated the field classically), but one can add it manually through the Lindblad master equation
which describes the time evolution of an open quantum system with Markovian and time-homogeneous
dynamics [14]:

∂ρ

∂t
= − i

~
[H, ρ] + L(ρ)

L(ρ) =
∑
n

(
CnρC

†
n −

1

2

{
C†nCn, ρ

}) (4.20)

The Lindblad operator describing spontaneous emission is given by:

Ceg =
√

Γ |g〉 〈e| (4.21)

Considering the carrier transition Hamiltonian (Eq. 4.18) in the rotating frame of laser and applying
the RWA:

H = −~δσz +

(
~Ω0σ+

2
+ h.c

)
(4.22)

We get the master equation for the case of two level system interacting with laser fields, which are
known as the optical Bloch equations [15]:

∂ρgg
∂t

= Γρee +
i

2
(Ω∗ρ̃eg − Ωρ̃ge)

∂ρee
∂t

= −Γρee +
i

2
(Ωρ̃ge − Ω∗ρ̃eg)

∂ρ̃ge
∂t

=
iΩ∗

2
(ρee − ρgg)−

(
Γ

2
+ iδ

)
ρ̃ge

∂ρ̃eg
∂t

=
iΩ∗

2
(ρgg − ρee)−

(
Γ

2
− iδ

)
ρ̃eg

(4.23)
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Where we defined the phase corrected coherences: ρ̃eg = ρege
−iδt, ρ̃ge = ρgee

iδt.
The fluorescence rate can be calculated now, using the steady state solution which can be obtained
analytically by setting the derivatives to zero:

F = Γρee = Γ
s0/2

1 + s0 + (2δ/Γ)2

s0 ≡
2|Ω|2

Γ2
=

I

Isat

Isat ≡
π~c
3λ3

Γ

(4.24)

Where s0 defined above is called the on-resonance saturation parameter. F is the fluorescence signal
(rate of photon emission), I is the intensity, and Isat is defined as the saturation intensity of the laser.

4.3 Doppler cooling

Doppler cooling was first proposed in 1975 for neutral atoms[16], and, independently, for ions[17].
Ion traps typically confine ions up to temperature of about one-tenth of their trap depth [11], which
usually correspond to about 104K. Generally laser cooling is used to reduce this very high kinetic
energy of the ion to, ideally, the ground state of the trapping potential. This is done in two stages,
where only one of them will be discussed here. At first, the ion is very hot, and cooling from such
high temperatures requires high scattering rate, so it is better to use a dipole transition. As mentioned
above, this is typically done in the unresolved regime, since the dipole cooling transition has a short
lifetime (which makes it spectrally wider than the trap frequency), using Doppler cooling method. At
a later stage, a narrow transition is used to perform resolved side-band cooling to cool the ion to the
motional ground state.
We’ll consider a trapped ion interacting with classical laser light, which is modeled as a single traveling
wave with wavevector ~k, angular frequency ωl = ω0+δ. The radiative decay time is assumed to be much
shorter than one ion oscillation period (Γ >> ωi), which means that during one cycle of absorption
and emission of a photon the ion’s velocity does not change much.
Every photon absorption will give the ion a momentum kick ∆p = ~k in the wave-vector direction, while
the emission will occur randomly to a a uniform distribution of 4π steradians - this will contribute zero
momentum on average (but will result in a random walk in momentum space). The rate of absorption-
emission is given in Eq. 4.24 therefore the average force applied on the ion is:

dpi
dt

= Fi = ~kΓρee =
~kΓ|Ω|2

Γ2 + 2|Ω|2 + 4δ2
eff

(4.25)

Since the ion is moving with some velocity with respect to the lab rest frame, it will experience Doppler
shift, and so the effective detuning will be composed of detuning from resonance frequency of the ion
at rest and the Doppler shift as well (δeff = ωl − ω0 − ~k · ~v).
Close to the final temperature reached, the velocities will be small (Doppler broadening small compared
to Γ), thus Fi can be linearized to leading order:

Fi ≈ F0 +
dF

dv
v = F0 + κv (4.26)

The first term is a static force (the average radiation pressure) which displaces the ion slightly from
the trap center. The second term (linear in v) is a damping force with the ”friction coefficient”

κ =
8~k2Ω2δΓ

(Γ2 + 2|Ω|2 + 4δ2)2
(4.27)

that will provide viscous drag if its sign is negative, i.e. if the laser is red-detuned (δ < 0). We can
already see also that a blue-detuned laser (δ > 0) will result in heating the ion. The maximal damping
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is obtained for Ω = Γ and δ = −Γ/2 which results in:

κmax =
~k2

4
(4.28)

This cooling process can’t cool the ion to zero temperature. The reason is that at some point
when the ion’s energy is very low and we cannot ignore the photon recoil through stochastic emission
process. The random process of momentum kicks has zero average momentum gain - < ∆p >= 0, but
the variance is not zero (< ∆p2 >6= 0) - which means the momentum undergoes diffusion. Since this is
a random walk process, the second moment of the distribution is proportional to the number of recoils,
which we know through the excited state steady state population. The average approximate energy
gain is therefore:

Ėh =
(~k)2

M
Γρee (4.29)

While the energy lost through Doppler cooling is:

Ėc =< Fdamp · v > (4.30)

Equating 4.29 and 4.30, we’ll get the lower bound on temperature achievable via Doppler cooling, also
known as the Doppler limit (obtained for Ω << Γ and δ = −Γ/2:

TD =
M < (v · k) >2

kB
=

~2k2Γρee
κ

(4.31)

4.4 The Ytterbium ion

Ion trapping is not restricted to a specific specie of ions, but obtaining good coherent control is usually
limited to a small group of ions. This is due to the need of robust cooling mechanisms, that can cool
the ions to their motional ground state, which requires closed and fast cycling transitions. For that
purpose, good candidates are the singly ionized earth-alkaline atoms which have a single electron in the
outer S orbital shell, and BII transition metals as well. For quantum information purposes, generally,
three types of qubits are used, optical, Zeeman and hyperfine qubits (for example [18]), and 171Yb+ is
one common selection for hyperfine qubits. For clocks and precision measurements, single Yb+ ion has
been used as well with good results [19][20][21]. The selection of an ion species determines the lasers’
wavelengths. The relevant energy levels of a single-ionized Yb+ ion is shown in figure 3. in this work
we do not have (yet) the narrow clock lasers (wavelengths shown in orange), and we do not use any
odd isotope, allowing us to disregard hyperfine splittings of the levels. As part of the cooling cycle,
once every 200 photons scattered, the ion will decay to the long lived D3/2 state, and also as a result of
collision with background gas, it can also decay non-radiatively to the very long lived F7/2 state. For
that purpose we also deploy re-pump lasers (shown in red) to remove trapped population back to the
cooling S1/2 − P1/2 transition.
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Figure 3: Energy levels of 176Yb+ ion, adapted from [1]. The S1/2 − P1/2 dipole allowed transition is
marked in blue and is used for Doppler cooling and state detection as well. The transitions marked
in red are ”re-pumps” used to deplete population caught in the long living states, and the transitions
marked in orange are the so called clock transitions, i.e., naturally narrow quadrupole or octupole
transitions that can be used as frequency standards.

4.5 Photo-ionization and loading

The procedure used to load an ion to the trap involves heating a Ytterbium metal bulk to high temper-
atures, thus releasing a large amount of hot Yb atoms, with naturally occurring abundance as shown
in table 1, to the vacuum chamber. The atoms gets ionized in a two photon process - the first one at
398.9 nm excites the atom from the ground state to the 1P state, and the second photon at 369.5 nm
(from the cooling laser), excites the electron to the continuum and ionizes the atom. The relevant level
structure is shown in figure 4. This scheme allows for isotope selectivity of the ionization by tuning the
398.9 nm laser to the correct frequency.

Figure 4: Relevant energy levels of Neutral Ytterbium atom.
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Isotope Natural Abundance[%] S-P wavelength Hyperfine Splitting [GHz]
168Yb+ 0.13 - -
170Yb+ 3.04 398.91051(6) -
171Yb+ 13.28 398.91070(6) 12.6
172Yb+ 21.83 398.91083(6) -
173Yb+ 16.13 - 10.5
174Yb+ 31.83 398.91114(6) -
176Yb+ 12.76 398.91144(6) -

Table 1: Ytterbium isotopes and their natural occurring abundance [22] and wavelength [23].

4.6 Control theory basics

Control theory deals with the control and stabilization of physical dynamic systems. It aims to regulate
a noisy or disturbed system output by controlling its input. One usually differentiates ”feedback”
scheme, in which the control signal is generated from measurements the regulated variable itself, and
”feed-forward” in which the control signal is generated from a different measurement. This work will
focus on the former.

4.6.1 Linear systems

Considering a single input single output (SISO) system, with input x(t) and output y(t). A Linear
Time Invariant (LTI) physical system is a system which holds two defining properties - linearity and
time invariance:

• Linearity means the relationship between the input and output of the system is a linear map, i.e.:
if x1(t) produces y1(t), and x2(t) produces y2(t), then a1x1(t)+a2x2(t) produces a1y1(t)+a2y2(t)

• Time invariance means the relationship between the input and the output does not vary with
time, and if we apply an input to the system now or in time T from now the output will be
identical. i.e., if x(t) produces y(t), then x(t− T ) produces y(t− T ).

Recalling the Laplace transform defined as:

L[x(t)] ≡ X(s) =

∫ ∞
0

x(t)e−stdt (4.32)

Thus, an n-th order linear differential equation transforms into an n-th order algebraic equation in s
[24]. This allows us to define a transfer function, G(s), for LTI systems, which are described by linear
differential equation as:

G(s) =
Y (s)

X(s)
(4.33)

For LTI systems, compound of two systems are described by convolution in time-domain, which is,
according to the convolution theorem, simply multiplication in Laplace domain (L[G ∗H] = G(s)H(s)).
This motivates the introduction of block diagrams that represent the flow of signals for linear systems,
one such example of an open loop system containing system dynamics G(s) and sensor response H(s)
is shown in figure 5.

G(s) H(s)
X(s) Y(s) V(s)

Figure 5: Block diagram illustrating signal flow from the input X through the system dynamics G to
the output Y. The signal then flows through the sensor H to the measured value V.
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Consider a system whose dynamics are described by G(s). The goal of a control system is to have
the system’s output y(t) follow some control signal r(t) as faithfully as possible. The general strategy
consists of two parts: First, we measure the actual output y(t) and determine the difference between it
and the control signal, generating the error signal e(t) ≡ r(t)− y(t). The we apply some ”control law”
K to the error signal to try and minimize its magnitude. An example for such a system following this
general scheme with outside disturbances d(t) and measurement noise ξ(t) added is displayed in figure
6.

K(s) G(s)
E(s) U(s)

Y(s)

D(s)

ξ(s)

-
R(s)

+

H(s)+

Figure 6: Block diagram illustrating closed-loop control of a system G(s), subject to disturbances D(s),
through sensor H(s) with measurement noise ξ(s). Controller dynamics are described by K(s). The
control signal is given by R(s).

From the block diagram in figure 6, it is easy to determine that Y (s) = K(s)G(s)E(s) +D(s), and
since we defined the error signal as E(s) = R(s)− (Y (s)H(s) + ξ(s)), we’ll get the relation between the
output and the control signal and noise (the closed loop dynamics):

Y (s) =
KG

1 +KGH
[R(s)− ξ(s)] +

1

1 +KGH
D(s) (4.34)

Now we can use this very general scheme, to analyze some basic properties of feedback systems. Firstly,
let’s consider the case where there is no measurement noise, i.e, ξ = 0. In such a case, we can clearly
see in eq. 4.34 as the loop gain (defined as L(s) ≡ K(s)G(s)) gets larger, the output tends to track
the control signal better while increasingly rejecting disturbance (K(s)G(s) >> 1 ⇒ Y (s) ≈ R(s)).
System stability should also be taken into account when designing such a control system, as the higher
the gain the more the systems tends towards instability.

Secondly, let’s consider a system with measurement noise, but no non-trivial measurement dynamics
(H=1). We can also already see one the most common trade-offs in designing a control system, high
gain would increase the feedback bandwidth which would help reject disturbances (as mentioned above).
On the other hand, the control signal effectively becomes r − ξ (the system has no way to distinguish
the control signal from the measurement noise). Thus the higher the gain the more the measurement
noise is amplified as well. This trade off may also be expressed by re-writing eq. 4.34 as:

E0(s) = R(s)− Y (s) = S(s)[R(s)−D(s)] + T (s)ξ(S)

T (s) ≡ KG

1 +KG

S(s) ≡ 1

1 +KG

(4.35)

Where we defined here the tracking error, E0(s), i.e., the difference between the control signal and the
actual output (as opposed to E(s) which is the difference between the control signal and the measured
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output). In eq. 4.35 we also defined two functions, S(s), known as the sensitivity function, and T(s),
known as the complementary sensitivity function, because S(s) + T (s) = 1 at all frequencies. This is
a fundamental obstacle, which reads - if S is small and disturbances are rejected, then T is large and
sensor noise feeds through, and vice versa.

4.6.2 Discrete PID controller

Probably, one of the most common forms for K(s) is the PID controller, which is a combination of
proportional, integral and differential control. The control dynamics in time domain and frequency
domain are:

u(t) = Kpe(t) +Ki

∫ t

0
e(t′)dt′ +Kd

∂e(t)

∂t

K(s) =
U(s)

E(s)
= Kp +

Ki

s
+Kds

(4.36)

Choosing these parameters, Kp, Ki and Kd can be done in all sorts of different ways, with many
methods from manual tuning to more analytical existing in the different literature.
In this work, and also very common today in most realizations, the control system is implemented
digitally, and once needs to be careful when moving from continuous to discrete systems. Firstly, when
moving to digital systems, the input signal must be low-pass filtered to avoid aliasing, according to the
Nyquist sampling theorem. Effects of aliasing in time-domain and frequency domain, when no such
filtering is done, is presented in figure 7, adapted from [24].

Figure 7: Effects of aliasing in frequency and time domain. (a) shows a sampled signal where the
maximum frequency of the power spectrum of the continuous signal is less than the Nyquist frequency.
The sampled spectrum faithfully represents the continuous one. In (b), the maximum frequency excess
the Nyquist frequency, resulting in aliased spectra overlap, distorting the estimation of the continuous
spectrum. (c) shows this effect in time domain, where a high frequency continuous signal (solid curve) is
sampled at a larger sampling period (Ts) than needed by the Nyquist criterion. The apparent measured
points (large dots) are interpreted as resulting from a much lower frequency signal (dashed curve).

The common tool to analyze discrete systems is called the ”Z transform” and is derived by intro-
ducing the variable z = esTs to the Laplace transform of a sampled signal with sampling period Ts
[24]:

Z[f ] = L[fs(t)]

∣∣∣∣
z=esTs

= L

[ ∞∑
n=0

f(t)δ(t− nTs)

]∣∣∣∣∣
z=esTs

=

∞∑
n=0

fnz
−n (4.37)

Using the non-symmetric approximation for the derivative and the Trapezoidal method for estimat-
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ing the integral, we can approximate the derivative and integral, in time domain:

∂y(k · Ts)
∂t

≡ D[k] ≈ y[k]− y[k − 1]

Ts∫ k·Ts

0
y(t)dt ≡ I[k] ≈ I[k − 1] +

y[k] + y[k − 1]

2
· Ts

(4.38)

The Z-transform has the well known time shifting property:

Z{x[k]} ≡ X[z] ⇒ Z{x[k − n]} = z−nX[z] (4.39)

Using equations 4.39 4.38 and substituting in the PID controller, we get the approximate discrete
transfer function of a PID:

K[z] =
U [z]

E[z]
= Kp +Ki

Ts
2

z + 1

z − 1
+Kd

z − 1

zTs
=

=

(
Kp +Ki

Ts
2 + Kd

Ts

)
z2 +

(
−Kp +Ki

Ts
2 −

2Kd
Ts

)
z + Kd

Ts

z2 − z

(4.40)

Re-arranging eq. 4.40 and transforming back to time domain, we’ll get the simple implementation
of digital PID controller:

u[k] = u[k − 1] + ae[k] + be[k − 1] + ce[k − 2]

a =

(
Kp +Ki

Ts
2

+
Kd

Ts

)
b =

(
−Kp +Ki

Ts
2
− 2Kd

Ts

)
c =

Kd

Ts

(4.41)

5 Experimental setup

5.1 Trap design

5.1.1 Geometric configuration

As discussed in subsection 4.1, in order to control the trap parameters ai and qi one needs to apply both
DC and RF voltages in a fashion compiling with eq. 4.3. Some considerations taken while designing
the traps are the optical access for lasers and imaging, the distance between the electrodes and ions
and bias and compensation voltages. The final design is shown in figure 8.

Optical access. The use of laser cooling requires one to apply a laser field with ~k having components
on all primary axes of motion in the trap, while optical pumping schemes require aligning the re-pump
laser with the magnetic field (quantization axis). State detection is done via imaging of spontaneous
emission, requiring another optical access line with as high as possible numerical aperture. Lastly,
for best isotope selectivity while loading ions, it is preferable that the ionization beam (399 nm) will
be as perpendicular as possible to the oven emitting very hot atoms, in order to reduce the Doppler
broadening of their absorption spectra as much as possible.

The distance to near electrodes, denoted d0, is the single most important parameter defining the
ratio between the applied voltage and the resulting potential interacting with the ion. As a result, this
also affects the trap secular frequencies, which has many implications on cooling, manipulation and
detection. Secular frequencies scale as ∼ 1/d2

0, and the typical secular frequencies are a few MHz. In
order to achieve this with less than 1kV applied to the RF and DC electrodes, the distance to the x-y
plane electrodes should be kept no larger than ∼ 1 mm.
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Bias voltage and all axes compensation. According to 4.3, the middle DC electrodes in our
segmented DC electrodes should be grounded, resulting in a degeneracy of the radial modes - from
symmetry of the design the x and y secular frequencies will be the same. This doesn’t enable efficient
laser cooling, and thus this degeneracy needs to be lifted. This is done by using the middle bias
electrode which is typically set to just a few volts. Lastly, as explained in 4.12, stray fields cause excess
micro-motion which does not scale down with the ion temperature, and we need to allow correction
in all 3 axes. The axial direction is compensated by applying a differential mode the end caps and
similarly, the DC direction is compensated with differential mode applied to the bias electrodes. This is
not easily done the same way to the RF electrodes, and to allow compensation in the RF axis, another
electrode is added at the bottom of the trap (RF Compensation in figure 8).

Lastly, a grounded electrode is added at the bottom of the trap, allowing us to drive AC current,
which results in AC magnetic fields being applied to the ion, this can be used with RF and MW fields
to couple between Zeeman and hyperfine levels of the ion.

DC

RF

Endcap 1

RF

Endcap 2
DC Bias 1

RF

Compensation
AC Current

0.8 mm

2 mm

RF

DC

Figure 8: Trap design. (a) shows a view from the front, the design was made such that optical access
is available along the trap axis. (b) shows a view from the top and the dimensions of the trap center.

~B

Trap axis

369nm, 935nm, 760nm

Yb Oven

399 nm

Figure 9: Laser beam orientation inside the trap
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Figure 9 shows the optical configuration of the trap, with the imaging axis directed along the axis
perpendicular to the page. The ionization beam is applied as perpendicular as possible to the oven,
to reduce Doppler broadening. The re-pump lasers are currently not applied through the quantization
axis, as for this work no optical pumping is needed.

5.1.2 Electronic circuit

Reaching the desired secular trap frequencies of few MHz requires applying very high voltage (hundreds
of volts) to the RF electrodes at a frequency of tens of MHz. Common RF amplifiers does not reach such
high voltages, and moreover they are not designed to match the high impedance of the RF electrode
to the ground (caused by the very small capacitance between the electrode and the ground). For this
purpose a helical resonator is used which amplifies the input voltage while performing the required
impedance matching. The resonator used in this work has a measured Q factor of ∼ 500, and a
measured center frequency of 18.85 MHZ. The helical resonator couples RF power from the amplifier
into the trap, by a small wire loop inside a cylinder. Energy is coupled via magnetic field produced
by the current running in the loop, inducting current on the cylinder. A comprehensive discussion and
design guidelines can be found in [25]. Between the amplifier and the resonator a (reversed) directional
coupler is inserted, allowing for reflections from the resonator to be monitored by an oscilloscope, then
the coupling of the RF power can be optimizing by slightly adjusting MR (moving the coils), and the
RF frequency and trying to minimize the reflections from the coupler.

VRF MR

RR

CR

RF electrode

Ct

DC electrode

Rf

Cf
VDC

Helical Resonator

Amplifier
Coupler

Figure 10: Schematic diagram of the electronic RF and DC circuits.

Connecting each of the mentioned DC electrodes is done through an high capacitance (Cf ) low-pass
filter as shown in Figure 10, to overcome parasitic capacitance coupling between the RF electrode and
the DC electrode (denoted Ct) and keep the DC electrode close to the RF ground, it also helps isolate
the DC source from the RF. Since the approximate capacitance for our geometry is in the order of
Ct ∼ pF , A capacitor of Cf = 220nF was chosen, suppressing the RF voltage with about 5-6 orders of
magnitude from the DC electrodes. The resistor Rf was chosen accordingly, as Rf = 1kΩ, amount to
about 700 Hz bandwidth (far from trap secular frequency) of the low-pass filter , to filter DC source
noise - Assuming trap secular frequencies are at the order of 1 MHz, we’ll get approximately 60 dB
attenuation of the noise at that frequency.

5.2 Laser systems

Semiconductor diode lasers have found wide variety of applications in a very broad range of fields,
atomic physics being one of them, due to their considerably lower cost, small size, high reliability
and more, as compared to the traditional tunable dye or Ti-Sapphire laser. Diode lasers are basically
forward biased p-n junctions, in which charge carriers flow through the junction, due to the voltage
applied, then they recombine, emit radiation and produce the required population inversion between
the conductance and valence energy bands. The other requirement for lasing, the optical cavity, is
created between the facets of the diode itself, the back facet is coated with highly reflected material

19



while the front facet is usually uncoated and reflects due the Fresnel reflections (difference in index of
refraction between the semi-conductor and the air).

Typical diode lasers size is in the mm range, resulting in Free Spectral Range of FSR = c/2L ∼ 100
GHz (where L is the cavity length and c is speed of light), whilst the gain profile of a semiconductor is
usually very wide (several nm - spanning multiple cavity modes). This results in multiple longitudinal
modes lasing simultaneously, and also each mode is very wide (tens of MHz) due to its low finesse and
small size.

Thus, unmodified, the diode laser’s frequency tuning, linewidth and optical spectrum (multi-mode)
are far from ideal, which greatly reduces their utility. These characteristics can be improved by the use
of optical feedback to control the wavelength of the laser. There are some possible techniques to do so,
one popular approach is by the use of an external cavity diode laser (ECDL) [26].

5.2.1 External Cavity Diode Laser

To overcome this shortcomings, it is possible to put the diode laser (with or without anti reflection
coating on its output facet) inside an external cavity, with some frequency-selective optical feedback to
the diode. One common configuration, which is used in this work, is called the ”Littrow” configuration,
and it consists of the diode laser, a collimating lens and a diffraction grating, from which the first-order
diffracted light is fed back to the diode, while the directly reflected light forms the output beam [27],
this configuration can be seen in figure 11.

Figure 11: Schematic diagram of an ECDL in Littrow configuration. Adapted from [28]

Incident beam at angle θ will be diffracted from the grating according to the grating equation:

mλ = d(sin θ + sin θ′) (5.1)

Here, m is the order of the diffraction, λ is the wavelength, d is the distance between adjacent grooves
on the grating and θ′ is the wavelength dependent reflection angle. In Littrow configuration, the first
order (m = 1) reflected beam is fed back to the laser (θ′ = θ), resulting in:

λ = 2d sin θ (5.2)

The result is the output laser beam has usually only one longitudinal mode - due to the wave-
length selectivity of the grating acting as a spectral filter and narrowing the gain profile to be much
smaller. Moreover, the significantly larger dimensions of the external cavity (few cms), reduces this
mode linewidth to be about 1 MHz or even less.
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5.2.2 ECDL design

Our own ECDL design is shown in figure 12. Unlike common designs, there is no piezoelectric actuator
used to stabilize the grating angle, it is fixed once and then tightened well with the screws. Stabilization
will only use current and temperature. Grating used are Thorlabs’ holographic gratings, where the
distance between the grooves is chosen according to the wavelength, such that the output angle (eq.
5.2) will be about the same (about 20 degrees in this case), allowing us to create the same casings for
all of our lasers, this happened to be 2400 grooves/mm for the UV/blue lasers and 1200 grooves/mm
for the IR/red lasers.

Grating

Laser diode

Collimating lens

Zero order output

Figure 12: ECDL design used in this work, without any PZT.

5.2.3 Wavelength tuning

There are a few ways to tune the wavelength of an ECDL, each with its own characteristics of timing
and bandwidth

Grating angle The first parameter that can be adjusted is the grating angle, which changes the
wavelength which is fed back to the diode laser according to eq. 5.2. This is very coarse tuning, and in
practice this is almost never adjusted after the first initial setup, only temperature and current are used
for daily set-point configuration. The technique used to properly align the grating angle uses the fact
that laser operation is characterized by a liner PI curve (power as a function of current) above some
threshold and almost zero power below the threshold. Feeding back laser power to the diode, results in
a PI curve which has smaller slope (some of the power is used for feedback), but lower threshold current
(see figure). Thus, by setting the current to just above the threshold current and then slowly changing
the grating angle will result in a very very small angle ranges in which the output power gets larger
considerably, when the cavity is closed and the laser is fed back exactly to the diode. This phenomenon
is called ”flash”, and it is usually visible with naked eyes.

Temperature There is an approximate linear relationship between temperature and center wave-
length for diode lasers (typical coefficients are ∼ 0.03 nm/◦K ), this occurs due to thermal expansion
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of the diode which changes the cavity length. Therefore the temperature is stabilized as explained in
5.2.4, and the controller set point is tuned, alongside current, to achieve the desired frequency. This
parameter allows for changes over a large range of frequencies, but it is difficult to make small changes
in, thus useful for coarse tuning (less than grating, more than current). Also, the time for tempera-
ture change to occur and stabilize is very long, and so it cannot have a large enough bandwidth for
stabilization.

Injection current alters the lasing chip temperature via Joule heating, and thus has a similar linear
relationship to the wavelength. Unlike external temperature control which heats / cools the large bulk
housing of the ECDL, injection current raises the temperature internally inside the diode itself and so
it allows for much faster and more accurate tuning, alas over a small possible range, leaving it as the
finer tuning used after temperature and grating angle were set. The current also increases the carrier
density withing the lasing medium, affecting the refractive index, but above the threshold current the
carrier density is clamped and this effect gets negligible, leaving only the thermal mechanism at low
frequencies (below ∼1 MHz). For current stabilization and set point adjustment we use an analog
current driver circuit designed in BYU[29][30].

Mode Hopping Figure 13 depicts typical temperature dependence of the wavelength, it shows non-
continuous regions with linear dependence. This non-continuity is called a mode hope, and it appears
when the peak of the gain medium has shifted too far in the tuning process, that a different longitudi-
nal mode lases instead. This figure is shown for temperature dependence but the current dependence
shows the same mode hop phenomenon, thus its true to look at a 2D stability region maps of temper-
ature and currents. For this reason, while tuning the laser wavelength, adjustments needs to be made
simultaneously for temperature and current.

Figure 13: Temperature dependence of single-mode wavelength of a diode laser at constant power.
Taken from Newport’s application note [31].
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5.2.4 Temperature stabilization

Stabilization of temperature is performed using a digital PID control system implemented in Arduino
uno, as explained in section 4.6.2. The temperature is measured using a self-built circuit, measuring the
resistance of a Thorlabs’ TH10K thermistor relative to some reference resistor (chosen to be 11.5kΩ for
most lasers), using Texas Instruments’ ADS1148-Q1 16-bit Analog-to-Digital Converter (ADC) with
integrated programmable gain. The Arduino’s digital output is converted to analog voltage using a
DAC, and then fed into a Thorlabs’ Thermoelectric cooler (TEC3-2.5).
With the settings we used of Vref = 2.05V, gain = 32, the measurement is performed with a full-scale
range of ∼ 2.9kΩ and an LSB of ∼ 4.4Ω. The thermistor temperature dependence is not linear but in
a small range can be approximated as linear, which gives corresponds to a full-scale range of ∼ 5.6◦K
and an LSB of ∼ 85µK.
A typical temperature tuning coefficient is 15GHz/◦K, which means that the best frequency resolution
that can be achieved due to temperature control is roughly 1.30MHz. The in-loop measurement (the
signal being stabilized) of the ADC is shown in figure 14, while the un-stabilized measurement is shown
in figure 15.

Figure 14: Stabilized temperature of the 935nm ECDL’s case. On the left the transient response for
setpoint change is shown, while the right deceits the steady state measurements (zoom in of the last 5
minutes) - where the quantization effect of the stabilization is apparent.

23



Figure 15: Free running temperature of the 935nm ECDL’s case.

5.2.5 Stabilization

The noise spectrum of the laser’s frequency leads to an effective linewidth which can be though of
as broadening of the laser’s spectrum around its central frequency[32]. From this treatment, we can
see that the laser linewidth is dependent on the timescale over which it is evaluated, and typically a
laser can contain very different fast and slow components. Thus usually, one describes the linewidth
as the ”fast” fluctuation (faster than the spectroscopic interaction time, typically tens or hundreds of
microseconds, a few milliseconds in our case), and the low-frequency fluctuations cause jitter of the
central spectral line in frequency space. Locking the laser can reduce the linewidth and also suppress
drift over time.
Stabilization of a laser (or laser locking) means keeping its frequency fixed to an external frequency
reference, i.e., reducing the frequency fluctuations between the laser and the reference. It revolves
generating some error signal with respect to the reference, feeding it to some electronic control circuit
(digital or analog) and feeding the output back to the laser, where common references usually used are
Fabry-Perot cavities, atomic transitions and more.
In this work, no ultra-narrow lasers are needed, so a digital feedback system was created (slower than
analog circuits, but much easier to implement and adjust), using a WS30 HighFinesse wavelength meter
as a frequency reference. Since the same wavelength meter is used for all 4 lasers (and also 4 more from
our 88Sr+ experiment), a system for time multiplexing the different lasers composed of 2 Acostu-Optic
Tunable Filters (AOTF), 8 DDS and dichroic mirrors was built. The computer sends the relevant RF
signal to the filters deciding which wavelength will arrive at the wavemeter, perform the measurement
and continuing to the next laser, as shown in figure 16. The current which is a high loop bandwidth
(fast response), is used to stabilize the frequency to the desired setpoint using a digital PID controller.
When current modulation gets too large, usually the diode mode hops, and the laser lock breaks, to
compensate for that, a second low bandwidth digital PID was added, which tries to minimize the
current modulation via temperature modulation.
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Wavemeter

760 nm

935 nm

369 nm

399 nm

AOTF

AOTF

Computer

Figure 16: Wavemeter switch used in this work to stabilize 8 lasers to a single Highfinesse wavelength
meter.

As mentioned in 5.2.2, the two parameters used to set the wavelength are temperature and current,
and both are used for stabilization as well, in a 2 feedback loops control system, shown in figure 17.

Laser Wavemeter

Frequency

setpoint

-

Current
PID
(fast loop)

Temperature
PID

(slow loop)

Temperature
modulation

Current
modulation

Figure 17: Laser frequency stabilization feedback system, consists of 2 loops. The fast one stabilizes
the laser frequency to about 1 MHz using current modulation. The current modulation output itself is
then fed back to a slow loop which modulates the temperature, trying to minimize current modulation.
This scheme allows for the lock to run for a considerable amount of time before mode hops due to
current modulation gets too large.

The stabilization result is shown in figure 18. In both the free running (blue) and locked (red)
signals, temperature is stabilized.
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Figure 18: Ten minutes of in-loop frequency measurements of 369nm laser using the wavelength meter.
Stabilized signal is in red and free running in blue, while the black dashed line is the frequency setpoint
for stabilization.

5.2.6 Beam lines

All graphical components are taken from [33].

369 nm For Yb+ ion’s 369.5nm S1/2 − P1/2 transition (Γ/2π = 19.6MHz), according to Eq. 4.24:

Isat = 8.08
[
mW
cm2

]
. The calculated beam waist of the 369 beam on the ion is approximately 60µm,

resulting in Psat = 0.2µW . In this experiment we shine the 369 laser with power of about 6 µW ,
resulting in s0 = P/Psat ≈ 30.
The laser is transmitted to the ion through a Brimrose TEF-150-100-370 Acousto Optic Modulator
(AOM) in a double pass configuration, allowing to scan very quickly the laser frequency in almost 200
MHz range, which can be used both for off-resonance and on-resonance cooling, as well as acquiring
the absorption spectrum for this transmission.
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Figure 19: Beam line for the 369 ECDL

399 nm For the natural Yb S1 −P1 transition, a laser tuned to 389.9 nm was used, stabilized to the
wavelength corresponding to the desired isotope, according to table 1. The output power received is
about 20 µW , and is focused to a calculated beam waist of about 100 µm as well.

Wavemeter

Ion

Figure 20: Beam line for the 399 ECDL

760 and 935 nm For the re-pump lasers, both are jointly coupled to a single fiber going into the trap,
but independently going to the wavelength meter switch for stabilization of the desired wavelength.
The 760 nm output power is about 300 µW focused to a calculated beam of about 80 µm, while the
935 nm output power is about 1 mW focused to about 100 µm beam.
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Figure 21: Beam line for the 760 and 935 ECDLs

5.3 Imaging system

u
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Figure 22: Imaging system used for fluorescence detection

The imaging system used to view the ion fluorescence is shown in figure 22. It is composed of an
objective with a working distance of about 3.7 cm, and a Numerical Aperture (NA) of approximately
0.32, an oval lens and an Electron-Multiplying Charge Coupled Device (EMCCD) camera. The camera
used is Andor Luca S 658M, which provide quantum efficiency of about 40% in the required wavelength
and x200 EM gain.

The diffraction limit of a single very small emitter (like a trapped ion), is defined (according to
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Abbe criterion) as the radius of the formed Airy disk:

r = 1.22
λ

NA
= 1.22

369.5nm

0.32
≈ 1.15µm (5.3)

This is the minimal distance between objects that will be distinguishable in a diffraction limited system.
Our camera is positioned about 25 cm from the lens, and the ion is imaged onto our camera with a
magnification that is determined by the distance from the camera to the lens, in the following manner:

1

f
=

1

v
+

1

u
⇒ v =

uf

u− f

M =
u

v
=
u− f
f
≈ 5.67

(5.4)

where u is the distance from the lens to the camera, v is the distance from the lens to the object, and
f is the lens focal length.
Since the size of a single pixel in the Luca camera is 10x10 µm, the ion is expected to be projected
to about 1 pixel in the final image. This is usually not wanted, and we plan on distancing the camera
further from the system in order to enlarge the magnification.

5.4 Vacuum system

Trapped ions require Ultra High Vacuum (UHV) systems, in order to avoid, as much as possible,
collisions with the background gas atoms. These collisions usually do not kick the ion our of trap due
to its large depth, but it can certainly heat the ion and from time to time change its internal state
damaging the results (in Yb+, for example, it can cause non-radiative decay to the very long lived
F state). Also, in certain species, chemical reactions can occur between the ion an the surrounding
hydrogen resulting in a stable molecule and a need to load a new ion instead (in Yb+ this is less common
than other species). Luckily, UHV is a commercially available technology, and reaching as low as a few
10−11 Torr is possible (alas, not easy) with correct material choice and design. The vacuum system
used here is composed of the following parts: chamber, vacuum pumps, valve, viewport windows and
electrical feedthrough, and is displayed in figure 23.

Ion pump

Valve

Chamber

Viewports

Electrical feedthrough

Figure 23: Vacuum system components
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The chamber used is a Kimball 2.75” Spherical Hexagon vacuum chamber, with internal volume of
about 74 cc. The top facet has a 2.75” CF viewport used for the imaging system, the bottom is used
for an electrical feedthrough to the trap, and out of the 6 side facets, 4 has optical viewports installed
for laser input, one facet has the ion pump connected and the last one have the RF input from the
helical resonator.

5.4.1 Pumps

The pumps role is to actively pump out gas from the chamber to reduce its pressure. Three types of
pumps are used in our system, each with its own use.
Initially, a mechanical HiCube 80 Eco pump was used, it is composed of a diaphragm pump and a
turbo-pump as well. It is well suited for high pressures going down from 1 atmosphere to about 10−6

Torr, and then it becomes inefficient. Moreover, mechanical pumps induce large vibrations which could
interrupt the experiment, therefore the mechanical pump is used for the first stage, until 10−6 Torr is
reached and then the valve is closed and the pump is disconnected.

Ion pump ionizes the gas with a cloud of swirling electrons confined in a strong magnetic field. It
also employs a strong electrical potential, typically 3-7 kV, which causes the ionized gas to accelerate
into and be captured by the solid electrode. Ideally, ion pumps can reach pressures of down to 10−11

Torr, but cannot start at 1 atmosphere, thus they are used as a second step after mechanically pumping
first. The ion pump used in this work is Gamma Titan 3S.

NEG Non-Evaporable Getter (NEG) pump is made of various alloys which chemically absorb gases
(mostly porous allows or powder mixtures of Al, Zr, Ti, V and Fe). Once absorbed, the gas atoms
create strong chemical bonds, and thus not easily removed, thus this pump has a finite capacity. It
is possible to activate it by heating it (usually by driving current in resistive heating wires), thus
removing the passive or saturated surface layer of the NEG. The NEG used in this work is SAES
Getters’ ST172/NP/TI/HIT-L/16-10/300C.

5.5 Ytterbium Oven

As explained in 4.5, loading the trap with Yb ions, involves vaping atoms from a bulk of solid Ytterbium.
In room temperature the vapor pressure is much too low to sufficiently load ions, and thus one needs to
heat the sample. For best efficiency for the loading, a control oven the size and direction of the atomic
beam is needed, and it is done by creating an oven for the Yb. This is done by taking a stainless steel
tube of about 1 mm diameter, and clipping one side of it, then 2 stainless wires are point welded to both
ends of the tube, allowing for current to flow through the tube and heat it (an improvement in heating
is possible with much lower current, if a resistive heater is used adjacent to the tube, instead of driving
the tube itself). The oven then gets filled with a bulk of Yb solid, and is placed inside the chamber,
approximately 2 cm from the trap, as perpendicular as possible (to reduce Doppler broadening of the
neutral S-P transition, and allowing better isotope selectivity while loading). It is better to try and
shorten the time between exposing the Yb to the air and sealing the vacuum, to avoid oxidation as
much as possible.

The oven was then checked by shining the 399 nm laser near the output of the oven while driving
current, and looking for fluorescence from the atoms. In our trap, fluorescence is visible with bare eyes
at about 190-200 mA drive current, which means there a lot of atoms in the chamber at that stage.
For loading, the drive should be less, in our case usually 140 mA is used.
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6 Experimental results

After locking all our lasers to the required wavelengths, building the vacuum chamber and acquiring
the needed pressure, connecting the required electronics to the trap and tuning the imaging system, we
are ready to begin loading ions into the trap.

Determining the 399 wavelength, coarsely, is done by heating the oven to a pretty large temperature
while applying the 399 nm laser continuously. At high enough atom density, when the laser frequency
is scanned, the fluorescence from the neutral atoms is visible even with a naked eyed. An example of
such neutral atom fluorescence can be seen in figure 24. This image was taken from [13] in our Sr trap,
but it looks the same in the Yb trap, though no picture was taken.
This test is also done to make sure the oven is designed well enough and is capable of forming a sufficient
Yb atoms flux. While loading, the flux can be significantly lowered by flowing a smaller current through
the oven and heating it much less.

Figure 24: Picture of a Sr oven emitting high temperature neutral Sr atoms. The oven is heated by
large current (thus the red color), and the atoms interact with the 422 nm laser tuned to the S-P
transition. Similarly, the Yb oven was tested against the 399 nm laser.

Loading starts with heating the Yb oven, while shining all lasers into the trap center. The 369
laser should be very red detuned at this point (hundreds of MHz), since ions start very hot, and the
transition is Doppler broadened. After the ion is loaded, we began seeing photons emitted from the
trap center. At first, a large cloud of ions was spotted, due to a large number of ions trapped there.
While imaging the cloud, we were able to better optimize the trap configurations (lasers frequency,
lasers orientation, lasers focus, imaging focus, and compensation for DC electrodes).
Then, when configurations were better optimized, the same loading process was repeated, this time
much slower (i.e., smaller current flowing through the oven produces a smaller rate of ionization). This
resulted in the trapping of a single very well localized ion as seen in figure 25.
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∼ 250µm

Figure 25: Single trapped 176Yb+ ion. On the left a full sized image showing light reflected for the trap
electrodes which are separated about 250µm from each other. On the right a zoomed in image showing
only the photons emitted from the single ion.

Currently, when starting from a cold oven, loading process usually takes about a minute or two,
and the ion lifetime in the trap is usually a few hours. We’re currently not sure what is the limiting
process for the ion lifetime in the trap, but we have some evidence of electronic noise in our trap as
will be mentioned in 6.1. In the near future, we plan on better characterizing it, and trying to mitigate
it and expand the ion lifetime in the trap.

6.1 Fluorescence curve

The resonance frequency of the 369.5 nm transition for 176Yb+ is determined by scanning the laser
frequency and measuring the resulting fluorescence. The frequency scan is performed in a random
order, and between each measurement a two seconds cooling interval is performed. The fluorescence
counts are recored in sixteen 100 ms intervals. The counts are averaged and background subtracted.
Because of mechanical effects of the laser scattering, the ion is heated on the blue side of the resonance
(i.e., in frequencies above the resonance frequency), and by that gets Doppler shifted off resonance.
This effect results in a characteristic half-Lorentzian line shape [34], where the standard procedure is
to identify the drop-out as resonance. The counts, plotted against the laser frequency and fitted to a
Lorentzian line shape with an exponential decay are shown in figure 26.

32



Figure 26: Fluorescence curves of a single 176Yb+ ion for two different laser power, fitted to an half
Lorentzian. This typical half-Lorentzian is obtained due to mechanical effects - blue detuned photons
give energy to the ion, resulting in heating the ion and Doppler shifting it from resonance.

The data collected is fitted to the following function (half Lorentzian with exponential decay), with
three free parameters:

F =
b

1 +
(
x−ν0
d

)2 ·H(ν)

H(ν) =

{
1, ν <= ν0

exp
(
−ν−ν0

e

)
, ν > ν0

(6.1)

From this fit the central frequency of the transition, ν0, and the Lorentzian width, d, are extracted:

ν0 = 811290163.1± 3.2MHz

d = 35.6± 1.6MHz
(6.2)

6.2 Linewidth

The Lorentzian width (d in eq. 6.2) is composed of the natural linewidth rising from spontaneous
emission, but it is also power broadened according to eq. 4.24 and is given by: d = Γ

2

√
1 + s0. The

value of s0 parameter is hard to determine with good accuracy since the power meters in our lab are
not programmed for this wavelength, and also the beam waist exactly at the trap center is hard to
measure. Thus, the natural linewidth, Γ, can be evaluated by taking a few fluorescence curves as above,
while scanning the intensity of the laser, and extracting it from these measurements. This was done,
and the value measured is:

Γ = 18.8± 9.1MHz (6.3)

Currently, we only done this to two different laser intensities, so the natural linewidth was extracted
with very high uncertainty, In the very near future we will perform more measurements and improve
on it. But still, comparing the mean value acquired with the known value of Γ0 = 19.6MHz [1], we see
a good fit which makes us believe this measurement makes sense.

Note: There exists another broadening to the line shape, resulting from different Zeeman levels. The
laser light is applied with linear polarization, and is not perpendicular to the quantization axis. This
means it have polarization components in all 3 axes (π, σ+, σ−), which means it can induce transitions
between all Zeeman levels (i.e., ∆m = 0,±1 are all allowed). The transition is from the S1/2 level
to the P1/2 level, and there is no hyperfine splitting in this isotope. Which means that at non-zero
magnetic field, as we work in our lab, there is a Zeeman splitting at both levels. The resulting measured
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emission spectrum is actually composed of three different transitions, with slightly different resonance
frequency, one from m=-1/2 to m=1/2, the other from m=1/2 to m=-1/2 and lastly the m=±1/2
to m=±1/2. Since all these transitions occur independently, the resulting observed line profile is a
convolution between all 3 Lorentzian. The Zeeman splitting from the magnetic field applied in our lab
is in the order of ∼1 MHz, well below our resolving resolution. Thus, the convolution result is a slightly
wider Lorentzian. To completely take this into account one needs to solve the Bloch equation for all
Zeeman sub-levels as well, but since it only produces a small broadening in our case (linearly polarized
laser light), this was neglected.
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