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Abstract

The dynamics of coupled nonlinear oscillator systems is often described by the classical
discrete nonlinear Schrodinger equation (DNLSE). In its simplest version, the DNLSE is
made up of two terms—a nearest-neighbor hopping term and an on-site cubic
nonlinear term. Each of the terms is preceded by a coefficient that can take on either
a positive or a negative sign. Each of the DNLSE versions is derived from a corresponding
equivalent Hamiltonian. The result is a small family of four versions of the DNLSE
Hamiltonian, each with its own associated ground state, all indeed scattered in myriad
of scientific publications.

Here we present a comprehensive picture for the ground states of DNLSE systems,
summarize existing results and provide new insights.

First we classify the four DNLSE Hamiltonians into two pairs according to the sign of
the nonlinear term—a “positive/negative Hamiltonian pair” if the sign of the nonlinear
term is positive/negative respectively. Ground states of the positive Hamiltonian pair
are discrete plane waves in either a ferromagnetic-like or an antiferromagnetic-like
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configuration, depending on the sign of the hopping term. Ground states of the neg-
ative Hamiltonian pair are either unstaggered or staggered site-centered discrete
breathers.

The instantaneous state of a DNLSE system is described by a set of one-parameter
complex functions each with its own amplitude and phase. We show that except for the
sign of the phase, a ground state associated with a positive/negative Hamiltonian is
the maximum energy state associated with the sign-reversed (negative/positive)
Hamiltonian.

Next we discuss some properties of the ground states associated with the
positive-Hamiltonian pair—entropy, temperature, correlations and stability. We extend
our ground state stability discussion to include excited plane waves. We propose to
engineer a specific perturbation that preserves both density and energy—the two con-
served quantities of a DNLSE system—and to test plane wave's stability based on
entropy change. We show that under such conserved-quantities-preserved perturba-
tion, all excited plane waves are entropy-unstable.

For site-centered discrete breathers—the ground states of the negative-
Hamiltonian pair—we have divided system nonlinearity into two ranges and wrote very
good analytic approximations for the breathers in each range.

Lastly, in a dedicated section, we very briefly discuss the specific implementation of
the DNLSE in the fields of magnetism, optics, and ultracold atoms, emphasizing ground
states. For example, following a 2002 article, we show that the dynamics of a
1d optically-trapped ultracold bosonic atoms, in a rather wide range of system densities
and system nonlinearities, can be described by a particular version of the here-discussed
classical DNLSEs.

Keywords: Discrete nonlinear Schrodinger equation (DNLSE), Nonlinear systems,
Ground states, Entropy, Temperature, Field correlations, System stability

1. Introduction

A ground state is a special state of a physical system. Defined as the state

of lowest energy (Feynman, Leighton, & Sands, 2011), the ground state for-

mulation almost always constitutes an essential part in the analysis of phys-

ical systems. In Auerbach (2012), for example, the author suggests a search

for the ground state as a first step toward understanding of a quantum

Hamiltonian. Here we look at systems of coupled discrete nonlinear oscil-

lators arranged in a 1d array. The dynamics of these “DINLSE systems” is
taken to be governed by the DNLSE. The simplest two-term DINLSE reads
(Eilbeck & Johansson, 2003; Meier et al., 2004):

i dUm

dé« =C- (Umfl + Um+l) + V- |Um|2 : Um (1)
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where ( is the evolution coordinate (distance or time), U,,({) is the complex
field function of the oscillator at site m, the parameter C is the
nearest-neighbor coupling constant and y is the unharmonic parameter.

The DNLSE (in numerous variations) appears in the analysis of several
physical systems (Davydov, 1973, 1977; Davydov & Kislukha, 1973, 1976;
Eisenberg, Silberberg, Morandotti, Boyd, & Aitchison, 1998; Jallouli,
Kacem, & Bouhaddi, 2017; Polkovnikov, Sachdev, & Girvin, 2002;
Sato, Hubbard, & Sievers, 2006; Silberberg, Lahini, Bromberg, Small, &
Morandotti, 2009).

DNLSE systems are Hamiltonian systems (Kevrekidis, 2009; Pelinovsky,
2011). The equivalent Hamiltonian from which the two-term DNLSE
(Eq. 1) is derived is made up of two “energy” terms (Eilbeck, Lomdahl, &
Scott, 1985; Lederer et al., 2008; Rasmussen, Cretegny, Kevrekidis, &
Gronbech-Jensen, 2000)—a tunneling energy term (designated H, below)
(Rumpf, 2008) and an interaction energy term (designated Hs below)
(Rumpf, 2008).

Depending on the physical system being studied, the tunneling energy
term (from which the hopping term in the equation is derived) as well as
the interaction energy term (from which the nonlinear term in the equation
is derived) may each be either positive or negative. For example, if the phys-
ical system studied is an array of light-transmitting optical waveguides close
to each other, then the tunneling energy term is positive (C>0) and the
interaction energy term is also typically positive (y > 0) but can be negative
too (y <0), depending on the type of the waveguides’ material. If the phys-
ical system studied is a gas of trapped interacting ultracold atoms, then the
tunneling energy term is negative (C<0) and the interaction energy term
is typically positive (repulsive two-body interaction = ¥ > 0) but can be
negative too (attractive two-body interaction = y <0) (Pitaevskii &
Stringari, 2016, ch. 22).

In this work we focus our attention on the ground states of these DNLSE
systems. We have reviewed existing results sporadically scattered in the liter-
ature, provided new insights, and created a comprehensive, coherent picture
of the DNLSE ground states. (Somewhat surprisingly, in most of the
already-published DNLSE papers, plane wave ground states are not directly
or indirectly discussed, and typically not even mentioned. An exception is a
2009 paper considering “minimum energy” and “maximum energy’ as part
of'a comprehensive breathers’ stability analysis of a positive tunneling-energy,
positive interaction-energy system (Rumpf, 2009)).
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First we classify the four ground state types into two pairs. The instan-
taneous state of a DNLSE system is described by a set of one-parameter com-
plex functions each with its own amplitude and phase. In consulting the
DNLSE Hamiltonians (Eqgs. 5 and 6), it becomes apparent that the set of
amplitudes minimizing the energy of a positive interaction term (of the
Hamiltonian) is very different from the set of amplitudes minimizing
the energy of a negative interaction term. Further, we show below that
for a given first Hamiltonian and a corresponding first ground state, if a
second Hamiltonian is created by flipping only the sign of the tunneling
energy term, then the corresponding same-energy ground state of the sec-
ond Hamilton is obtained from the first ground state by flipping the sign of
all “odd” amplitudes (Mendl & Spohn, 2015; Spohn, 2016). It is therefore
necessary and sufficient to classify the four DNLSE Hamiltonian versions
into two pairs: a “positive/negative Hamiltonian pair” if the sign of the inter-
action energy term is positive/negative. The pair of ground states associated
with the positive Hamiltonian are closely related (odd amplitudes flipped)
and have the same energy. Similarly, The pair of ground states associated
with the negative Hamiltonian are closely related and have the same
energy.

Specifically, ground states of the positive Hamiltonian pair are discrete
plane waves in either a ferromagnetic-like or an antiferromagnetic-like con-
figuration and Ground states of the negative Hamiltonian pair are either
unstaggered or staggered site-centered discrete breathers (Rumpf, 2009).

The Hamiltonian-derived DNLSE equation has only two integrals of
motion (conserved quantities) (Kevrekidis, 2009; Lederer et al., 2008;
Smerzi, Trombettoni, Kevrekidis, & Bishop, 2002) and therefore, for a sys-
tem of more than two sites, has no general analytic solution for all possible
initial conditions (Eilbeck et al., 1985). However, for several sets of specific
initial conditions, analytic or recursive “specific solutions” do exist (Levy,
2016). One specific solution describes a set of discrete plane wave states where
the complex field functions are of equal amplitudes and of equally-spaced
phases (Kivshar, 1993; Kivshar & Peyrard, 1992; Lederer et al., 2008;
Smerzi et al., 2002). If the phases are all equal (zero phase differences)
(Pitaevskii & Stringari, 2016; Polkovnikov et al., 2002) or are & radians apart
(Rasmussen et al., 2000; Rumpf, 2009) then the two corresponding discrete
plane wave states describe the two non-degenerate ground states (disre-
garding the infinite initial-global-phase degeneracy) of the pair of the
positive-Hamiltonian systems.
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Another set of specific solutions describes a set of site-centered discrete
breathers (Rumpf, 2009) (or single-site peaked discrete soliton (Breather)
(Eilbeck & Johansson, 2003), or stationary soliton states (Malomed &
Weinstein, 1996), or nonlinear bound state, standing wave or stationary state
(Weinstein, 1999)). Mathematically, these breathers are described by recur-
sive equations (Malomed & Weinstein, 1996; Rumpf, 2009). The breathers
may be staggered or unstaggered (Kivshar, 1993; Lederer et al., 2008).
These two-type breathers describe the two ground state types of the pair
of the negative-Hamiltonian systems. Both unstaggered and staggered gro-
und state types are number-of-sites-fold degenerate (disregarding the
infinite initial-global-phase degeneracy).

In addition to the Hamiltonian (“energy”), a second conserved quan-
tity of the DNLSE is density (norm, number of particles). A more accurate
and complete definition of the DNLSE system’s ground state would
be—*"“the smallest value of the Hamiltonian of all possible DNLSE solu-
tions at a given density” (Eilbeck & Johansson, 2003; Rumpf, 2009;
Weinstein, 1999).

We also show below that ground states of the positive-Hamiltonian pair
are maximum energy states of the negative-Hamiltonian pair and vice versa.

DNLSE systems are isolated classical systems. Once the system is
launched with a certain overall density and energy, the system will remain
at the launched values of these two quantities at all distances (times). The
only change during system evolution is the internal diffusive-redistribution
of density and energy among the participating oscillators (Spohn, 2016).
These changes are almost always accompanied by a monotonic rise of sys-
tem’s entropy. DNLSE ground states are exceptions. To be in the ground
state the system must be so prepared. Once the system is in the ground state

’

“nothing happens,” except for continuous accumulation of a global phase
(quantum-mechanically an unobservable change). We note on passing that
unlike DNLSE systems, all quantum mechanical systems undergo quantum
fluctuations even at their ground states (Greiner, Mandel, Esslinger,
Hansch, & Bloch, 2002). Ground states’ entropy stays fixed (at a zero value)
atall distances (times). As a curiosity, specific-density “frozen” DINLSE states
(including specific-density ground states) in which even global phase accu-
mulation does not occur, are presented in the text (Levy, 2016). Another
curious case is a two-site system which, under very specific initial conditions,
“glides” into a stationary exited state with a constant-valued entropy during
the entire glide (Levy, 2017).
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Next we proceed to presenting and discussing some basic properties of
the ground states of the positive-Hamiltonian pair—entropy, temperature,
correlations and stability. In the stability section we have extended the anal-
ysis to include excited plane waves. Our stability analysis of these excited
plane waves is based on a specifically engineered perturbation of their phases.
Stability is then tested against entropy change. We show that under such
specifically engineered phase perturbation, all excited plane waves are
entropy-unstable. We note that according to the known linear modulational
instability analysis, the lower-energy plane waves are found to be stable
(Meier et al., 2004).

The on-site nonlinearity degree is proportional to the product of the
normalized unharmonic parameter and the square of the complex field’s
amplitude. For the ground states of the negative-Hamiltonian pair—the
site-centered discrete breathers - we take system’s nonlinearity to be the
nonlinearity associated with the highest-amplitude - the amplitude of
the center field (i.e., system’s nonlinearity is given as | I"| -1 , see below).
We have divided this system’s nonlinearity into two ranges and wrote an
analytic expression for the breathers in each range. These analytic expres-
sions constitute very good approximations to the exact (recursively
calculated) discrete breathers.

Regarding above-minimum-energy systems, indeed we have extended
the current ground states work and summarized our results in the chapter
“Characteristics of equilibrated nonlinear oscillator systems” (Levy, 2021).
In the next chapter then, we discuss the characteristics of equilibrated
DNLSE systems initially excited onto every point of the thermalization zone
of the DNLSE phase diagram.

Finally, in a dedicated section, we look at the abstract 1d DNLSE and its
ground state as it appears in the analysis of physical systems in the fields of
magnetism, optics and ultracold atoms.

Back to the current study, in the following four sections (Sections 2—5)
we first systematically bring together the key equations and the necessary
DNLSE concepts required for the ground states’ discussion. Ground states
of the positive-Hamiltonian pair and their properties are discussed in the fol-
lowing two sections (Sections 6 and 7). Derivation and approximate analytic
expressions for site-centered discrete breathers—the ground states of the
negative-Hamiltonian pair—are presented in Section 8. Section 9 is devoted
to considerations of the DINLSE in relations to actual physical systems in the
fields of magnetism, optics, and ultracold atoms, with eye on the ground states
in each case. Our main observations and results are summarized in Section 10.
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2. Equations

The evolution dynamics of a 1d array of (typically) a large number
(N) of coupled unharmonic oscillators is given by Eq. (1). Throughout this
work, without loss of generality, we will use the notation of optics (evo-
lution coordinate ¢ as distance, or z as a normalized distance, with coupled
optical waveguides in mind). The equation consists of two terms—a linear
hopping term, and a cubic on-site nonlinear term. As usual, periodic boundary
conditions (U,,+n=U,,) are assumed here too. In many studies, the linear
term includes a diagonal function (—2-U,,) that can be eliminated by a
global transformation (moving to a rotating frame) (Eilbeck &
Johansson, 2003).

Several options for normalizing Eq. (1) are available (Eilbeck &
Johansson, 2003; Kevrekidis, 2009) and are often applied (Polkovnikov
et al., 2002; Silberberg et al., 2009). Here, since signs play an important
role in our study, we shall eliminate the coupling constant from Eq. (1)
except for its sign, following a division by | C|:

% — Signc : (Um—l + Um+1) +1I- ’Um‘z : Um
z = |C|-{ ; signC = sign(C) ;5 F:’é| (2)

In Eq. (2), the evolution coordinate (z)—"“distance” (or “time”) is dimen-
sionless. The normalized unharmonic parameter I, to be referred-to below
as a nonlinear coefficient, has the units of [U,,] 2. If signC= sign (I')/ — sign (I')
then Eq. (2) is a “focusing”/“defocusing” version of the DNLSE
(Kevrekidis, 2009; Rebuzzini, Artuso, Fishman, & Guarneri, 2007) (also
Cf. the optics paragraphs in Section 9).

It is convenient at this point, and indeed done in almost every DNLSE
article, to perform a Madelung transformation to the set of density-angle
canonical polar variables (q,,,p,) — (I, @,,) in which the complex field
functions (U,,(z)) take on the form:

Um = Uy * ei'lﬁ,” Uy =V Im 5 gm = ¢m - ¢m+1 (3)

Both u,,(2) and ¢,,(z) of Eq. (3) are real functions that obey the following
dynamics (strictly equivalent to the dynamics of Eq. (2)):
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du,, . , .
; - Slgnc “Up—1- {Sll’l (¢m—1 - ¢m)} + Slgi’lc Um+1- {Sll’l (¢m+1 - ¢m)}
d m— m
¢m = —Sl'gf/lC'M L COS(¢m—1 _¢m) —Sl'gf/lC'u . cos (¢m+1 _¢m)
dZ Um U
—-T. ”i

U+ N = Uy, ¢m+N = ¢m (4)

3. Conserved quantities

Energy. Eq. (2) can be derived from a Hamiltonian (HQ(U, i U*))

which is a conserved quantity, associated with the system’s time translation
invariance (Pelinovsky, 2011; Roberts, 2020):
U}

®)

) are canonical variables. Adopting the assignment

N
H,(U,i-U") = Z{sing- (Ul Upr + Uy~ Ul ) +

m=1

|~

*

The variables (U,,,,i-U,
gmn=U,; pm:i-U:, (Eilbeck & Johansson, 2003; Kevrekidis, 2009;
Mendl & Spohn, 2015; Mithun, Kati, Danieli, & Flach, 2018;

. X - - : : au, __
Pelinovsky, 2011), Eq. (2) is derived from the Hamiltonian (5) as “;» =

a((?Hﬁ We note here that if inverted-order assignment of canonical vari-
ables is adopted ((q,u, po) — (i U:,, U,)) (Sergej & Gorbach, 2008;
Rasmussen et al., 2000), then the sign of the derived DNLSE will be
inverted as well. Of course, inverted order of the canonical variables is
equivalent to a sign-inverted Hamiltonian (Lederer et al., 2008). We show
below that indeed the statistics of DNLSE’s is Hamiltonian-sign
independent.

However, when it comes to identification of system’s ground states, the
sign of the interaction energy term of the Hamiltonian matters. Note that indeed
the sign of the hopping term in (2) (and thus the sign of the tunneling
energy term in the Hamiltonian) does not play a role in this respect since
it can be flipped through the gauge transformation U, — ¢ ™" U,
(Mendl & Spohn, 2015; Spohn, 2016). We are therefore making here
the important identification of a positive/negative inferaction term with a

“positive/negative-Hamiltonian pair.”
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In the polar variables of Eq. (3) (I,,,, ¢,.), the DNLSE Hamiltonian (Eq. 5)
takes on the form:

N
r
HQ( ) - Slg”C ZZ UpUp+1 - COSHW > H4 Z ZE iz

m=1

H, = Ha(2) + Ha(2)
fo(2) = N) U_H§>nz%- 6)

In writing (6) we have explicitly divided the DNLSE Hamiltonian into its
two constituent terms—the nearest-neighbor tunneling energy term (H,(z))
and the on-site interaction energy term (H4(z)). Corresponding site-averaged
functions are (#A,(z), #4(2)). Obviously, both H,(z) and H4(z) vary with
propagation distance, but their sum does not. During DNLSE evolution
then, an energy diffusion process transfers energy from H,(z) to Hy(z)
or the other way around. If the system is prepared in one of its ground states
however, diffusions of either density or energy are inhibited and the two
Hamiltonian terms stay anchored in their initial values throughout the
evolution process.

Density. Another conserved quantity of DINLSE systems, thanks to the
system’s invariance with respect to global phase rotations (Kevrekidis,
2009; Pelinovsky, 2011), is “density” (W,) (or norm, or number of particles)
given by:

W, = Zlm(z);waz_ (7)

The site-averaged values of the two conserved quantities (wr,, #,) form a
plane over which a DNLSE phase diagram (not to be confused with
“phase space”) can be graphically represented.

4, Phase diagram, field correlations, system’s entropy,
system temperature

Next, in relations to ground state properties, we succinctly describe
the DNLSE phase diagram and briefly look at several other DNLSE-related
quantities.

DNLSE phase diagram. The DNLSE phase diagram—TFig. 1—divides the
(w,, #,) plane into three zones—a lower inaccessible zone, a central ther-
malization zone, and an upper negative temperature zone (Rasmussen et al.,
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0 2 4 ﬁwa

Fig. 1 Phase diagram for a DNLSE system with a positive-Hamiltonian. The colored
circular disk on the blue line represents a system with site-averaged density of w, =6
at its ground state. See the phase diagram of Fig. 10 for a negative-Hamiltonian system.

2000). The thermalization zone (light purple in Fig. 1) is bounded from
below by the parabola 2, jouer—pound (Wa) = =2 wr, + %~F . wﬁ with mini-
mum of A, i, = —% at Wy pin =% and is bounded from above by the
parabola /La’m,e,_bowd(wa) =r- wi Crossing the thermalization zone is a
parabolic “L; line”: A, 1, jine(w,) = % -T-w? (Levy & Silberberg, 2018).
Systems initialized with equal amplitudes and uniformly distributed random
phases (negligible tunneling energy) fall on the L; line (Levy & Silberberg,
2018; Silberberg et al., 2009). By definition, ground state systems are placed
on the border of the inaccessible zone and the thermalization zone of the
DNLSE phase diagram (the blue line of Fig. 1).

Field correlations. The DNLSE field correlations are defined as (Silberberg
et al., 2009) (and see also Polkovnikov et al., 2002, eq. 3.3):

*

1 N .
Cl?) =55 D UNR) - Uniik(2) + Un(2) - Up(2)] - ®)
Or, in polar coordinates

1

N
Cu(z) = N Zmzlum(z) Up(2) ¢ 05 [0,,0(2)]
9%’6(2) = ¢m(2) - ¢m+k(z) (9)
Note that Cy=wr, and C;(z)=signC 7;2](5) :’LZZ(Z). In Levy, Yang,

Matzliah, and Silberberg (2018) eq. 28, the authors show that for
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uncorrelated relative angles (0)), as is the case for the coupled oscillator
array analyzed here:

(Cob = (1) : (G = (VI) +{cos0)* k> 1 (10)

The expectation ({(*)) of the field correlations in Eq. (10) is over many real-
izations, given ‘“‘statistical excitations.” Namely—the initialization of the
oscillators in the array is under specific statistical restrictions of their ampli-
tudes and/or phases. Thus, if the nearest-neighbor phase differences are not
flat-distributed (such that (cos @) #0), the fields are correlated and correla-
tions exponentially decay with site separation.

Note that if all amplitudes are nearly equal then (I) ~ <\/j >2 and the
normalized field correlations ((Cp)/(Cy)) is given by the correlation of
the relative phases ({cos 0>k). The relative phase angle 6, is the relative ori-
entation of the 2D complex “vectors” U,, and U,,+1. Thus, for nearly equal
amplitudes, the normalized DNLSE field correlations ((Cy)/(C)) are phase
correlations much like the two-point correlations of spins in spin arrays
(Mussardo, 2010), or like its analogous one-body density matrix for trapped
ultracold atoms (Colcelli, Mussardo, & Trombettoni, 2018), or like the
phase coherence of a Bose—Einstein condensate in a lattice potential
(Esteve, Gross, Weller, Giovanazzi, & Oberthaler, 2008).

A field-correlations example for positive-Hamiltonian DNLSE systems
is shown in Fig. 2.

System’s entropy. The coordinates for calculating system’s entropy are
(I;,0,) (Rumpf, 2008). Following Levy et al. (2018), Levy and Silberberg
(2018), and Silberberg et al. (2009), we will adopt here the quantum phase
approximation (Huber, Theiler, Altman, & Blatter, 2008) and numerically
calculate system’s site-averaged entropy (s,) as the sum of site-averaged
density (or intensity) entropy (sp) and site-averaged entropy of relative

phases (sg): $;s =517 so-

sys

For numerical calculations, let us divide the range [0, I,,...] into M bins
and divide the range [0,2-7) into My bins. Now define an M;X My array
(hundreds by hundreds) and fill the 2d bins with the histograms D; of

the number of the corresponding I;, 8}, values to get:

M, M My M;

Pj,k:% ;2= Z ZDj,k ;Prj= ZP;‘,k ; Pox= ij,k (11)
=1 = e 7
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0 1.57 3.14 4.71 6.28 0 1.57 3.14 4.71 6.28

Fig.2 DNLSE field correlations for a positive-Hamiltonian system (I"=1). (A) Normalized
field correlations vs. site separation (Egs. (8)—(10), data points obtained by simulation).
Field correlations decay exponentially with site separation (Levy et al., 2018; Silberberg
et al, 2009) starting from k=1 (Eq. 10). (B) Position of the system on the phase
diagram—half way between the minimum energy line (blue) and the L; line (green).
(C and D) PDFs of relative phase angles: n-centered for signC=1 (focusing) and
zero-centered for signC=—1 (defocusing) (compare with the results in Esteve et al.,
2008). The red curves are theoretical (Levy & Silberberg, 2018).

Given the probabilities of Eq. (11), Gibbs entropies are calculated as
(Claudine, 2006):

Soys = Z'Pj e ln 0 k)
2771] 771]) —ZPa,k' In(Pg,x)
I

(12)

System’s entropy so calculated is approximate and is weakly dependent on
the (arbitrarily selected) number of bins, but the general entropy trends are
preserved.
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System Temperature. DNLSE system temperature was defined in Levy and

. Ssys aa’ﬁ“a B
Silberberg (2018) as Tpnrse(Wa, Aa) = (F%

1
) . For any system
Wy

nonlinearity (even at |I'|-w, — 0) the DNLSE temperature everywhere
on the thermalization zone was shown in Levy (2018) to be given as
T bNLSE :ﬂ%r, where B is a Lagrange parameter and sign(f) = sign (I"). At
all system nonlinearities the thermalization zone of the DNLSE phase dia-
gram is bounded from below by a zero temperature line (f— co) and from
above by an infinite temperature line (f — 0) (Rasmussen et al., 2000) (blue
and red lines of Fig. 1 respectively).

A note on dimensions. The dimension of the DNLSE Hamiltonian (Eq. 5)
is equal to the dimension of the complex site functions squared—say Q. The
dimension of the nonlinear coefficient (I) is Q '. The dimension of
the Lagrange parameter #is Q' as well. The dimension of the DNLSE tem-
perature is then Q7. In short, DNLSE “energy” is measured here in Q and
DNLSE temperatures, clearly not the classical thermodynamic tempera-
tures, are measured in QZ.

The dimension Q vary from case to case. In optics, Q stands typically
for power/volume (Kivshar, 1993; Meier et al., 2004) (also in Yariv’s
coupled-mode theory (Yariv, 1973)). In a coupled pendulums analysis
Q is angle®, and in a coupled springs analysis it is length®. In many studies,
if the complex field functions (U,,’s) are dimensionless by definition
(Polkovnikov et al., 2002), or are normalized (Silberberg et al., 2009),
or if the field functions represent probability amplitudes (Davydov,
1973, 1977; Davydov & Kislukha, 1973, 1976; Eilbeck & Johansson,
2003; Lomdahl, 1984; Meier et al., 2004; Scott & Macneil, 1983;
Spohn, 2016), or if the field functions represent discrete order parameters,
(Pitaevskii & Stringari, 2016, ch. 22; Kolovsky, 2017), then Q is

dimensionless.

5. Discrete plane wave states

Discrete plane waves states are states of the oscillator array that can be
described by analytic solutions of the DNLSE. In each plane wave state
(numbered ¢) all complex field functions (U, ,(2)) are of the same amplitude
(up>0) and the relative phases (6,,, = @, ,— P14 = @) are all equal as
well (Christodoulides & Joseph, 1988; Kevrekidis, 2009; Kivshar, 1993;
Kivshar & Peyrard, 1992; Lederer et al., 2008; Meier et al., 2004):
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Um,q(z) = ug - el‘ﬂl'{lq . e—rksqf

a 2.7 ; qinteger ; k.y = signC -2+ cosag + I u(z) (13)

4
N
The values of the discrete angles (¢,,,) are fixed so as to satisfy the
periodic boundary conditions. On propagation, all field functions accu-
mulate phase at the same rate (k.- 2) and thus the relative phases stay con-
stant at their initial value. Entropy of all discrete plane wave states is zero.
The two ground states of a the positive-Hamiltonian pair are special
members of the family of discrete plane wave states (with a,=0 or
a,=m).

A small density-preserving perturbation (cannot be applied to the
ground states) will cause the discrete plane wave states to thermalize.
Below we shall get back to this stability issue in relation to ground state
properties.

For a DNLSE system to be in a zero-entropy discrete plane wave state, it
must be initialized into such state. An interesting exception is a two-site sys-
tem that “glides,” ever so “slowly,” toward the high energy discrete plane
wave state (not the ground state) following a careful initialization into a
non-discrete-plane-wave state (Fig. 3) (Levy, 2017).

1 : . : T T -
0.8
0.75 :
N
& 0.4
"~ 0.5¢ -
il 2
0.25§ ; 0
0 ' ' ' 0.4 . : -
0 1 2 3 4 0 1 3 4

Fig. 3 The “glide” of a two-site system into a plane wave state. Left—normalized den-
sities. Right—evolution of the relative phase. Under a carefully prepared set of initial
conditions, a two-site system with a positive-Hamiltonian and signC=sign(I") (focusing)
will glide into a plane wave state of equal amplitudes in a ferromagnetic-like configu-
ration (Stephen, 2001) (zero relative angle—not a ground state). During the evolution
process, tunneling energy (H2(z)) monotonically grows while interaction energy
(Ha(z)) monotonically shrinks, but system’s entropy stays constant (at site-averaged
value of In(2)) (Levy, 2017).
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6. Ground states of the two positive-Hamiltonian
systems

Two of the plane wave states of Eq. (13) are the ground states of the
DNLSE positive-Hamiltonian pair. The site-averaged energy (/La,q) of the
¢’s plane wave state is #, ; = signC - 2 - wr, - cosa, + %-F w2 with w, = u.
The ground state energy (/La’ g5+) of the positive-Hamiltonian 1is
Rggsr = —2-w,+ %wa The difference then is

Pogg—Pggr =2-w,- (1 + signC' - cosaq) (14)

with zeros at a,=n for signC=1 (focusing) and a,=0 for signC= —1
(defocusing). Back to Eq. (13), the two ground states (U, ,+) of the
positive-Hamiltonian pair (both of the same energy) are —

"y - ei'<2_r"'g)'z;51gnc =—1
T (15)
"o - oM er( — '”")";signC -1

Positive-Hamiltonian (I" > 0) ground state configuration is ferromagnetic-
like (Stephen, 2001), if signC= — 1 and is antiferromagnetic-like (Stephen,
2001) if signC=1.

Two notes are on order here:

* For the a,=r case (focusing) the number of sites must be even (in order
to satisfy the periodic boundary conditions).

« IfI"-uj=2 then there is no phase accumulation and the oscillators stand
still right from the start. Graphically, if the functions (U,,q(H")) are
plotted on the complex plane then during dynamics execution the
constant-length “vectors” revolve CW for I'-u3<2, revolve CCW
for I'-u3>2 and revolution stops altogether for I - ug = 2.

The ground states of a positive-Hamiltonian system are shown graphically

in Fig. 4.

The statistical properties of the ground states of the positive-Hamiltonian
pair are strictly shared by the corresponding highest energy states of the
negative-Hamiltonian pair. Evolution of £,(z) and #4(z) energies for
the two cases is shown in Fig. 5. Changing the Hamiltonian sign merely
changes the sign of phase accumulation with the evolution distance, and
is equivalent to interchanging the position of the two canonical coordinates.

Let us review some basic properties of the positive-Hamiltonian ground
states.
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Fig. 4 Ground states of the two positive-Hamiltonian systems (Eq. 15)—graphical illus-
tration. Top: antiferromagnetic-like configuration for a focusing system. Bottom:
ferromagnetic-like configuration for a defocusing system. The amplitude of site number
m (in the middle) is shown in blue and the amplitudes of its two neighbors are shown in
red. Looking at site m, the two small red arrows indicate the hopping contribution from
the two neighbors to its dynamics, and the single blue arrow indicates the contribution
of the on-site nonlinear term to its dynamics. During evolution then, all complex func-
tions of a DNLSE ground state accumulate phase (revolve on the complex plane) at the
same rate. Note that amplitude revolution is CCW if the two hopping arrows together
are shorter than the single nonlinearity arrow (as shown) or is CW the other way around,
or there is no revolution at all in the case of equality.

7. Basic properties of the ground states of the
positive-Hamiltonian pair

Given the expressions for the ground states of the positive-Hamiltonian
pair (Eq. 15), we can review some of its basic properties (shared by the
highest energy states of the negative-Hamiltonian pair).

Entropy. In terms of PDF’s, the intensities and angles of each ground state

are described by two delta functions: P;(I) = §(I — u?) and Py(6) = 5(6)
or Py(6) = (0 — r). Calculating Gibbs entropy by Eq. (12), we find for the
ground states (Rumpf, 2009), throughout system’s evolution:
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Fig. 5 Effect of changing the Hamiltonian sign. Left: + H,. right: —H,. For the curves of
the left panel, the system is placed at a certain position on the DNLSE phase diagram.
For the curves of the right panel, the system is placed on an equivalent location of the
inverted phase diagram (exactly a vertical mirror image of the upright location on
the phase diagram (with h,=0 as the mirror line)). The ground states of the positive-
Hamiltonian (—2~wa+%~1“‘w§; I'>0) become the highest energy states of the
negative-Hamiltonian (=2-wq—3-|I'|-w? "< 0). A ground state and its mirrored
highest energy state possess the same statistical properties. In terms of the DNLSE,
switching the Hamiltonian sign is equivalent to flipping the position of the canonical
variables.

seys(ground states) = 0 (16)

Temperature. Ground state systems of the positive-Hamiltonian pair with
energy given by A, g4 (w,)=—2-w,+ %'F w2 are placed on the
p =0 line of the DNLSE phase diagram (Rasmussen et al., 2000). It follows
from TpNLsg = /ﬁ_ that

T pnise (ground states) = 0 (17)

Note that Eq. (17) holds for all distances (times) and for all nonzero values of
the unharmonic parameter (I" > 0).

Another way to realize Eq. (17) is through the width of the ground
state’s Py(I). It was shown in Levy and Silberberg (2018) that for systems
on most of the area of the thermalization zone the equilibrium P;(I) is
of a Gaussian shape and that temperatures of systems after thermalization
are given by the variance (67) of the equilibrium P;(I). For the ground
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states, Tpnrsg(ground states) zaf(ground states) =0 everywhere on the

thermalization-zone’s lower border and at all evolution distances (times).
Field correlations. According to Egs. (8) and (9) (and see also Eq. 10), sys-

tem field correlations (Cy 4+(2)) of the ground states (15) at all distances are

o D s signC=1 5 k=0,1,2,... a8)
kst w, 5 signC=—1; k=0,1,2,...

Since Cy g+ =u,, we get for the normalized field correlations:

Cro+ [ (=1)" ;s signC=1; k=0,1,2,... (19)
Co,gs+ 1; signC=—-1; k=0,1,2,...

Note that Ay g1 = =2, = =2+ |Cp g+ |-

It follows from Egs. (18) and (19) that the field correlations of the ground
states of the positive-Hamiltonian pair do not decay and therefore the
field-correlation length of these ground states is infinite:

o
<‘ het > =1 (20)
Co’g5+ (N,k)—00

Stability. The stability of discrete plane wave states of DNLSE systems is
often judged based on a linear modulational instability analysis (Eilbeck &
Johansson, 2003; Kivshar, 1993; Kivshar & Peyrard, 1992; Lederer et al.,
2008; Meier et al., 2004) (first experimental observation of discrete mod-

ulational instability in any physical system), (Christodoulides & Joseph,
1988). The analysis, that is of interest in some physical context, predicts
modulational instability of discrete plane wave states with relative phase
angle a, as:

/4
focusing and 0 < ‘aql < )

System unstable if (21)

T
defocusing and > < |aq‘ <z

provided that the system nonlinearity (|I'|-wr,) exceeds a certain critical
value (|I']-w, >=2) (Kivshar, 1993; Kivshar & Peyrard, 1992; Lederer
etal., 2008). Butin general, one cannot conclude from a linear stability anal-
ysis that a solution is fully stable. Stability of a state by such analysis only indi-
cates that small perturbations cannot grow exponentially with distance
(time) (Eilbeck & Johansson, 2003) (remain small with propagation dis-
tance). It is worth mentioning at this point that in the modulational
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instability analysis, energy (of the “pump,” i.e., of the unperturbed plane
wave) is not conserved. The authors of Betti, Duca, Giaconi and Parca
(2011), analyzing modulational instability in the evolution of a small pertur-
bation propagating in an optical fiber along with a strong CW signal, intro-
duced a two-region model to enable energy conservation.

Here we shall adopt an entropy-instability criterion. Depending on ini-
tial conditions, DNLSE systems may drift into equilibrium in what seems
to be an entropy-driven process. If the system is initialized into the ther-
malization zone of the phase diagram, then the system will drift into a ther-
mal equilibrium (Levy & Silberberg, 2018; Rasmussen et al., 2000).
During the drift to equilibrium, both P;(I)and Py(0) continuously change
their shapes (and hence the values of the energies £, (z) and £4(z) contin-
uously change their values as well). The panels of Fig. 6 show an example
of P;(I) and Py(8) evolutions for a DNLSE on the thermalization zone.
These evolutions of P;(I) and Py () are (almost always) accompanied by a
monotonic rise of system’s entropy from an initial (low) value to a higher
equilibrium value.

Mathematically, discrete plane wave states (Eq. 13) evolving with delta
functions P;(I) and Py(0), independent of distance, seem to present an
exception (to thermalization). However, If a small perturbation (either phase
noise or amplitude noise) is introduced to these plane wave states, the
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Fig. 6 Evolution of PDFs for DNLSE systems on the thermalization zone (position shown
by the phase diagram inset on the right). The panels show four snapshots taken at z1 =0
10 24 =Z,pq of P;(I) (left) and of Py(0) (right). The inset on the left panel shows intensities
at z1 and z.,¢ The green and blue curves of the inset on the right show the evolutions of
#2(z) and #£14(2) respectively. As expected for these PDFs (verified numerically but not
shown in the figure), at short distances the relative-angle entropy (sy) goes down, the
density entropy (s)) shoots up, and the system’s entropy (the sum of the two) monoton-
ically rises. Note the overshoot of Py(0) at z3. In this work we have adopted
entropy-change as a criterion for stability of DNLSE systems.



110 Uri Levy

initiated delicately balanced arrangement of the site-fields will be interrupted
and the now slightly wider delta probabilities will grow wider with distance
until their equilibrium shapes are reached.

For example, a pronounced instability as indicated by the spread of field
amplitudes (increased width of the P;(I) function) upon a small phase per-
turbation is shown for two discrete plane wave states by the panels of Fig. 7.
And wider PDFs mean higher entropies. We shall refer to this kind of insta-
bility of DNLSE states as entropy-instability.

Next, let us take a close look at entropy changes of discrete plane wave
states under a carefully designed “location-preserving” perturbation. We
propose to engineer a perturbation that will preserve both conserved quan-
tities of a “q” plane wave state and thus preserve the location of the state on
the DNLSE phase diagram (same location before and after the perturbation).
In other words—the engineered location-preserving perturbation will not
only preserve the site-averaged density of the state (wr,) but will also pre-
serve its site-averaged energy (#,).

To this end, it is immediately clear that a phase-only perturbation will
preserve both the site-averaged density (wa = u(z)) of the state and its
site-averaged interaction energy (/L4 = % I ug) To preserve the state’s
site-averaged tunneling energy (/Lz =signC -2 u? - cos aq), a set of random
relative angles 6, ,,,4 is generated within a narrow range near a, with an
imposed constraint:  (cos 0, ;4u4) = COS @, The result then is the
sought-for location-preserving perturbation.

The proposed instability criterion of a discrete plane wave state under
such location-preserving perturbation is the change in system’s entropy dur-
ing evolution. A rise in state’s entropy indicates state’s instability. In Fig. 8
we show the entropy change of two discrete plane wave states under
location-preserving phase perturbations. As shown, both plane wave states
are unstable according to the entropy-instability criterion, even though one
of the states is predicted to be stable according to the linear modulational
instability analysis.

The entropy-instability test under a location-preserving perturbation
can be applied to each and every plane wave state of a finite length system
(finite N) of the positive DNLSE Hamiltonian pair, except for the two ground
states. Since the ground states are at extrema of the cosine function (@, = 7 for
a focusing system and @, =0 for a defocusing system), a location-preserving
perturbation does not exist. In other words, any perturbation to a ground
state of a positive-Hamiltonian DNLSE system will excite the state to a
higher energy level.
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Fig. 7 Entropy-instability of two DNLSE discrete plane wave states. (A). The equally-spaced amplitudes on the complex plane (ag=0.36).
(B) Rather high location of system a on the phase diagram. (C) Site-densities (/,,,) at z=0. Random phase noise added, flat-distributed between
40.032. (D) Wide-spread site-densities at a distance (z=0.6), indicating system’s entropy-instability. (E) The equally-spaced amplitudes on the
complex plane (ag=1.7). The amplitudes ug are rather small (ug>=0.127), and the plane wave state is “frozen” (no phase accumulation) since
the value of the amplitudes was purposely so selected (to satisfy I"- uy> = — signC-2 -cosag, Eq. 13). (F) The state is located low, below the
L; line (green in the figure) on the phase diagram. (G) Site-densities (/,,) at z=0. Random phase noise added, flat-distributed between +0.16.
(H) Wide-spread site-densities at a distance (z=250), indicating system’s entropy-instability.
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To conclude the stability discussion—except for the two ground states,
all other (excited) plane wave states of a finite system of the positive DNLSE
Hamiltonian pair, are entropy-unstable under a location-preserving pertur-
bation. The ground states cannot be perturbed this way and thus considered
stable.

8. Ground states of the two negative-Hamiltonian
systems

The ground states of an infinite (IN=o00) negative-Hamiltonian sys-
tem (/" <0), are known as a site-centered discrete breathers (Rumpf, 2009). (For
other common names see the introduction above or see Christodoulides &
Joseph, 1988; Eilbeck & Johansson, 2003; Malomed & Weinstein, 1996;
Weinstein, 1999). A site-centered discrete breather is a symmetric field
structure with a maximum amplitude centered on a specific site along with
fast decaying amplitudes on both of its sides. Practically therefore, these
breathers represent the ground states of “correctly truncated” finite systems
(Fig. 9). These ground state breathers, all of the same energy for a given
density, could be unstaggered or could be staggered, depending on the
value of the signC parameter of the DNLSE (focusing/defocusing—cf.
Fig. 9). Both breather types are stationary solutions of the DNLSE
(Eilbeck et al., 1985). The ground states of a negative-Hamiltonian
DNLSE system, either focusing or defocusing, are N-fold degenerate since
each and every site of the N-long oscillator array can be the center of a
ground state breather.

As discussed above in relations to ground states of the positive-
Hamiltonian pair, site-centered discrete breathers are also the maximum
energy states for an infinite positive-Hamiltonian system (I">0) (Rumpf,

Fig. 8 Entropy-instability of discrete plane wave states. Two states of a focusing DNLSE
are considered—state a (u, = 4; aq = %) and state b (u, = 4; g = 3Z), as shown on the
center panel on the left. State a is high on the thermalization zone of the DNLSE phase
diagram (panel a1) and state b is rather close to the lowest energy level (panel b1).
According to the linear modulational instability analysis, plane wave b is stable
(Eg. 21). Both states are perturbed by a weak location-preserving phase perturbation
(see text) with stdev(cos6,y, ;ana)/mean(cosby, .anq) = 0.044. Evolution snapshots of P;(/)
and Py(60) are shown by the panels on the left (top/bottom for plane wave a/b) and
continuous entropy evolutions are shown by panels a2 and b2 on the right. The figure
shows that not only discrete plane wave a is entropy-unstable but even discrete plane
wave b is entropy-unstable as well.
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Fig. 9 Ground states of negative-Hamiltonian systems. Shown in the figure are two site-
centered discrete breathers—unstaggered (left) and staggered (right). These breathers
are “stationary solutions” of the DNLSE. The shown breathers are relatively shallow and
thus relatively wide (extend to more than 10 sites to each side of the maximum-amplitude
site). The blue dots were calculated through the recurrence relations of Eq. (22). The red
lines are matched hyperbolic secant envelopes. Actual values of the breather’s amplitudes
are well approximated by the hyperbolic secant expression of Eq. (23).

2009). Note that for a fixed value of the site-averaged density (wr,), the
site-averaged energy (#,) goes to infinity with the length of the array

N— . . .
(wa = const.=>H1,(N) —> oo). As site-averaged density grows, the sin-

gle site centered breather gets increasingly concentrated about one lattice
site (Kolovsky, 2017; Weinstein, 1999).

All fields (U,,’s) of a discrete breather uniformly oscillate, i.e., they accu-
mulate their phase at the same rate. All field amplitudes of a discrete breather
(u,," 5) are independent of the evolution distance. The fields of a discrete
breather are given then by Um‘gs,(z):um(O)-e_i'K'Z. With initial relative
phases of =0 (@ =r), the tunneling energy of the system (H»(z), Eq. 6)
is minimized for signC= —1 (signC=1). The launched amplitudes (u,,’ )
must then satisfy the derived recurrence relations (22) below (cf. Eq. 4), with

an added restriction of u,, Jnzee g (Christodoulides & Joseph, 1988):

. , 3
Upro = SignC - K« Uy — thy, — signC - T o 3 m=0,1,2, ...
signC-2-uy + 1T ui |m|—o0
K= DUy, 0
Uo

Uy =ty >0 up >0if signC=—1; uy <0if signC=1 (22)
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According to Eq. (22), once the maximum amplitude ug (at m =0) is known,
the two neighboring amplitudes (u; =u_;) are determined through the
decay to zero requirement, and then u,,’s for |m|>1 are determined
through the recurrence relations in Eq. (22). In Eilbeck et al. (1985), similar
recurrence relations are presented in a matrix form. In Malomed and
Weinstein (1996), similar recurrence relations were stated as localized solu-
tions to the DNLSE of the form u,,(k) - ¢~ "%, including the decay to zero at
infinity requirement. In Rumpf (2009), studying a positive-Hamiltonian
system, recurrence relations similar to recurrence relations (22) (for extre-
mum energy) were derived through a specific variation of an expression that
includes the two DNLSE conserved quantities.

It is worth mentioning here that u,,1 =u,, =uy (ferromagnetic-like) or
U, | =uo (antiferromagnetic-like) with k= —2+1 ‘Ul are

Up+1= — U
two possible stationary solutions of Eq. (22), which are the two ground states
of the positive-Hamiltonian pair systems (cf. Eq. 15). Of course, in these cases
the decay to zero requirement is waved.

Analytic expressions exist, offering very good approximations to the
negative-Hamiltonian ground states, depending on how strong system
nonlinearity (|I"|-ug) is. In the low nonlinearity range (|I'|-u; <1) wide
breather ground states are closely approximated by a hyperbolic secant
function (Malomed, 2020). The hyperbolic secant function is well
known in describing the fundamental soliton supported by the continuous
NLSE (Christodoulides & Joseph, 1988; Kivshar, 1993). In the high non-
linearity range (|I"'|-u2>>1) narrow breather ground states are closely
approximated by a decaying exponential function (Rumpf, 2009;
Malomed, 2020):

Um,gs— (Z) = Uy * eii.KAZ

m
uo - (sionCG)" - sech[ —— |;
0 ( g ) <0'L(“0)>

_lml 1
g - (sionCG)" - ¢ on; 0y = ————;
o o) ()

F|-uf<1;m:0,:|:1,...

Uy =

I 2>1;m=0, £1,...

(23)

The width parameter (6 (ug)) of the hyperbolic secant in Eq. (23) can be
determined by solving an implicit equation based on the recurrence relations
(22) for u, with signC= —1.

The hyperbolic secant wide site-centered discrete breathers, unstag-
gered and staggered (signCG=signC- sign(I')= —1) are shown by the
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Fig. 10 Ground state of a negative-Hamiltonian system. Shown in the inset is a narrow,
staggered, site-centered discrete breather (blue, Eq. 22), well approximated by a
decaying exponential function (red dots given by Eq. 23). The figure shows the location
of the system on the DNLSE phase diagram, deep down in the negative temperature
zone, for an arbitrarily selected number of sites in the array (N=32 in the figure). For
a fixed site-averaged density («q = 2.52 in the figure) system’s location will drift further
down to negative infinity as the number of sites will get increased to infinity.

panels of Fig. 9. A narrow, staggered, site-centered discrete breather is shown
in Fig. 10. The figure also shows the ground state’s location on the
DNLSE phase diagram for a finite, arbitrarily selected number of coupled
oscillators.

The entropy of a negative-Hamiltonian DNLSE system at its ground
state is greater than zero, its temperature is negative, it has a finite field-
correlation length, and the state is stable (Eilbeck & Johansson, 2003;
Rumpf, 2009). Further analysis of the properties of discrete breather ground
states is beyond the scope of the present work.

9. Relations to actual physical systems

So far we have considered an abstract DNLSE. In this section we will
relate the abstract DNLSE to actual physical systems in the fields of magne-
tism, optics, and ultracold atoms.

Magnetism. Clear similarities can be identified between Hamiltonians
of magnetic exchange interactions and the DNLSE Hamiltonian. The
Hamiltonian of the classical XY model for example, a reduced version of
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the classical Heisenberg model (Stephen, 2001), is practically identical to
the tunneling energy term of the DNLSE Hamiltonian. The configuration
energy (Hxy) of spins in the XY model is Hxy = —2-J - ) 8,081 =

—2-]-> cos(6;) where 0; = ¢p;— ;+1, ¢; is the angle of orientation of

spin vector §;, constrained to lie in a plane, and the parameter J is an
exchange interaction (coupling) constant (Archambault et al., 1998).
Here we have taken the spins to be on the sites of a 1d lattice and for
the XY model periodic boundary conditions are typically assumed.

In a more general XY model, J depends on the site number (J—J) in
which case the Hamiltonian (Hxy ) of the XY model is identical to the tunnel-
ing energy term of the DNLSE Hamiltonian (H,) with signC= —1 and
Ji=2u;-u.1 >0 (Eq. 6).

Given a discrete plane wave state of the positive DNLSE Hamiltonian,
the tunneling energy term 4, =signC-2-u3- cosq, is analogous to the
site-averaged XY Hamiltonian: %: —2-J-cos@ with J;=]>0. If
signC= —1 then the DNLSE ground state is ferromagnetic-like (a,=6=0)
(Ramos, Fernandez-Alcazar, Kottos, & Shapiro, 2020). But the exchange
interaction constant could also be negative (J<O0) (Stephen, 2001)
corresponding to signC=1. The ground state tunneling energy of the pos-
itive DNLSE Hamiltonian would in this case be antiferromagnetic-like
(¢;=0=m). In Auerbach (2012), the spin-spin interaction Hamiltonian
is written with a positive sign of the interaction constant (+];]J>0)
and therefore the Hamiltonian in Auerbach (2012) corresponds to an
antiferromagnetic exchange. In Garcia-Ripoll, Martin-Delgado and
Cirac (2004) the authors introduce a flexibility-enabling sign parameter
to the nearest-neighbor interaction term, much like the signC parameter
of Eq. (2).

It is worth pointing again here that the gauge transformation
U,—¢™"- U, (Mendl & Spohn, 2015; Spohn, 2016) will flip the sign
of the tunneling energy term and at the same time will change 6 by 7 (from
0 to 7 or from # to 0). Thus, the two ground states of the positive DNLSE
Hamiltonian pair depend on signC in a trivial, straight-forward way.

The tunneling energy of the uniform phase (6,,=0) ground state of the
positive DNLSE Hamiltonian corresponds to the Hamiltonian of a 1d Ising
model in magnetism. The long range order of a defect-free one dimensional
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lattice of Ising spins at zero temperature (Stephen, 2001) then corresponds to
the infinite field-correlation length of the uniform-phase ground state of the
positive Hamiltonian system.

The analogy of magnetic systems and DNLSE systems goes even
further. Discussing a one-band two term Hubbard model, Auerbach
(2012) points to the interaction term as giving rise to highly correlated gro-
und states. In the DNLSE systems, the minimization of the interaction
energy of a positive-Hamiltonian system drives the equalization of the field
amplitudes which, in turn, gives rise to long range (large site-spacings k)
field correlations.

Actually, the Hamiltonian of the quantum mechanical Bose-Hubbard
model, an important theoretical model in analyzing strongly interacting
electrons in magnetic materials (Auerbach, 2012) and of interacting bosons
on a lattice (Kennett, 2013) is, in ifts classical counterpart, the DNLSE
Hamiltonian of Eq. (5) (Kolovsky, 2017) (and see also Polkovnikov
et al., 2002).

Optics. The Hamiltonian-derived DNLSE (Eq. 1) is introduced in a
number of optics studies, theoretical and experimental, in order to analyze
electromagnetic-waves propagation in periodic transparent optical struc-
tures (Garanovich, Longhi, Sukhorukov, & Kivshar, 2012 and references
therein). Typically the “optical structure” is an array of single-mode optical
waveguides placed or in-glass “laser-carved” close to each other. During
light propagation through the array, the evanescent field of one waveguide
excites the guided mode of its neighbors (ninety degrees out of phase). The
linear hopping term of the DNLSE, quantitatively describing these excita-
tions, is derived through the well-known coupled-mode theory (CMT)
(Yariv, 1973), with strong similarity to the single-band tight-binding
approximation (Garanovich et al., 2012). The eftect of on-site (same wave-
guide) nonlinear propagation of electromagnetic-waves is taken care of by
the nonlinear term of the DNLSE.

It 1s worth mentioning at this point, that Hamiltonian-derived equa-
tions are rare in classical optics. Typically, in the absence of currents and
in the absence of free charges in the medium and with the adoption of a
scalar approximation, the vectorial Maxwell’s equations are reduced to a
single scalar homogeneous Helmholtz Eq. (Levy & Silberberg, 2014).
The scalar Helmholtz equation is a wave equation from which optical
modes of free space are computed (Levy, Derevyanko, & Silberberg,
2016; Levy, Silberberg, & Davidson, 2019), and for periodic optical
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structures Bloch functions (Thompson, 2012) along with optical bands
k.(k,) (Levy & Silberberg, 2014; Mandelik, Eisenberg, Silberberg,
Morandotti, & Aitchison, 2003; Yeh, Yariv, & Hong, 1977) are derived.
The scalar Helmholtz equation then is commonly derived, under certain
assumptions, from Maxwell’s equations although the authors of Orefice,
Giovanelli, and Ditto (2009) suggested its derivation from an exact
Hamiltonian ray-tracing system. Even the equation known as the “optical
Schrodinger equation” (Marte & Stenholm, 1997) is a slowly-varying enve-
lope approximation of the scalar Helmholtz equation, and has no
Hamiltonian origin. In optics, it tums out, the Hamiltonian-derived
DNLSE discussed here is somewhat of an exception.

Back to the DNLSE (Eq. 1), according to the coupled-mode theory,
the coupling coefticient (C) is positive with analytic expressions for nearest-
neighbor (Yariv, 1991) and even next-nearest-neighbor coupling (Levy &
Silberberg, 2014). The cubic on-site nonlinear term, preceded by the
unharmonic parameter (y), is typically associated with the optical Kerr
effect. In that case the unharmonic parameter is positive (y >0) (Boyd,
2019), the nonlinearity is referred to as “focusing nonlinearity” (leading
to the light self~focusing eftect) (Boyd, 2019), and the associated interaction
energy term of the Hamiltonian is positive. It is important not to confuse
“focusing/defocusing” when referring to the version of the DNLSE as
a whole with “focusing/defocusing” when referring to the nonlinearity
term itself. For example, Kevrekidis (Kevrekidis, 2009), refers to a negative
nonlinearity term of the DNLSE (attractive atom-atom interaction in
Bose-Einstein condensate (BEC)) as a _focusing nonlinearity term. In optics,
negative nonlinearity would be “defocusing” (Lederer et al., 2008).

The linear part of the DNLSE, derived in optics through the CMT, is a
simplification of the more general periodic structure cases. In the more
general case, still 1d, the transverse coordinate of the periodic structure
(say x) 1s explicitly included in the dynamic equation, leading to light
propagation analysis in terms of two-variable complex functions (say
Y (x, 2)) known as Floquet—Bloch (FB) functions. In a number of FB stud-
ies, positive as well as negative nonlinearities are considered or
experimented with (Lederer et al., 2008). For example studies with photo-
refractive materials (Efremidis, Sears, Christodoulides, Fleischer, & Segev,
2002; Feng et al., 2005; Fleischer, Carmon, Segev, Efremidis, &
Christodoulides, 2003; Hadas, Vidal, Fischer, Sheinfux, & Silberberg,
2020; Rakuljic, Yariv, & Neurgaonkar, 1986), or with nematic liquid
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crystals (Assanto & Peccianti, 2003; Fratalocchi, Assanto, Brzdakiewicz, &
Karpierz, 2005), or with Lithium niobate waveguide arrays (Matuszewski
et al., 2006), or with a sodium-vapor (Swartzlander, Andersen, Regan,
Yin, & Kaplan, 1991).

In optics, the CMT-derived hopping term of the DNLSE (Eq. 1)
“generates” a single optical band (k.(a,); —7<a,<m) (Morandotti,
Eisenberg, Silberberg, Sorel, & Aitchison, 2001). The CMT optical band
has a cosine shape, very similar to (but not necessarily identical with) the
shape of the first optical band generated through the FB theory for a
1d periodic optical structure. See in Levy and Silberberg (2014), for exam-
ple, the comparison of the CMT band with the first FB band calculated for
a 1d array of step-index waveguides (the Kronig Penney model). To be
consistent with the shape of the lower band as calculated by the tight bind-
ing model for crystals or for a 1d chain of spins (Stephen, 2001), the
DNLSE for optical waveguides should be written with a negative hopping

term {l : ds—é” =—-C- (Um,1 + Um+1) Tr |Um|2 “Ups Cay > O} . The

equation is derived from a positive-Hamiltonian with ¢;=U,,; p;=i- U;
as the canonical variables. The “optical DNLSE” here 1s of a defocusing
type with a focusing optical nonlinearity term. The CMT optical band
in this case is k. o¢ —cosa; — 7 < a, <x and the positive-Hamiltonian gro-
und state, at the lowest point of the band (a,=0), is ferromagnetic-like. In
strict similarity with the ground state of an ultracold bosonic system, as
discussed next.

Ultracold atoms. In relations to the DNLSE, the most relevant system of
ultracold atoms is a system of a large number of bosons interacting with
repulsive forces at a low temperature. The bosons are confined by a smooth
external potential and trapped in a 1d optical lattice potential. The dynamics
of such systems is well described by the single-band quantum Bose-Hubbard
model (Jaksch, Bruder, Cirac, Gardiner, & Zoller, 1998). Following
Polkovnikov et al. (2002), let us specify the conditions in which the quan-
tum operators of the Bose-Hubbard model can be replaced by classical
complex functions.

Assuming a smooth parabolic external potential, a decisive quantum-
to-classical switch parameter is the mean number of bosons Np in the cen-
tral site. If the external parabolic potential is very shallow, then the mean
number of bosons per site is approximately equal to the dimensionless
site-averaged density wr,, i.e. Np=w, with wr, as defined in Eq. (6). In
terms of the DNLSE parameters (I, w,) the quantum-to-classical switch
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is allowed in a wide range given by 1 <KA=T-w, << w? (Polkovnikov
et al., 2002).

Thus, at large enough system nonlinearity (I"-w,), but not too large, the
low-temperature dynamics of the system can be described by treating
the quantum operators as classical complex functions. In the cited conditions
then, an adequate description of system’s dynamics would be the discrete
semiclassical version of the familiar Gross-Pitaevskii (GP) equations for com-

plex functions (Polkovnikov et al., 2002). The discrete GP Hamiltonian is
N
given as Hep(U,i-U*) =Y {—(U;;-U,m + U, Uy i) + % \UJ* +

m=1

é |Um|4}. The parameter V), preceding the quadratic diagonal term is the
value of the external potential at site m, and the parameter | is the tunneling
amplitude between neighboring lattice sites. The site functions U,,(z) are nor-
malized by wr, (so that their mean value is about unity) and the evolution
parameter (z) is in this ultracold-bosons case, a dimensionless time. The dis-
crete GP Hamiltonian is seen to be the DNLSE (Eq. 5) with an added diagonal
confining-potential term. If the confining potential is very shallow or there is
no external potential at all, then the dynamics of a 1d optically-trapped ultracold
bosonic atoms, in a rather wide range of system densities and system nonlinearities,
can be described by the classical DNLSE.

The upper limit of the quantum-to-classical switch validity (F W, = wf)
is a strong-interaction limit above which the ground state of the system
undergoes a quantum phase transition from a superfluid to a Mott insulator
(Polkovnikov et al., 2002). Above this upper limit then, the description of
the system’s dynamics by the discrete GP equations is invalid.

Without the external confining potential, the discrete GP Hamiltonian
becomes equal the DNLSE Hamiltonian of Eq. (5). The sign of the hopping
term in the Hamiltonian is negative (as is always the case with atomic systems
when the contribution of the off diagonal-functions is given by a negative
discrete second-order derivative), and the interaction energy term is positive
for the assumed repulsive atom-atom interaction. Thus, the derived DNLSE
for the optically trapped ultracold bosonic system is of a defocusing type with
afocusing nonlinearity term (in optics terminology). The ground state of this
positive-Hamiltonian ultracold bosonic system is ferromagnetic-like.

Insights to the more general analysis of ultracold atoms in optical lattices,
classical or quantum (Lewenstein, Sanpera, & Ahufinger, 2012), can still be
gained by considering the simpler DNLSE analysis. An interesting and a
rather relevant example is the generation and observation of a superfluid
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with tunable ground states (in momentum space) (Struck et al., 2012). Struck
et al. (2012) studied and experimented with smoothly confined ultracold
atoms in a deep optical lattice. Their employed key experimental technique
was a single-parameter-controlled frequency modulation of one of the
lattice beams. The driven system can be described to a good approximation
by an effective time-independent Hamiltonian that reads, in 14 and nearest-
neighbor interaction:

ﬁ(ﬁ =2 Z‘J;ﬂ,mﬂ

i, -~~~ -, -~ ~ i
(6‘ " A, %m+1 te " a1 9m + Honfsitc

with 8,,=¢,, — ¢,,+1 and EII,Em denote the creation and annihilation oper-

ators. The parameter | ],‘f? m+1 | 1s an effective amplitude of tunneling between
neighboring sites m and m+1 (in either directions). The eigenstates of this
effective Hamiltonian are Bloch waves with the dispersion relation
E(k)y=—2-[J¥| cos((k—K)-d) (Struck et al., 2012 with a small
modification). The parameter d is the lattice spacing. The parameter K is
a “quasi-momentum” given by ¥ = A/h where A is an apparent gauge vec-
tor potential due to the frequency-modulation of the lattice beam. The low-
est energy band then is of a negative cosine shape with a shifted minimum to
k=Fk. The frequency modulation technique thus allows for the generation

of superfluid ground-states at a finite and tunable quasi-momentum.

10. Summary

The DNLSE systems of coupled nonlinear oscillators considered here
are classical Hamiltonian systems. The Hamiltonian of the simplest DNLSE
system is the sum of two terms—a the nearest-neighbor tunneling energy
term and an on-site interaction energy term (Eqs. 5 and 6). As we have
determined in this work, the four possible Hamiltonian versions must be
grouped into two pairs according to the sign of the on-site interaction energy term.
We thus refer to the pair of DNLSE Hamiltonians composed of a positive/
negative interaction energy term as ‘“‘positive/negative-Hamiltonian pair.”

The DNLSE Hamiltonian is described by a set of single-variable com-
plex field functions (U,,(2)), each associated with a single oscillator site.
The equations of motion are derived from the Hamiltonian through the
canonical set (¢, pu) — (Upn i+ U, ) or equivalently by the canonical polar

variables (., pr) = L @)
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Given the (U,,i- U;) coordinates, a two-term dynamic equation is
derived—a linear hopping term, and a cubic on-site nonlinear term
(Egs. 1 and 2). Importantly, the sign of the hopping term can be flipped
through the gauge transformation U, — ¢ U, (Mendl & Spohn,
2015; Spohn, 2016). It follows that the ground states for the positive/neg-
ative Hamiltonians come in pairs—one ground state of a given pair is
obtained from the other by the sign-flipping transformation. The relative
angle (0) of one ground state of the pair differs by # compared to the
relative angle (6) of other member of the pair. Specifically, if one ground
state of the pair is characterized by =0 (for all m) then necessarily, the
other member of the pair is characterized by |0|=z. The available
sign-flipping transformation for the hopping term is the reason why the
Hamiltonians are “colored” in this “ground-states” work only by the sign
of the interaction-energy term.

Even the positive/negative-Hamiltonians are not independent of each
other, since the ground state of one is (exactly) the highest energy state of
the other and vice versa (Ramos et al., 2020). Or more generally—systems
of vertical-mirror-imaged positions on the DNLSE phase diagram (resulting
from sign-flipping the entire Hamiltonian) share the same statistical proper-
ties (Fig. 5).

Generally, the DNLSE is not integrable and has no general (for arbitrary
initial conditions) analytic solution. However, a set of analytic solutions in
the form of discrete plane wave states does exist (Eq. 13). All complex func-
tions of a discrete plane wave state (numbered ¢) are of the same amplitude
(up) and the phases of neighboring functions are all separated by the same
discrete angle (@,). During evolution, all field functions acquire phase at
the same rate. In terms of energy bands, the set of plane waves ({q}) corre-
spond to the lowest energy band (see optics in Section 9). The two ground
states of the positive-Hamiltonian pair are special plane wave “stationary
states” where all amplitudes are real (with a,=0 or a,=n) and all phases
grow linearly with distance at a rate of I'- u3- = (Eq. 15).

All four ground states—the two ground states of the positive-Hamiltonian
pair as well as the two ground states of the negative-Hamiltonian pair satisfy a
specific recurrence relations (Eq. 22). The recurrence relations are found
either through direct manipulations of the dynamic equations for the polar
coordinates (I, @,,) (Eq. 4), or through a specific variation of an expression
that includes the two DNLSE conserved quantities (Rumpf, 2009). The gro-
und states of the positive-Hamiltonian pair are equal-amplitude solutions
of the recurrence relations. The ground states of the negative-Hamiltonian
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pair are site-centered discrete breather solutions (Fig. 9 and the approximate
analytic expressions of Eq. (23)).

Each of the two ground states of the systems of the positive DNLSE
Hamiltonian pair, defined as “the smallest value of the Hamiltonian of all
possible DNLSE solutions at a given density”’, is a zero entropy state
(Eq. 16), its DNLSE temperature is also zero (Eq. 17) and the correlation
distance (k) of the field functions of each of these two ground states extends
to infinity (Eq. 20).

In terms of stability, linear modulational instability analysis finds the
high-energy discrete plane wave states of the positive-Hamiltonian unstable
and finds the low-energy discrete plane wave states stable (cf. Eq. 21).
According to our suggested, more demanding, entropy-stability criterion,
all discrete plane wave states except for the two ground-state plane waves
are entropy-unstable under a location-preserving perturbation (Fig. 8).
Since such location-preserving perturbation cannot be applied to the ground
states, we consider these ground states to be entropy-stable.

The abstract 1d DNLSE discussed in this work appears in the analysis of
physical systems in several fields such as magnetism, optics and ultracold
atoms. We elaborate on the specifics of the DNLSE in each of these fields
with emphasis on ground states. In particular, following Polkovnikov et al.
(2002), we show how the dynamics of a 1d optically-trapped BEC, in a
rather wide range of system densities and system nonlinearities, can be
described by the classical DNLSE as given by Eq. (2) with signC= —1
and "> 0.

Characteristics of thermalized DINLSE systems in general are the subject
of the next chapter.
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Dedication

I dedicate this chapter to Prof. Yaron Silberberg—a physicist, a gentleman,
and a friend.

*  “In Memoriam: Yaron Silberberg,” April 21, 2019, by The Optical
Society, https://www.osa.org/en-us/about_osa/newsroom/obituaries/
yaron_silberberg/

* Yaron Silberberg (* 1951 in Giv’atajim; T April 21, 2019) was an
Israeli physicist at the Weizmann Institute who dealt with nonlinear
optics, integrated optics, optical solitons and optical communication
technology and physics with ultrashort laser pulses.

https://de.wikipedia.org/wiki/Yaron_Silberberg (right click for
English translation).

*  Yaron Silberberg of the Weizmann Institute in Israel passed away in
April. Here, some of his former students and friends remind us of who
Yaron was: a creative researcher and a mentor without ego with major
achievements in nonlinear optics, microscopy, and quantum physics.

https://www.nature.com/articles/s41566-019-0514-3
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Yaron’s mother was a sculptor and a painter. One day, the teenager Yaron
criticized some details of her art. “Surely you can do better,” his mother

responded, “show me.”

Painting: Yaron Silberberg (age: early twenties).
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