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Abstract

The dynamics of coupled nonlinear oscillator systems is often described by the classical
discrete nonlinear Schr€odinger equation (DNLSE). In its simplest version, the DNLSE is
made up of two terms—a nearest-neighbor hopping term and an on-site cubic
nonlinear term. Each of the terms is preceded by a coefficient that can take on either
a positive or a negative sign. Each of the DNLSE versions is derived from a corresponding
equivalent Hamiltonian. The result is a small family of four versions of the DNLSE
Hamiltonian, each with its own associated ground state, all indeed scattered in myriad
of scientific publications.

Here we present a comprehensive picture for the ground states of DNLSE systems,
summarize existing results and provide new insights.

First we classify the four DNLSE Hamiltonians into two pairs according to the sign of
the nonlinear term—a “positive/negative Hamiltonian pair” if the sign of the nonlinear
term is positive/negative respectively. Ground states of the positive Hamiltonian pair
are discrete plane waves in either a ferromagnetic-like or an antiferromagnetic-like
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configuration, depending on the sign of the hopping term. Ground states of the neg-
ative Hamiltonian pair are either unstaggered or staggered site-centered discrete
breathers.

The instantaneous state of a DNLSE system is described by a set of one-parameter
complex functions each with its own amplitude and phase. We show that except for the
sign of the phase, a ground state associated with a positive/negative Hamiltonian is
the maximum energy state associated with the sign-reversed (negative/positive)
Hamiltonian.

Next we discuss some properties of the ground states associated with the
positive-Hamiltonian pair—entropy, temperature, correlations and stability. We extend
our ground state stability discussion to include excited plane waves. We propose to
engineer a specific perturbation that preserves both density and energy—the two con-
served quantities of a DNLSE system—and to test plane wave’s stability based on
entropy change. We show that under such conserved-quantities-preserved perturba-
tion, all excited plane waves are entropy-unstable.

For site-centered discrete breathers—the ground states of the negative-
Hamiltonian pair—we have divided system nonlinearity into two ranges and wrote very
good analytic approximations for the breathers in each range.

Lastly, in a dedicated section, we very briefly discuss the specific implementation of
the DNLSE in the fields of magnetism, optics, and ultracold atoms, emphasizing ground
states. For example, following a 2002 article, we show that the dynamics of a
1d optically-trapped ultracold bosonic atoms, in a rather wide range of system densities
and system nonlinearities, can be described by a particular version of the here-discussed
classical DNLSEs.

Keywords: Discrete nonlinear Schr€odinger equation (DNLSE), Nonlinear systems,
Ground states, Entropy, Temperature, Field correlations, System stability

1. Introduction

A ground state is a special state of a physical system. Defined as the state

of lowest energy (Feynman, Leighton, & Sands, 2011), the ground state for-

mulation almost always constitutes an essential part in the analysis of phys-

ical systems. In Auerbach (2012), for example, the author suggests a search

for the ground state as a first step toward understanding of a quantum

Hamiltonian. Here we look at systems of coupled discrete nonlinear oscil-

lators arranged in a 1d array. The dynamics of these “DNLSE systems” is

taken to be governed by the DNLSE. The simplest two-term DNLSE reads

(Eilbeck & Johansson, 2003; Meier et al., 2004):

i � dUm

dζ
¼ C � Um�1 + Um+1ð Þ + γ � Umj j2 � Um (1)
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where ζ is the evolution coordinate (distance or time),Um(ζ) is the complex

field function of the oscillator at site m, the parameter C is the

nearest-neighbor coupling constant and γ is the unharmonic parameter.

The DNLSE (in numerous variations) appears in the analysis of several

physical systems (Davydov, 1973, 1977; Davydov & Kislukha, 1973, 1976;

Eisenberg, Silberberg, Morandotti, Boyd, & Aitchison, 1998; Jallouli,

Kacem, & Bouhaddi, 2017; Polkovnikov, Sachdev, & Girvin, 2002;

Sato, Hubbard, & Sievers, 2006; Silberberg, Lahini, Bromberg, Small, &

Morandotti, 2009).

DNLSE systems are Hamiltonian systems (Kevrekidis, 2009; Pelinovsky,

2011). The equivalent Hamiltonian from which the two-term DNLSE

(Eq. 1) is derived is made up of two “energy” terms (Eilbeck, Lomdahl, &

Scott, 1985; Lederer et al., 2008; Rasmussen, Cretegny, Kevrekidis, &

Grønbech-Jensen, 2000)—a tunneling energy term (designated H2 below)

(Rumpf, 2008) and an interaction energy term (designated H4 below)

(Rumpf, 2008).

Depending on the physical system being studied, the tunneling energy

term (from which the hopping term in the equation is derived) as well as

the interaction energy term (from which the nonlinear term in the equation

is derived) may each be either positive or negative. For example, if the phys-

ical system studied is an array of light-transmitting optical waveguides close

to each other, then the tunneling energy term is positive (C>0) and the

interaction energy term is also typically positive (γ>0) but can be negative

too (γ<0), depending on the type of the waveguides’ material. If the phys-

ical system studied is a gas of trapped interacting ultracold atoms, then the

tunneling energy term is negative (C<0) and the interaction energy term

is typically positive (repulsive two-body interaction ¼) γ>0) but can be

negative too (attractive two-body interaction ¼) γ<0) (Pitaevskii &

Stringari, 2016, ch. 22).

In this work we focus our attention on the ground states of these DNLSE

systems. We have reviewed existing results sporadically scattered in the liter-

ature, provided new insights, and created a comprehensive, coherent picture

of the DNLSE ground states. (Somewhat surprisingly, in most of the

already-published DNLSE papers, plane wave ground states are not directly

or indirectly discussed, and typically not even mentioned. An exception is a

2009 paper considering “minimum energy” and “maximum energy” as part

of a comprehensive breathers’ stability analysis of a positive tunneling-energy,

positive interaction-energy system (Rumpf, 2009)).
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First we classify the four ground state types into two pairs. The instan-

taneous state of a DNLSE system is described by a set of one-parameter com-

plex functions each with its own amplitude and phase. In consulting the

DNLSE Hamiltonians (Eqs. 5 and 6), it becomes apparent that the set of

amplitudes minimizing the energy of a positive interaction term (of the

Hamiltonian) is very different from the set of amplitudes minimizing

the energy of a negative interaction term. Further, we show below that

for a given first Hamiltonian and a corresponding first ground state, if a

second Hamiltonian is created by flipping only the sign of the tunneling

energy term, then the corresponding same-energy ground state of the sec-

ond Hamilton is obtained from the first ground state by flipping the sign of

all “odd” amplitudes (Mendl & Spohn, 2015; Spohn, 2016). It is therefore

necessary and sufficient to classify the four DNLSE Hamiltonian versions

into two pairs: a “positive/negative Hamiltonian pair” if the sign of the inter-

action energy term is positive/negative. The pair of ground states associated

with the positive Hamiltonian are closely related (odd amplitudes flipped)

and have the same energy. Similarly, The pair of ground states associated

with the negative Hamiltonian are closely related and have the same

energy.

Specifically, ground states of the positive Hamiltonian pair are discrete

plane waves in either a ferromagnetic-like or an antiferromagnetic-like con-

figuration and Ground states of the negative Hamiltonian pair are either

unstaggered or staggered site-centered discrete breathers (Rumpf, 2009).

The Hamiltonian-derived DNLSE equation has only two integrals of

motion (conserved quantities) (Kevrekidis, 2009; Lederer et al., 2008;

Smerzi, Trombettoni, Kevrekidis, & Bishop, 2002) and therefore, for a sys-

tem of more than two sites, has no general analytic solution for all possible

initial conditions (Eilbeck et al., 1985). However, for several sets of specific

initial conditions, analytic or recursive “specific solutions” do exist (Levy,

2016). One specific solution describes a set of discrete plane wave states where

the complex field functions are of equal amplitudes and of equally-spaced

phases (Kivshar, 1993; Kivshar & Peyrard, 1992; Lederer et al., 2008;

Smerzi et al., 2002). If the phases are all equal (zero phase differences)

(Pitaevskii & Stringari, 2016; Polkovnikov et al., 2002) or are π radians apart
(Rasmussen et al., 2000; Rumpf, 2009) then the two corresponding discrete

plane wave states describe the two non-degenerate ground states (disre-

garding the infinite initial-global-phase degeneracy) of the pair of the

positive-Hamiltonian systems.
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Another set of specific solutions describes a set of site-centered discrete

breathers (Rumpf, 2009) (or single-site peaked discrete soliton (Breather)

(Eilbeck & Johansson, 2003), or stationary soliton states (Malomed &

Weinstein, 1996), or nonlinear bound state, standing wave or stationary state

(Weinstein, 1999)). Mathematically, these breathers are described by recur-

sive equations (Malomed &Weinstein, 1996; Rumpf, 2009). The breathers

may be staggered or unstaggered (Kivshar, 1993; Lederer et al., 2008).

These two-type breathers describe the two ground state types of the pair

of the negative-Hamiltonian systems. Both unstaggered and staggered gro-

und state types are number-of-sites-fold degenerate (disregarding the

infinite initial-global-phase degeneracy).

In addition to the Hamiltonian (“energy”), a second conserved quan-

tity of the DNLSE is density (norm, number of particles). A more accurate

and complete definition of the DNLSE system’s ground state would

be—“the smallest value of the Hamiltonian of all possible DNLSE solu-

tions at a given density” (Eilbeck & Johansson, 2003; Rumpf, 2009;

Weinstein, 1999).

We also show below that ground states of the positive-Hamiltonian pair

are maximum energy states of the negative-Hamiltonian pair and vice versa.

DNLSE systems are isolated classical systems. Once the system is

launched with a certain overall density and energy, the system will remain

at the launched values of these two quantities at all distances (times). The

only change during system evolution is the internal diffusive-redistribution

of density and energy among the participating oscillators (Spohn, 2016).

These changes are almost always accompanied by a monotonic rise of sys-

tem’s entropy. DNLSE ground states are exceptions. To be in the ground

state the system must be so prepared. Once the system is in the ground state

“nothing happens,” except for continuous accumulation of a global phase

(quantum-mechanically an unobservable change). We note on passing that

unlike DNLSE systems, all quantum mechanical systems undergo quantum

fluctuations even at their ground states (Greiner, Mandel, Esslinger,

H€ansch, & Bloch, 2002). Ground states’ entropy stays fixed (at a zero value)

at all distances (times). As a curiosity, specific-density “frozen”DNLSE states

(including specific-density ground states) in which even global phase accu-

mulation does not occur, are presented in the text (Levy, 2016). Another

curious case is a two-site systemwhich, under very specific initial conditions,

“glides” into a stationary exited state with a constant-valued entropy during

the entire glide (Levy, 2017).
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Next we proceed to presenting and discussing some basic properties of

the ground states of the positive-Hamiltonian pair—entropy, temperature,

correlations and stability. In the stability section we have extended the anal-

ysis to include excited plane waves. Our stability analysis of these excited

plane waves is based on a specifically engineered perturbation of their phases.

Stability is then tested against entropy change. We show that under such

specifically engineered phase perturbation, all excited plane waves are

entropy-unstable.We note that according to the known linear modulational

instability analysis, the lower-energy plane waves are found to be stable

(Meier et al., 2004).

The on-site nonlinearity degree is proportional to the product of the

normalized unharmonic parameter and the square of the complex field’s

amplitude. For the ground states of the negative-Hamiltonian pair—the

site-centered discrete breathers - we take system’s nonlinearity to be the

nonlinearity associated with the highest-amplitude - the amplitude of

the center field (i.e., system’s nonlinearity is given as jΓ j �uo2 , see below).
We have divided this system’s nonlinearity into two ranges and wrote an

analytic expression for the breathers in each range. These analytic expres-

sions constitute very good approximations to the exact (recursively

calculated) discrete breathers.

Regarding above-minimum-energy systems, indeed we have extended

the current ground states work and summarized our results in the chapter

“Characteristics of equilibrated nonlinear oscillator systems” (Levy, 2021).

In the next chapter then, we discuss the characteristics of equilibrated

DNLSE systems initially excited onto every point of the thermalization zone

of the DNLSE phase diagram.

Finally, in a dedicated section, we look at the abstract 1d DNLSE and its

ground state as it appears in the analysis of physical systems in the fields of

magnetism, optics and ultracold atoms.

Back to the current study, in the following four sections (Sections 2–5)
we first systematically bring together the key equations and the necessary

DNLSE concepts required for the ground states’ discussion. Ground states

of the positive-Hamiltonian pair and their properties are discussed in the fol-

lowing two sections (Sections 6 and 7). Derivation and approximate analytic

expressions for site-centered discrete breathers—the ground states of the

negative-Hamiltonian pair—are presented in Section 8. Section 9 is devoted

to considerations of the DNLSE in relations to actual physical systems in the

fields of magnetism, optics, and ultracold atoms, with eye on the ground states

in each case. Our main observations and results are summarized in Section 10.
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2. Equations

The evolution dynamics of a 1d array of (typically) a large number

(N) of coupled unharmonic oscillators is given by Eq. (1). Throughout this

work, without loss of generality, we will use the notation of optics (evo-

lution coordinate ζ as distance, or z as a normalized distance, with coupled

optical waveguides in mind). The equation consists of two terms—a linear

hopping term, and a cubic on-site nonlinear term. As usual, periodic boundary

conditions (Um+N¼Um) are assumed here too. In many studies, the linear

term includes a diagonal function (�2 �Um) that can be eliminated by a

global transformation (moving to a rotating frame) (Eilbeck &

Johansson, 2003).

Several options for normalizing Eq. (1) are available (Eilbeck &

Johansson, 2003; Kevrekidis, 2009) and are often applied (Polkovnikov

et al., 2002; Silberberg et al., 2009). Here, since signs play an important

role in our study, we shall eliminate the coupling constant from Eq. (1)

except for its sign, following a division by jC j:

i � dUm

dz
¼ signC � Um�1 + Um+1ð Þ + Γ � Umj j2 � Um

z ≡ Cj j � ζ ; signC ≡ sign Cð Þ ; Γ≡ γ
Cj j (2)

In Eq. (2), the evolution coordinate (z)—“distance” (or “time”) is dimen-

sionless. The normalized unharmonic parameter Γ, to be referred-to below

as a nonlinear coefficient, has the units of [Um]
�2. If signC¼ sign (Γ)/� sign (Γ)

then Eq. (2) is a “focusing”/“defocusing” version of the DNLSE

(Kevrekidis, 2009; Rebuzzini, Artuso, Fishman, & Guarneri, 2007) (also

Cf. the optics paragraphs in Section 9).

It is convenient at this point, and indeed done in almost every DNLSE

article, to perform a Madelung transformation to the set of density-angle

canonical polar variables (qm,pm)! (Im,ϕm) in which the complex field

functions (Um(z)) take on the form:

Um ¼ um � ei�ϕm ; um ≡
ffiffiffiffiffi
Im

p
; θm ≡ ϕm � ϕm+1 (3)

Both um(z) and ϕm(z) of Eq. (3) are real functions that obey the following

dynamics (strictly equivalent to the dynamics of Eq. (2)):
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dum

dz
¼ signC �um�1 � sin ϕm�1�ϕmð Þf g+ signC �um+1 � sin ϕm+1�ϕmð Þf g

dϕm

dz
¼�signC �um�1

um
� cos ϕm�1�ϕmð Þ� signC �um+1

um
� cos ϕm+1�ϕmð Þ

�Γ �u2m
um+N ¼ um; ϕm+N ¼ϕm (4)

3. Conserved quantities

Energy. Eq. (2) can be derived from a Hamiltonian Ha U, i � U∗� �� �
which is a conserved quantity, associated with the system’s time translation

invariance (Pelinovsky, 2011; Roberts, 2020):

Ha U, i �U∗� � ¼ XN
m¼1

signC � U∗
m � Um+1 + Um � U∗

m+1

� �
+

Γ
2
� Umj j4

n o
(5)

The variables (Um, i �U∗
m) are canonical variables. Adopting the assignment

qm¼Um; pm¼ i �U∗
m (Eilbeck & Johansson, 2003; Kevrekidis, 2009;

Mendl & Spohn, 2015; Mithun, Kati, Danieli, & Flach, 2018;

Pelinovsky, 2011), Eq. (2) is derived from the Hamiltonian (5) as dUm

dz
¼

∂Ha

∂ i�U∗
mð Þ. We note here that if inverted-order assignment of canonical vari-

ables is adopted ((qm,pm)! (i �U∗
m, Um)) (Sergej & Gorbach, 2008;

Rasmussen et al., 2000), then the sign of the derived DNLSE will be

inverted as well. Of course, inverted order of the canonical variables is

equivalent to a sign-inverted Hamiltonian (Lederer et al., 2008). We show

below that indeed the statistics of DNLSE’s is Hamiltonian-sign

independent.

However, when it comes to identification of system’s ground states, the

sign of the interaction energy term of the Hamiltonian matters. Note that indeed

the sign of the hopping term in (2) (and thus the sign of the tunneling

energy term in the Hamiltonian) does not play a role in this respect since

it can be flipped through the gauge transformation Um! ei�π�m �Um

(Mendl & Spohn, 2015; Spohn, 2016). We are therefore making here

the important identification of a positive/negative interaction term with a

“positive/negative-Hamiltonian pair.”
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In the polar variables of Eq. (3) (Im,ϕm), the DNLSEHamiltonian (Eq. 5)

takes on the form:

H2 zð Þ ¼ signC �
XN
m¼1

2 � umum+1 � cos θm ; H4 zð Þ ¼
XN
m¼1

Γ
2
� u4m

Ha ≡ H2 zð Þ + H4 zð Þ
72 zð Þ≡ H2 zð Þ

N
; 74 zð Þ≡ H4 zð Þ

N
; 7a ≡

Ha

N
(6)

In writing (6) we have explicitly divided the DNLSE Hamiltonian into its

two constituent terms—the nearest-neighbor tunneling energy term H2 zð Þð Þ
and the on-site interaction energy term H4 zð Þð Þ. Corresponding site-averaged
functions are 72 zð Þ,74 zð Þð Þ. Obviously, both H2 zð Þ and H4 zð Þ vary with
propagation distance, but their sum does not. During DNLSE evolution

then, an energy diffusion process transfers energy from H2 zð Þ to H4 zð Þ
or the other way around. If the system is prepared in one of its ground states

however, diffusions of either density or energy are inhibited and the two

Hamiltonian terms stay anchored in their initial values throughout the

evolution process.

Density. Another conserved quantity of DNLSE systems, thanks to the

system’s invariance with respect to global phase rotations (Kevrekidis,

2009; Pelinovsky, 2011), is “density” Wað Þ (or norm, or number of particles)
given by:

Wa¼
XN
m¼1

Im zð Þ; Da ≡
Wa

N
(7)

The site-averaged values of the two conserved quantities Da,7að Þ form a

plane over which a DNLSE phase diagram (not to be confused with

“phase space”) can be graphically represented.

4. Phase diagram, field correlations, system’s entropy,
system temperature

Next, in relations to ground state properties, we succinctly describe

the DNLSE phase diagram and briefly look at several other DNLSE-related

quantities.

DNLSE phase diagram. The DNLSE phase diagram—Fig. 1—divides the

Da,7að Þ plane into three zones—a lower inaccessible zone, a central ther-

malization zone, and an upper negative temperature zone (Rasmussen et al.,
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2000). The thermalization zone (light purple in Fig. 1) is bounded from

below by the parabola 7a, lower�bound Dað Þ¼�2 �Da +
1
2
�Γ �D2

a with mini-

mum of 7a,min ¼� 2
Γ at Da,min ¼ 2

Γ and is bounded from above by the

parabola 7a,upper�bound Dað Þ¼Γ �D2
a . Crossing the thermalization zone is a

parabolic “Li line”: 7a,Li line Dað Þ¼ 1
2
�Γ �D2

a (Levy & Silberberg, 2018).

Systems initialized with equal amplitudes and uniformly distributed random

phases (negligible tunneling energy) fall on the Li line (Levy & Silberberg,

2018; Silberberg et al., 2009). By definition, ground state systems are placed

on the border of the inaccessible zone and the thermalization zone of the

DNLSE phase diagram (the blue line of Fig. 1).

Field correlations. The DNLSE field correlations are defined as (Silberberg

et al., 2009) (and see also Polkovnikov et al., 2002, eq. 3.3):

Ck zð Þ ¼ 1

2 �N �
XN

m¼1
U∗

m zð Þ � Um+k zð Þ + Um zð Þ � U∗
m+k zð Þ� �

(8)

Or, in polar coordinates

Ck zð Þ ¼ 1

N
�
XN

m¼1
um zð Þ � um+k zð Þ � cos θm,k zð Þ½ �

θm,k zð Þ ≡ ϕm zð Þ � ϕm+k zð Þ (9)

Note that C0¼Da and C1 zð Þ¼ signC � H2 zð Þ
2�N ¼ 72 zð Þ

2
. In Levy, Yang,

Matzliah, and Silberberg (2018) eq. 28, the authors show that for

Fig. 1 Phase diagram for a DNLSE system with a positive-Hamiltonian. The colored
circular disk on the blue line represents a system with site-averaged density of Da ¼ 6
at its ground state. See the phase diagram of Fig. 10 for a negative-Hamiltonian system.
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uncorrelated relative angles (θk), as is the case for the coupled oscillator

array analyzed here:

C0h i ¼ Ih i ; Ckh i ¼ ffiffi
I

pD E2

� cos θh ik k � 1 (10)

The expectation (h∙i) of the field correlations in Eq. (10) is over many real-

izations, given “statistical excitations.” Namely—the initialization of the

oscillators in the array is under specific statistical restrictions of their ampli-

tudes and/or phases. Thus, if the nearest-neighbor phase differences are not

flat-distributed (such that hcos θi 6¼0), the fields are correlated and correla-

tions exponentially decay with site separation.

Note that if all amplitudes are nearly equal then Ih i � ffiffi
I

p� �2
and the

normalized field correlations (hCki/hC0i) is given by the correlation of

the relative phases (hcos θik). The relative phase angle θm is the relative ori-

entation of the 2D complex “vectors” Um and Um+1. Thus, for nearly equal

amplitudes, the normalized DNLSE field correlations (hCki/hC0i) are phase
correlations much like the two-point correlations of spins in spin arrays

(Mussardo, 2010), or like its analogous one-body density matrix for trapped

ultracold atoms (Colcelli, Mussardo, & Trombettoni, 2018), or like the

phase coherence of a Bose–Einstein condensate in a lattice potential

(Esteve, Gross, Weller, Giovanazzi, & Oberthaler, 2008).

A field-correlations example for positive-Hamiltonian DNLSE systems

is shown in Fig. 2.

System’s entropy. The coordinates for calculating system’s entropy are

(Ij,θk) (Rumpf, 2008). Following Levy et al. (2018), Levy and Silberberg

(2018), and Silberberg et al. (2009), we will adopt here the quantum phase

approximation (Huber, Theiler, Altman, & Blatter, 2008) and numerically

calculate system’s site-averaged entropy (ssys) as the sum of site-averaged

density (or intensity) entropy (sI) and site-averaged entropy of relative

phases (sθ): ssys¼ sI+ sθ.

For numerical calculations, let us divide the range [0, Imax] into MI bins

and divide the range [0,2 �π) into Mθ bins. Now define an MI�Mθ array

(hundreds by hundreds) and fill the 2d bins with the histograms Dj,k of

the number of the corresponding Ij, θk values to get:

P j,k¼Dj,k

Z ;Z¼
XMI

j¼1

XMθ

k¼1

Dj,k ;PI , j ¼
XMθ

k

Pj,k ;Pθ,k¼
XMj

j

Pj,k (11)
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Given the probabilities of Eq. (11), Gibbs entropies are calculated as

(Claudine, 2006):

ssys¼�
X
j,k

P j,k � ln P j,k

� �
sI ¼�

X
j

PI , j � ln PI , j

� �
; sθ ¼�

X
k

Pθ,k � ln Pθ,kð Þ (12)

System’s entropy so calculated is approximate and is weakly dependent on

the (arbitrarily selected) number of bins, but the general entropy trends are

preserved.

Fig. 2 DNLSE field correlations for a positive-Hamiltonian system (Γ¼1). (A) Normalized
field correlations vs. site separation (Eqs. (8)–(10), data points obtained by simulation).
Field correlations decay exponentially with site separation (Levy et al., 2018; Silberberg
et al., 2009) starting from k¼1 (Eq. 10). (B) Position of the system on the phase
diagram—half way between the minimum energy line (blue) and the Li line (green).
(C and D) PDFs of relative phase angles: π-centered for signC¼1 (focusing) and
zero-centered for signC¼�1 (defocusing) (compare with the results in Esteve et al.,
2008). The red curves are theoretical (Levy & Silberberg, 2018).
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System Temperature. DNLSE system temperature was defined in Levy and

Silberberg (2018) as TDNLSE Da,7að Þ¼ Γ ∂ssys Da,7að Þ
∂7a

	 
�1

Da

. For any system

nonlinearity (even at Γj j �Da! 0) the DNLSE temperature everywhere

on the thermalization zone was shown in Levy (2018) to be given as

TDNLSE ¼ 1
β�Γ , where β is a Lagrange parameter and sign(β)¼ sign (Γ). At

all system nonlinearities the thermalization zone of the DNLSE phase dia-

gram is bounded from below by a zero temperature line (β!∞) and from

above by an infinite temperature line (β!0) (Rasmussen et al., 2000) (blue

and red lines of Fig. 1 respectively).

A note on dimensions. The dimension of the DNLSE Hamiltonian (Eq. 5)

is equal to the dimension of the complex site functions squared—sayQ. The

dimension of the nonlinear coefficient (Γ) is Q�1. The dimension of

the Lagrange parameter β isQ�1 as well. The dimension of the DNLSE tem-

perature is then Q2. In short, DNLSE “energy” is measured here in Q and

DNLSE temperatures, clearly not the classical thermodynamic tempera-

tures, are measured in Q2.

The dimension Q vary from case to case. In optics, Q stands typically

for power/volume (Kivshar, 1993; Meier et al., 2004) (also in Yariv’s

coupled-mode theory (Yariv, 1973)). In a coupled pendulums analysis

Q is angle2, and in a coupled springs analysis it is length2. In many studies,

if the complex field functions (Um
0 s) are dimensionless by definition

(Polkovnikov et al., 2002), or are normalized (Silberberg et al., 2009),

or if the field functions represent probability amplitudes (Davydov,

1973, 1977; Davydov & Kislukha, 1973, 1976; Eilbeck & Johansson,

2003; Lomdahl, 1984; Meier et al., 2004; Scott & Macneil, 1983;

Spohn, 2016), or if the field functions represent discrete order parameters,

(Pitaevskii & Stringari, 2016, ch. 22; Kolovsky, 2017), then Q is

dimensionless.

5. Discrete plane wave states

Discrete plane waves states are states of the oscillator array that can be

described by analytic solutions of the DNLSE. In each plane wave state

(numbered q) all complex field functions (Um,q(z)) are of the same amplitude

(u0>0) and the relative phases (θm,q ¼ ϕm,q�ϕm+1,q ≡ αq) are all equal as

well (Christodoulides & Joseph, 1988; Kevrekidis, 2009; Kivshar, 1993;

Kivshar & Peyrard, 1992; Lederer et al., 2008; Meier et al., 2004):
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Um,q zð Þ ¼ u0 � ei�m�αq � e�i�kzq�z

αq ≡
q

N
� 2 � π ; q integer ; kzq ¼ signC � 2 � cos αq + Γ � u20 (13)

The values of the discrete angles (ϕm,q) are fixed so as to satisfy the

periodic boundary conditions. On propagation, all field functions accu-

mulate phase at the same rate (kzq �z) and thus the relative phases stay con-

stant at their initial value. Entropy of all discrete plane wave states is zero.

The two ground states of a the positive-Hamiltonian pair are special

members of the family of discrete plane wave states (with αq¼0 or

αq¼π).
A small density-preserving perturbation (cannot be applied to the

ground states) will cause the discrete plane wave states to thermalize.

Below we shall get back to this stability issue in relation to ground state

properties.

For a DNLSE system to be in a zero-entropy discrete plane wave state, it

must be initialized into such state. An interesting exception is a two-site sys-

tem that “glides,” ever so “slowly,” toward the high energy discrete plane

wave state (not the ground state) following a careful initialization into a

non-discrete-plane-wave state (Fig. 3) (Levy, 2017).

Fig. 3 The “glide” of a two-site system into a plane wave state. Left—normalized den-
sities. Right—evolution of the relative phase. Under a carefully prepared set of initial
conditions, a two-site systemwith a positive-Hamiltonian and signC¼sign(Γ) (focusing)
will glide into a plane wave state of equal amplitudes in a ferromagnetic-like configu-
ration (Stephen, 2001) (zero relative angle—not a ground state). During the evolution
process, tunneling energy H2 zð Þð Þ monotonically grows while interaction energy
H4 zð Þð Þ monotonically shrinks, but system’s entropy stays constant (at site-averaged
value of ln(2)) (Levy, 2017).
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6. Ground states of the two positive-Hamiltonian
systems

Two of the plane wave states of Eq. (13) are the ground states of the

DNLSE positive-Hamiltonian pair. The site-averaged energy 7a,q

� �
of the

q’s plane wave state is 7a,q¼ signC �2 �Da � cosαq + 1
2
�Γ �D2

a withDa¼ u20.

The ground state energy 7a,gs+

� �
of the positive-Hamiltonian is

7a,gs+¼�2 �Da +
1
2
�Γ �D2

a . The difference then is

7a,q�7a,gs+¼ 2 �Da � 1+ signC � cosαq
� �

(14)

with zeros at αq¼π for signC¼1 (focusing) and αq¼0 for signC¼ �1

(defocusing). Back to Eq. (13), the two ground states (Um,gs+) of the

positive-Hamiltonian pair (both of the same energy) are –

Um,gs+ ¼ u0 � ei� 2�Γ�u20ð Þ�z; signC ¼ �1

u0 � ei�m�π � ei� 2�Γ�u20ð Þ�z; signC ¼ 1

( )
(15)

Positive-Hamiltonian (Γ>0) ground state configuration is ferromagnetic-

like (Stephen, 2001), if signC¼ �1 and is antiferromagnetic-like (Stephen,

2001) if signC¼1.

Two notes are on order here:

• For the αq¼π case (focusing) the number of sites must be even (in order

to satisfy the periodic boundary conditions).

• If Γ �u02¼2 then there is no phase accumulation and the oscillators stand

still right from the start. Graphically, if the functions Um,gs H+ð Þ� �
are

plotted on the complex plane then during dynamics execution the

constant-length “vectors” revolve CW for Γ �u02<2, revolve CCW

for Γ �u02>2 and revolution stops altogether for Γ �u02¼2.

The ground states of a positive-Hamiltonian system are shown graphically

in Fig. 4.

The statistical properties of the ground states of the positive-Hamiltonian

pair are strictly shared by the corresponding highest energy states of the

negative-Hamiltonian pair. Evolution of 72 zð Þ and 74 zð Þ energies for

the two cases is shown in Fig. 5. Changing the Hamiltonian sign merely

changes the sign of phase accumulation with the evolution distance, and

is equivalent to interchanging the position of the two canonical coordinates.

Let us review some basic properties of the positive-Hamiltonian ground

states.
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7. Basic properties of the ground states of the
positive-Hamiltonian pair

Given the expressions for the ground states of the positive-Hamiltonian

pair (Eq. 15), we can review some of its basic properties (shared by the

highest energy states of the negative-Hamiltonian pair).

Entropy. In terms of PDF’s, the intensities and angles of each ground state

are described by two delta functions: PI Ið Þ ¼ δ I � u20
� �

and Pθ θð Þ ¼ δ θð Þ
orPθ θð Þ ¼ δ θ � πð Þ. Calculating Gibbs entropy by Eq. (12), we find for the
ground states (Rumpf, 2009), throughout system’s evolution:

Fig. 4 Ground states of the two positive-Hamiltonian systems (Eq. 15)—graphical illus-
tration. Top: antiferromagnetic-like configuration for a focusing system. Bottom:
ferromagnetic-like configuration for a defocusing system. The amplitude of site number
m (in the middle) is shown in blue and the amplitudes of its two neighbors are shown in
red. Looking at site m, the two small red arrows indicate the hopping contribution from
the two neighbors to its dynamics, and the single blue arrow indicates the contribution
of the on-site nonlinear term to its dynamics. During evolution then, all complex func-
tions of a DNLSE ground state accumulate phase (revolve on the complex plane) at the
same rate. Note that amplitude revolution is CCW if the two hopping arrows together
are shorter than the single nonlinearity arrow (as shown) or is CW the other way around,
or there is no revolution at all in the case of equality.
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ssys ground statesð Þ ¼ 0 (16)

Temperature. Ground state systems of the positive-Hamiltonian pair with

energy given by 7a,gs+ Dað Þ¼�2 �Da +
1
2
�Γ �D2

a are placed on the

β¼∞ line of the DNLSE phase diagram (Rasmussen et al., 2000). It follows

from TDNLSE ¼ 1
β�Γ that

TDNLSE ground statesð Þ ¼ 0 (17)

Note that Eq. (17) holds for all distances (times) and for all nonzero values of

the unharmonic parameter (Γ>0).

Another way to realize Eq. (17) is through the width of the ground

state’s PI Ið Þ. It was shown in Levy and Silberberg (2018) that for systems

on most of the area of the thermalization zone the equilibrium PI Ið Þ is

of a Gaussian shape and that temperatures of systems after thermalization

are given by the variance (σI
2) of the equilibrium PI Ið Þ. For the ground

Fig. 5 Effect of changing the Hamiltonian sign. Left: + Ha. right:�Ha. For the curves of
the left panel, the system is placed at a certain position on the DNLSE phase diagram.
For the curves of the right panel, the system is placed on an equivalent location of the
inverted phase diagram (exactly a vertical mirror image of the upright location on
the phase diagram (with ha¼0 as the mirror line)). The ground states of the positive-
Hamiltonian (�2 �Da + 1

2 �Γ �D2
a; Γ>0) become the highest energy states of the

negative-Hamiltonian (¼ 2 �Da� 1
2 � Γj j �D2

a; Γ< 0). A ground state and its mirrored
highest energy state possess the same statistical properties. In terms of the DNLSE,
switching the Hamiltonian sign is equivalent to flipping the position of the canonical
variables.
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states, TDNLSE(ground states)¼σI
2(ground states)¼0 everywhere on the

thermalization-zone’s lower border and at all evolution distances (times).

Field correlations. According to Eqs. (8) and (9) (and see also Eq. 10), sys-

tem field correlations (Ck,gs+(z)) of the ground states (15) at all distances are

Ck,gs+¼ �1ð Þk �Da ; signC¼ 1 ; k¼ 0,1,2,…

Da ; signC¼�1 ; k¼ 0,1,2,…

� �
(18)

Since C0,gs+¼Da, we get for the normalized field correlations:

Ck,gs+

C0,gs+

¼ �1ð Þk ; signC¼ 1 ; k¼ 0,1,2,…

1 ; signC¼�1 ; k¼ 0,1,2,…

� �
(19)

Note that 72,gs+¼�2 �Da¼�2 � Ck,gs+



 

.
It follows from Eqs. (18) and (19) that the field correlations of the ground

states of the positive-Hamiltonian pair do not decay and therefore the

field-correlation length of these ground states is infinite:

Ck,gs+



 


C0,gs+

� �
N ,kð Þ!∞

¼ 1 (20)

Stability. The stability of discrete plane wave states of DNLSE systems is

often judged based on a linear modulational instability analysis (Eilbeck &

Johansson, 2003; Kivshar, 1993; Kivshar & Peyrard, 1992; Lederer et al.,

2008; Meier et al., 2004) (first experimental observation of discrete mod-

ulational instability in any physical system), (Christodoulides & Joseph,

1988). The analysis, that is of interest in some physical context, predicts

modulational instability of discrete plane wave states with relative phase

angle αq as:

System unstable if
focusing and 0� αq



 

< π

2

defocusing and
π

2
� αq


 

� π

8<:
9=; (21)

provided that the system nonlinearity Γj j �Dað Þ exceeds a certain critical

value Γj j �Da>� 2ð Þ (Kivshar, 1993; Kivshar & Peyrard, 1992; Lederer

et al., 2008). But in general, one cannot conclude from a linear stability anal-

ysis that a solution is fully stable. Stability of a state by such analysis only indi-

cates that small perturbations cannot grow exponentially with distance

(time) (Eilbeck & Johansson, 2003) (remain small with propagation dis-

tance). It is worth mentioning at this point that in the modulational
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instability analysis, energy (of the “pump,” i.e., of the unperturbed plane

wave) is not conserved. The authors of Betti, Duca, Giaconi and Parca

(2011), analyzing modulational instability in the evolution of a small pertur-

bation propagating in an optical fiber along with a strong CW signal, intro-

duced a two-region model to enable energy conservation.

Here we shall adopt an entropy-instability criterion. Depending on ini-

tial conditions, DNLSE systems may drift into equilibrium in what seems

to be an entropy-driven process. If the system is initialized into the ther-

malization zone of the phase diagram, then the system will drift into a ther-

mal equilibrium (Levy & Silberberg, 2018; Rasmussen et al., 2000).

During the drift to equilibrium, both PI Ið ÞandPθ θð Þcontinuously change
their shapes (and hence the values of the energies 72 zð Þ and 74 zð Þ contin-
uously change their values as well). The panels of Fig. 6 show an example

of PI Ið Þ and Pθ θð Þ evolutions for a DNLSE on the thermalization zone.

These evolutions of PI Ið Þ and Pθ θð Þ are (almost always) accompanied by a

monotonic rise of system’s entropy from an initial (low) value to a higher

equilibrium value.

Mathematically, discrete plane wave states (Eq. 13) evolving with delta

functions PI Ið Þ and Pθ θð Þ, independent of distance, seem to present an

exception (to thermalization). However, If a small perturbation (either phase

noise or amplitude noise) is introduced to these plane wave states, the

Fig. 6 Evolution of PDFs for DNLSE systems on the thermalization zone (position shown
by the phase diagram inset on the right). The panels show four snapshots taken at z1¼0
to z4¼zend ofP I Ið Þ (left) and ofPθ θð Þ(right). The inset on the left panel shows intensities
at z1 and zend. The green and blue curves of the inset on the right show the evolutions of
72 zð Þ and 74 zð Þ respectively. As expected for these PDFs (verified numerically but not
shown in the figure), at short distances the relative-angle entropy (sθ) goes down, the
density entropy (sI) shoots up, and the system’s entropy (the sum of the two) monoton-
ically rises. Note the overshoot of Pθ θð Þ at z3. In this work we have adopted
entropy-change as a criterion for stability of DNLSE systems.
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initiated delicately balanced arrangement of the site-fields will be interrupted

and the now slightly wider delta probabilities will grow wider with distance

until their equilibrium shapes are reached.

For example, a pronounced instability as indicated by the spread of field

amplitudes (increased width of the PI Ið Þ function) upon a small phase per-

turbation is shown for two discrete plane wave states by the panels of Fig. 7.

And wider PDFs mean higher entropies. We shall refer to this kind of insta-

bility of DNLSE states as entropy-instability.

Next, let us take a close look at entropy changes of discrete plane wave

states under a carefully designed “location-preserving” perturbation. We

propose to engineer a perturbation that will preserve both conserved quan-

tities of a “q” plane wave state and thus preserve the location of the state on

the DNLSE phase diagram (same location before and after the perturbation).

In other words—the engineered location-preserving perturbation will not

only preserve the site-averaged density of the state Dað Þ but will also pre-

serve its site-averaged energy 7að Þ.
To this end, it is immediately clear that a phase-only perturbation will

preserve both the site-averaged density Da¼ u20
� �

of the state and its

site-averaged interaction energy 74¼ 1
2
�Γ �u40

� �
. To preserve the state’s

site-averaged tunneling energy 72¼ signC �2 �u20 � cosαq
� �

, a set of random

relative angles θm,rand is generated within a narrow range near αq with an

imposed constraint: hcos θm,randi¼cosαq. The result then is the

sought-for location-preserving perturbation.

The proposed instability criterion of a discrete plane wave state under

such location-preserving perturbation is the change in system’s entropy dur-

ing evolution. A rise in state’s entropy indicates state’s instability. In Fig. 8

we show the entropy change of two discrete plane wave states under

location-preserving phase perturbations. As shown, both plane wave states

are unstable according to the entropy-instability criterion, even though one

of the states is predicted to be stable according to the linear modulational

instability analysis.

The entropy-instability test under a location-preserving perturbation

can be applied to each and every plane wave state of a finite length system

(finite N) of the positive DNLSE Hamiltonian pair, except for the two ground

states. Since the ground states are at extrema of the cosine function (αq¼π for
a focusing system and αq¼0 for a defocusing system), a location-preserving

perturbation does not exist. In other words, any perturbation to a ground

state of a positive-Hamiltonian DNLSE system will excite the state to a

higher energy level.
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Fig. 7 Entropy-instability of two DNLSE discrete plane wave states. (A). The equally-spaced amplitudes on the complex plane (αq¼0.36).
(B) Rather high location of system a on the phase diagram. (C) Site-densities (Im) at z¼0. Random phase noise added, flat-distributed between
	0.032. (D) Wide-spread site-densities at a distance (z¼0.6), indicating system’s entropy-instability. (E) The equally-spaced amplitudes on the
complex plane (αq¼1.7). The amplitudes u0 are rather small (u0

2¼0.127), and the plane wave state is “frozen” (no phase accumulation) since
the value of the amplitudes was purposely so selected (to satisfy Γ �u02¼ � signC �2 �cosαq, Eq. 13). (F) The state is located low, below the
Li line (green in the figure) on the phase diagram. (G) Site-densities (Im) at z¼0. Random phase noise added, flat-distributed between	0.16.
(H) Wide-spread site-densities at a distance (zffi250), indicating system’s entropy-instability.



Fig. 8 See figure legend on opposite page.



To conclude the stability discussion—except for the two ground states,

all other (excited) plane wave states of a finite system of the positive DNLSE

Hamiltonian pair, are entropy-unstable under a location-preserving pertur-

bation. The ground states cannot be perturbed this way and thus considered

stable.

8. Ground states of the two negative-Hamiltonian
systems

The ground states of an infinite (N¼∞) negative-Hamiltonian sys-

tem (Γ<0), are known as a site-centered discrete breathers (Rumpf, 2009). (For

other common names see the introduction above or see Christodoulides &

Joseph, 1988; Eilbeck & Johansson, 2003; Malomed & Weinstein, 1996;

Weinstein, 1999). A site-centered discrete breather is a symmetric field

structure with a maximum amplitude centered on a specific site along with

fast decaying amplitudes on both of its sides. Practically therefore, these

breathers represent the ground states of “correctly truncated” finite systems

(Fig. 9). These ground state breathers, all of the same energy for a given

density, could be unstaggered or could be staggered, depending on the

value of the signC parameter of the DNLSE (focusing/defocusing—cf.

Fig. 9). Both breather types are stationary solutions of the DNLSE

(Eilbeck et al., 1985). The ground states of a negative-Hamiltonian

DNLSE system, either focusing or defocusing, are N-fold degenerate since

each and every site of the N-long oscillator array can be the center of a

ground state breather.

As discussed above in relations to ground states of the positive-

Hamiltonian pair, site-centered discrete breathers are also the maximum

energy states for an infinite positive-Hamiltonian system (Γ>0) (Rumpf,

Fig. 8 Entropy-instability of discrete plane wave states. Two states of a focusing DNLSE
are considered—state a uo ¼ 4; αq ¼ π

4

� �
and state b uo ¼ 4; αq ¼ 3�π

4

� �
, as shown on the

center panel on the left. State a is high on the thermalization zone of the DNLSE phase
diagram (panel a1) and state b is rather close to the lowest energy level (panel b1).
According to the linear modulational instability analysis, plane wave b is stable
(Eq. 21). Both states are perturbed by a weak location-preserving phase perturbation
(see text) with stdev(cosθm,rand)/mean(cosθm,rand)¼0.044. Evolution snapshots of P I Ið Þ
and Pθ θð Þ are shown by the panels on the left (top/bottom for plane wave a/b) and
continuous entropy evolutions are shown by panels a2 and b2 on the right. The figure
shows that not only discrete plane wave a is entropy-unstable but even discrete plane
wave b is entropy-unstable as well.
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2009). Note that for a fixed value of the site-averaged density Dað Þ, the
site-averaged energy 7að Þ goes to infinity with the length of the array

Da¼ const:¼)7a Nð Þ���!N!∞ ∞
	 


. As site-averaged density grows, the sin-

gle site centered breather gets increasingly concentrated about one lattice

site (Kolovsky, 2017; Weinstein, 1999).

All fields (Um
0 s) of a discrete breather uniformly oscillate, i.e., they accu-

mulate their phase at the same rate. All field amplitudes of a discrete breather

(um
0 s) are independent of the evolution distance. The fields of a discrete

breather are given then by Um,gs�(z)¼um(0) � e�i�κ�z . With initial relative

phases of θ¼0 (θ¼π), the tunneling energy of the system (H2 zð Þ, Eq. 6)
is minimized for signC¼ �1 (signC¼1). The launched amplitudes (um

0 s)
must then satisfy the derived recurrence relations (22) below (cf. Eq. 4), with

an added restriction of um ���!mj j!∞
0 (Christodoulides & Joseph, 1988):

um+2 ¼ signC � κ � um+1 � um � signC � Γ � u3m+1 ; m ¼ 0, 1, 2,…

κ¼ signC �2 �u1 +Γ �u3o
u0

; um ���!mj j!∞
0

u�m ¼ um;u0> 0 ; u1> 0 if signC¼�1 ; u1 < 0 if signC¼ 1 (22)

Fig. 9 Ground states of negative-Hamiltonian systems. Shown in the figure are two site-
centered discrete breathers—unstaggered (left) and staggered (right). These breathers
are “stationary solutions” of the DNLSE. The shown breathers are relatively shallow and
thus relatively wide (extend tomore than 10 sites to each side of themaximum-amplitude
site). The blue dots were calculated through the recurrence relations of Eq. (22). The red
lines arematched hyperbolic secant envelopes. Actual values of the breather’s amplitudes
are well approximated by the hyperbolic secant expression of Eq. (23).
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According to Eq. (22), once the maximum amplitude u0 (atm¼0) is known,

the two neighboring amplitudes (u1¼u�1) are determined through the

decay to zero requirement, and then um
0 s for jm j>1 are determined

through the recurrence relations in Eq. (22). In Eilbeck et al. (1985), similar

recurrence relations are presented in a matrix form. In Malomed and

Weinstein (1996), similar recurrence relations were stated as localized solu-

tions to the DNLSE of the form um(κ) � e� i�κ�z, including the decay to zero at
infinity requirement. In Rumpf (2009), studying a positive-Hamiltonian

system, recurrence relations similar to recurrence relations (22) (for extre-

mum energy) were derived through a specific variation of an expression that

includes the two DNLSE conserved quantities.

It is worth mentioning here that um+1¼um¼u0 (ferromagnetic-like) or

um+1¼ �um; jum j¼u0 (antiferromagnetic-like) with κ¼ �2+Γ �u02 are

two possible stationary solutions of Eq. (22), which are the two ground states

of the positive-Hamiltonian pair systems (cf. Eq. 15). Of course, in these cases

the decay to zero requirement is waved.

Analytic expressions exist, offering very good approximations to the

negative-Hamiltonian ground states, depending on how strong system

nonlinearity (jΓ j �u02) is. In the low nonlinearity range (jΓ j �uo2<1) wide

breather ground states are closely approximated by a hyperbolic secant

function (Malomed, 2020). The hyperbolic secant function is well

known in describing the fundamental soliton supported by the continuous

NLSE (Christodoulides & Joseph, 1988; Kivshar, 1993). In the high non-

linearity range (jΓ j �uo2≫1) narrow breather ground states are closely

approximated by a decaying exponential function (Rumpf, 2009;

Malomed, 2020):

Um,gs� zð Þ ¼ um � e�i�κ�z

um ¼
u0 � signCGð Þm � sech m

σL u0ð Þ
� �

; Γj j � u2o < 1;m ¼ 0, 	 1,…

u0 � signCGð Þm � e�
mj j
σH ; σH ¼ 1

ln Γj j � u2o
� � ; Γj j � u2o ≫ 1;m ¼ 0, 	 1,…

8>><>>:
(23)

The width parameter (σL(u0)) of the hyperbolic secant in Eq. (23) can be

determined by solving an implicit equation based on the recurrence relations

(22) for u2 with signC¼ �1.

The hyperbolic secant wide site-centered discrete breathers, unstag-

gered and staggered (signCG¼ signC � sign (Γ)¼ �1) are shown by the
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panels of Fig. 9. A narrow, staggered, site-centered discrete breather is shown

in Fig. 10. The figure also shows the ground state’s location on the

DNLSE phase diagram for a finite, arbitrarily selected number of coupled

oscillators.

The entropy of a negative-Hamiltonian DNLSE system at its ground

state is greater than zero, its temperature is negative, it has a finite field-

correlation length, and the state is stable (Eilbeck & Johansson, 2003;

Rumpf, 2009). Further analysis of the properties of discrete breather ground

states is beyond the scope of the present work.

9. Relations to actual physical systems

So far we have considered an abstract DNLSE. In this section we will

relate the abstract DNLSE to actual physical systems in the fields of magne-

tism, optics, and ultracold atoms.

Magnetism. Clear similarities can be identified between Hamiltonians

of magnetic exchange interactions and the DNLSE Hamiltonian. The

Hamiltonian of the classical XY model for example, a reduced version of

Fig. 10 Ground state of a negative-Hamiltonian system. Shown in the inset is a narrow,
staggered, site-centered discrete breather (blue, Eq. 22), well approximated by a
decaying exponential function (red dots given by Eq. 23). The figure shows the location
of the system on the DNLSE phase diagram, deep down in the negative temperature
zone, for an arbitrarily selected number of sites in the array (N¼32 in the figure). For
a fixed site-averaged density (Da ¼ 2:52 in the figure) system’s location will drift further
down to negative infinity as the number of sites will get increased to infinity.
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the classical Heisenberg model (Stephen, 2001), is practically identical to

the tunneling energy term of the DNLSE Hamiltonian. The configuration

energy HXYð Þ of spins in the XY model is HXY ¼ �2 � J �P
i

Si∘Si+1 ¼
�2 � J �P

i

cos θið Þ where θi ≡ ϕi�ϕi+1, ϕi is the angle of orientation of

spin vector Si, constrained to lie in a plane, and the parameter J is an

exchange interaction (coupling) constant (Archambault et al., 1998).

Here we have taken the spins to be on the sites of a 1d lattice and for

the XY model periodic boundary conditions are typically assumed.

In a more general XY model, J depends on the site number (J! Ji) in

which case theHamiltonian HXYð Þof theXYmodel is identical to the tunnel-

ing energy term of the DNLSE Hamiltonian H2ð Þ with signC¼ �1 and

Ji¼2 �ui �ui+1�0 (Eq. 6).

Given a discrete plane wave state of the positive DNLSE Hamiltonian,

the tunneling energy term 72¼ signC �2 �u20 � cosαq is analogous to the

site-averaged XY Hamiltonian: HXY

N
¼�2 � J � cosθ with Ji¼ J>0. If

signC¼ �1 then the DNLSE ground state is ferromagnetic-like (αq¼θ¼0)

(Ramos, Fernández-Alcázar, Kottos, & Shapiro, 2020). But the exchange

interaction constant could also be negative (J<0) (Stephen, 2001)

corresponding to signC¼1. The ground state tunneling energy of the pos-

itive DNLSE Hamiltonian would in this case be antiferromagnetic-like

(αq¼θ¼π). In Auerbach (2012), the spin-spin interaction Hamiltonian

is written with a positive sign of the interaction constant (+ J; J>0)

and therefore the Hamiltonian in Auerbach (2012) corresponds to an

antiferromagnetic exchange. In Garcia-Ripoll, Martin-Delgado and

Cirac (2004) the authors introduce a flexibility-enabling sign parameter

to the nearest-neighbor interaction term, much like the signC parameter

of Eq. (2).

It is worth pointing again here that the gauge transformation

Um! ei�π�m �Um (Mendl & Spohn, 2015; Spohn, 2016) will flip the sign

of the tunneling energy term and at the same time will change θ by π (from

0 to π or from π to 0). Thus, the two ground states of the positive DNLSE

Hamiltonian pair depend on signC in a trivial, straight-forward way.

The tunneling energy of the uniform phase (θm¼0) ground state of the

positive DNLSE Hamiltonian corresponds to the Hamiltonian of a 1d Ising

model in magnetism. The long range order of a defect-free one dimensional
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lattice of Ising spins at zero temperature (Stephen, 2001) then corresponds to

the infinite field-correlation length of the uniform-phase ground state of the

positive Hamiltonian system.

The analogy of magnetic systems and DNLSE systems goes even

further. Discussing a one-band two term Hubbard model, Auerbach

(2012) points to the interaction term as giving rise to highly correlated gro-

und states. In the DNLSE systems, the minimization of the interaction

energy of a positive-Hamiltonian system drives the equalization of the field

amplitudes which, in turn, gives rise to long range (large site-spacings k)

field correlations.

Actually, the Hamiltonian of the quantum mechanical Bose-Hubbard

model, an important theoretical model in analyzing strongly interacting

electrons in magnetic materials (Auerbach, 2012) and of interacting bosons

on a lattice (Kennett, 2013) is, in its classical counterpart, the DNLSE

Hamiltonian of Eq. (5) (Kolovsky, 2017) (and see also Polkovnikov

et al., 2002).

Optics. The Hamiltonian-derived DNLSE (Eq. 1) is introduced in a

number of optics studies, theoretical and experimental, in order to analyze

electromagnetic-waves propagation in periodic transparent optical struc-

tures (Garanovich, Longhi, Sukhorukov, & Kivshar, 2012 and references

therein). Typically the “optical structure” is an array of single-mode optical

waveguides placed or in-glass “laser-carved” close to each other. During

light propagation through the array, the evanescent field of one waveguide

excites the guided mode of its neighbors (ninety degrees out of phase). The

linear hopping term of the DNLSE, quantitatively describing these excita-

tions, is derived through the well-known coupled-mode theory (CMT)

(Yariv, 1973), with strong similarity to the single-band tight-binding

approximation (Garanovich et al., 2012). The effect of on-site (same wave-

guide) nonlinear propagation of electromagnetic-waves is taken care of by

the nonlinear term of the DNLSE.

It is worth mentioning at this point, that Hamiltonian-derived equa-

tions are rare in classical optics. Typically, in the absence of currents and

in the absence of free charges in the medium and with the adoption of a

scalar approximation, the vectorial Maxwell’s equations are reduced to a

single scalar homogeneous Helmholtz Eq. (Levy & Silberberg, 2014).

The scalar Helmholtz equation is a wave equation from which optical

modes of free space are computed (Levy, Derevyanko, & Silberberg,

2016; Levy, Silberberg, & Davidson, 2019), and for periodic optical
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structures Bloch functions (Thompson, 2012) along with optical bands

kz(kx) (Levy & Silberberg, 2014; Mandelik, Eisenberg, Silberberg,

Morandotti, & Aitchison, 2003; Yeh, Yariv, & Hong, 1977) are derived.

The scalar Helmholtz equation then is commonly derived, under certain

assumptions, from Maxwell’s equations although the authors of Orefice,

Giovanelli, and Ditto (2009) suggested its derivation from an exact

Hamiltonian ray-tracing system. Even the equation known as the “optical

Schr€odinger equation” (Marte & Stenholm, 1997) is a slowly-varying enve-

lope approximation of the scalar Helmholtz equation, and has no

Hamiltonian origin. In optics, it turns out, the Hamiltonian-derived

DNLSE discussed here is somewhat of an exception.

Back to the DNLSE (Eq. 1), according to the coupled-mode theory,

the coupling coefficient (C) is positive with analytic expressions for nearest-

neighbor (Yariv, 1991) and even next-nearest-neighbor coupling (Levy &

Silberberg, 2014). The cubic on-site nonlinear term, preceded by the

unharmonic parameter (γ), is typically associated with the optical Kerr

effect. In that case the unharmonic parameter is positive (γ>0) (Boyd,

2019), the nonlinearity is referred to as “focusing nonlinearity” (leading

to the light self-focusing effect) (Boyd, 2019), and the associated interaction

energy term of the Hamiltonian is positive. It is important not to confuse

“focusing/defocusing” when referring to the version of the DNLSE as

a whole with “focusing/defocusing” when referring to the nonlinearity

term itself. For example, Kevrekidis (Kevrekidis, 2009), refers to a negative

nonlinearity term of the DNLSE (attractive atom-atom interaction in

Bose-Einstein condensate (BEC)) as a focusing nonlinearity term. In optics,

negative nonlinearity would be “defocusing” (Lederer et al., 2008).

The linear part of the DNLSE, derived in optics through the CMT, is a

simplification of the more general periodic structure cases. In the more

general case, still 1d, the transverse coordinate of the periodic structure

(say x) is explicitly included in the dynamic equation, leading to light

propagation analysis in terms of two-variable complex functions (say

ψ (x,z)) known as Floquet–Bloch (FB) functions. In a number of FB stud-

ies, positive as well as negative nonlinearities are considered or

experimented with (Lederer et al., 2008). For example studies with photo-

refractive materials (Efremidis, Sears, Christodoulides, Fleischer, & Segev,

2002; Feng et al., 2005; Fleischer, Carmon, Segev, Efremidis, &

Christodoulides, 2003; Hadas, Vidal, Fischer, Sheinfux, & Silberberg,

2020; Rakuljic, Yariv, & Neurgaonkar, 1986), or with nematic liquid
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crystals (Assanto & Peccianti, 2003; Fratalocchi, Assanto, Brzdąkiewicz, &

Karpierz, 2005), or with Lithium niobate waveguide arrays (Matuszewski

et al., 2006), or with a sodium-vapor (Swartzlander, Andersen, Regan,

Yin, & Kaplan, 1991).

In optics, the CMT-derived hopping term of the DNLSE (Eq. 1)

“generates” a single optical band (kz(αq);�π�αq�π) (Morandotti,

Eisenberg, Silberberg, Sorel, & Aitchison, 2001). The CMT optical band

has a cosine shape, very similar to (but not necessarily identical with) the

shape of the first optical band generated through the FB theory for a

1d periodic optical structure. See in Levy and Silberberg (2014), for exam-

ple, the comparison of the CMT band with the first FB band calculated for

a 1d array of step-index waveguides (the Kronig Penney model). To be

consistent with the shape of the lower band as calculated by the tight bind-

ing model for crystals or for a 1d chain of spins (Stephen, 2001), the

DNLSE for optical waveguides should be written with a negative hopping

term i � dUm

dζ ¼ �C � Um�1 + Um+1ð Þ + γ � Umj j2 � Um;C, γ > 0
n o

. The

equation is derived from a positive-Hamiltonian with qj¼Um; pj¼ i �U∗
m

as the canonical variables. The “optical DNLSE” here is of a defocusing

type with a focusing optical nonlinearity term. The CMT optical band

in this case is kz∝ �cosαq;�π�αq�π and the positive-Hamiltonian gro-

und state, at the lowest point of the band (αq¼0), is ferromagnetic-like. In

strict similarity with the ground state of an ultracold bosonic system, as

discussed next.

Ultracold atoms. In relations to the DNLSE, the most relevant system of

ultracold atoms is a system of a large number of bosons interacting with

repulsive forces at a low temperature. The bosons are confined by a smooth

external potential and trapped in a 1d optical lattice potential. The dynamics

of such systems is well described by the single-band quantum Bose-Hubbard

model ( Jaksch, Bruder, Cirac, Gardiner, & Zoller, 1998). Following

Polkovnikov et al. (2002), let us specify the conditions in which the quan-

tum operators of the Bose-Hubbard model can be replaced by classical

complex functions.

Assuming a smooth parabolic external potential, a decisive quantum-

to-classical switch parameter is the mean number of bosons NB in the cen-

tral site. If the external parabolic potential is very shallow, then the mean

number of bosons per site is approximately equal to the dimensionless

site-averaged density Da, i.e. NBffiDa with Da as defined in Eq. (6). In

terms of the DNLSE parameters Γ,Dað Þ the quantum-to-classical switch
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is allowed in a wide range given by 1≪ λ≡ Γ �Da ≪D2
a (Polkovnikov

et al., 2002).

Thus, at large enough system nonlinearity Γ �Dað Þ, but not too large, the
low-temperature dynamics of the system can be described by treating

the quantum operators as classical complex functions. In the cited conditions

then, an adequate description of system’s dynamics would be the discrete

semiclassical version of the familiar Gross-Pitaevskii (GP) equations for com-

plex functions (Polkovnikov et al., 2002). The discrete GP Hamiltonian is

given as HGP U, i �U∗ð Þ¼ PN
m¼1

� U∗
m �Um+1 +Um �U∗

m+1

� �
+ Vm

J
� Umj j2 +

n
λ
2
� Umj j4g. The parameter Vm preceding the quadratic diagonal term is the

value of the external potential at site m, and the parameter J is the tunneling

amplitude between neighboring lattice sites. The site functionsUm(z) are nor-

malized by Da (so that their mean value is about unity) and the evolution

parameter (z) is in this ultracold-bosons case, a dimensionless time. The dis-

crete GPHamiltonian is seen to be theDNLSE (Eq. 5) with an added diagonal

confining-potential term. If the confining potential is very shallow or there is

no external potential at all, then the dynamics of a 1d optically-trapped ultracold

bosonic atoms, in a rather wide range of system densities and system nonlinearities,

can be described by the classical DNLSE.

The upper limit of the quantum-to-classical switch validity Γ �Da¼D2
a

� �
is a strong-interaction limit above which the ground state of the system

undergoes a quantum phase transition from a superfluid to a Mott insulator

(Polkovnikov et al., 2002). Above this upper limit then, the description of

the system’s dynamics by the discrete GP equations is invalid.

Without the external confining potential, the discrete GP Hamiltonian

becomes equal the DNLSEHamiltonian of Eq. (5). The sign of the hopping

term in theHamiltonian is negative (as is always the case with atomic systems

when the contribution of the off diagonal-functions is given by a negative

discrete second-order derivative), and the interaction energy term is positive

for the assumed repulsive atom-atom interaction. Thus, the derived DNLSE

for the optically trapped ultracold bosonic system is of a defocusing type with

a focusing nonlinearity term (in optics terminology). The ground state of this

positive-Hamiltonian ultracold bosonic system is ferromagnetic-like.

Insights to the more general analysis of ultracold atoms in optical lattices,

classical or quantum (Lewenstein, Sanpera, & Ahufinger, 2012), can still be

gained by considering the simpler DNLSE analysis. An interesting and a

rather relevant example is the generation and observation of a superfluid
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with tunable ground states (in momentum space) (Struck et al., 2012). Struck

et al. (2012) studied and experimented with smoothly confined ultracold

atoms in a deep optical lattice. Their employed key experimental technique

was a single-parameter-controlled frequency modulation of one of the

lattice beams. The driven system can be described to a good approximation

by an effective time-independent Hamiltonian that reads, in 1d and nearest-

neighbor interaction:

bHeff ¼ �2 �
X
m

J
eff
m,m+1




 


 ei�θm � ba{mbam+1 + e�i�θm � ba{m+1bam	 

+ bHon�site

with θm≡ϕm�ϕm+1 and ba{m,bam denote the creation and annihilation oper-

ators. The parameter j Jm,m+1eff j is an effective amplitude of tunneling between

neighboring sites m and m+1 (in either directions). The eigenstates of this

effective Hamiltonian are Bloch waves with the dispersion relation

E(k)¼ �2 � j Jeff j �cos((k�k0) �d) (Struck et al., 2012 with a small

modification). The parameter d is the lattice spacing. The parameter k0 is
a “quasi-momentum” given by k0 ¼A/ħ where A is an apparent gauge vec-

tor potential due to the frequency-modulation of the lattice beam. The low-

est energy band then is of a negative cosine shape with a shifted minimum to

k¼k0. The frequency modulation technique thus allows for the generation

of superfluid ground-states at a finite and tunable quasi-momentum.

10. Summary

The DNLSE systems of coupled nonlinear oscillators considered here

are classical Hamiltonian systems. The Hamiltonian of the simplest DNLSE

system is the sum of two terms—a the nearest-neighbor tunneling energy

term and an on-site interaction energy term (Eqs. 5 and 6). As we have

determined in this work, the four possible Hamiltonian versions must be

grouped into two pairs according to the sign of the on-site interaction energy term.

We thus refer to the pair of DNLSE Hamiltonians composed of a positive/

negative interaction energy term as “positive/negative-Hamiltonian pair.”

The DNLSE Hamiltonian is described by a set of single-variable com-

plex field functions (Um(z)), each associated with a single oscillator site.

The equations of motion are derived from the Hamiltonian through the

canonical set (qm,pm)! (Um, i �U∗
m) or equivalently by the canonical polar

variables (qm,pm)! (Im,ϕm).
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Given the (Um, i �U∗
m ) coordinates, a two-term dynamic equation is

derived—a linear hopping term, and a cubic on-site nonlinear term

(Eqs. 1 and 2). Importantly, the sign of the hopping term can be flipped

through the gauge transformation Um! ei�π�m �Um (Mendl & Spohn,

2015; Spohn, 2016). It follows that the ground states for the positive/neg-

ative Hamiltonians come in pairs—one ground state of a given pair is

obtained from the other by the sign-flipping transformation. The relative

angle (θ) of one ground state of the pair differs by π compared to the

relative angle (θ) of other member of the pair. Specifically, if one ground

state of the pair is characterized by θ¼0 (for all m) then necessarily, the

other member of the pair is characterized by jθj¼ π. The available

sign-flipping transformation for the hopping term is the reason why the

Hamiltonians are “colored” in this “ground-states” work only by the sign

of the interaction-energy term.

Even the positive/negative-Hamiltonians are not independent of each

other, since the ground state of one is (exactly) the highest energy state of

the other and vice versa (Ramos et al., 2020). Or more generally—systems

of vertical-mirror-imaged positions on the DNLSE phase diagram (resulting

from sign-flipping the entire Hamiltonian) share the same statistical proper-

ties (Fig. 5).

Generally, the DNLSE is not integrable and has no general (for arbitrary

initial conditions) analytic solution. However, a set of analytic solutions in

the form of discrete plane wave states does exist (Eq. 13). All complex func-

tions of a discrete plane wave state (numbered q) are of the same amplitude

(u0) and the phases of neighboring functions are all separated by the same

discrete angle (αq). During evolution, all field functions acquire phase at

the same rate. In terms of energy bands, the set of plane waves ({q}) corre-

spond to the lowest energy band (see optics in Section 9). The two ground

states of the positive-Hamiltonian pair are special plane wave “stationary

states” where all amplitudes are real (with αq¼0 or αq¼π) and all phases

grow linearly with distance at a rate of Γ �u02 �z (Eq. 15).

All four ground states—the two ground states of the positive-Hamiltonian

pair as well as the two ground states of the negative-Hamiltonian pair satisfy a

specific recurrence relations (Eq. 22). The recurrence relations are found

either through direct manipulations of the dynamic equations for the polar

coordinates (Im,ϕm) (Eq. 4), or through a specific variation of an expression

that includes the two DNLSE conserved quantities (Rumpf, 2009). The gro-

und states of the positive-Hamiltonian pair are equal-amplitude solutions

of the recurrence relations. The ground states of the negative-Hamiltonian
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pair are site-centered discrete breather solutions (Fig. 9 and the approximate

analytic expressions of Eq. (23)).

Each of the two ground states of the systems of the positive DNLSE

Hamiltonian pair, defined as “the smallest value of the Hamiltonian of all

possible DNLSE solutions at a given density”, is a zero entropy state

(Eq. 16), its DNLSE temperature is also zero (Eq. 17) and the correlation

distance (k) of the field functions of each of these two ground states extends

to infinity (Eq. 20).

In terms of stability, linear modulational instability analysis finds the

high-energy discrete plane wave states of the positive-Hamiltonian unstable

and finds the low-energy discrete plane wave states stable (cf. Eq. 21).

According to our suggested, more demanding, entropy-stability criterion,

all discrete plane wave states except for the two ground-state plane waves

are entropy-unstable under a location-preserving perturbation (Fig. 8).

Since such location-preserving perturbation cannot be applied to the ground

states, we consider these ground states to be entropy-stable.

The abstract 1d DNLSE discussed in this work appears in the analysis of

physical systems in several fields such as magnetism, optics and ultracold

atoms. We elaborate on the specifics of the DNLSE in each of these fields

with emphasis on ground states. In particular, following Polkovnikov et al.

(2002), we show how the dynamics of a 1d optically-trapped BEC, in a

rather wide range of system densities and system nonlinearities, can be

described by the classical DNLSE as given by Eq. (2) with signC¼ �1

and Γ>0.

Characteristics of thermalized DNLSE systems in general are the subject

of the next chapter.
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Dedication
I dedicate this chapter to Prof. Yaron Silberberg—a physicist, a gentleman,

and a friend.

Yaron Silberberg (left) and Uri Levy, March 2018

• “In Memoriam: Yaron Silberberg,” April 21, 2019, by The Optical

Society, https://www.osa.org/en-us/about_osa/newsroom/obituaries/

yaron_silberberg/

• Yaron Silberberg (* 1951 in Giv’atajim; † April 21, 2019) was an

Israeli physicist at the Weizmann Institute who dealt with nonlinear

optics, integrated optics, optical solitons and optical communication

technology and physics with ultrashort laser pulses.

https://de.wikipedia.org/wiki/Yaron_Silberberg (right click for

English translation).

• Yaron Silberberg of the Weizmann Institute in Israel passed away in

April. Here, some of his former students and friends remind us of who

Yaron was: a creative researcher and a mentor without ego with major

achievements in nonlinear optics, microscopy, and quantum physics.

https://www.nature.com/articles/s41566-019-0514-3
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Yaron’s mother was a sculptor and a painter. One day, the teenager Yaron

criticized some details of her art. “Surely you can do better,” his mother

responded, “show me.”

Painting: Yaron Silberberg (age: early twenties).
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