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1. INTRODUCTION

Free space propagation of both paraxial and nonparaxial optical beams
has attracted steady attention of researchers over the last four decades. For
time-harmonic beams, the main physical effect describing their change of
shape during the propagation is linear diffraction (Goodman, 1988;
Yariv & Yeh, 1984). For a generic optical beam, the free space diffraction
leads to broadening of the pattern in the transverse direction as different spa-
tial harmonics of the beam propagate at different angles with the optical axis.
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However, since the late 80s an interesting class of nondiffracting beams was
introduced (Durnin, 1987; Durnin, Miceli, & Eberly, 1987). This introduc-
tion has spurred the interest not only in the diffraction of paraxial beams but
also in the generic class of the free space solutions of Maxwell’s (or rather 3D
Helmbholtz) equations commonly known as propagation invariant optical fields
(PIOFs; see, for example Bandres, Gutiérrez-Vega, & Chavez-Cerda, 2004,
Gutiérrez-Vega & Bandres, 2005; Gutiérrez-Vega, Iturbe-Castillo, &
Chavez-Cerda, 2000; Siviloglou & Christodoulides, 2007).

PIOFs received special attention in a comprehensive review by Turunen
and Friberg (2009), including discussion of custom designs, vectorial exten-
sion, and partial coherence.

Over the years, many distinct light patterns solving the exact and the
approximated homogeneous wave equation were presented and studied
by different research groups. With the growing number of introduced free
space light patterns, there is a pressing need to collect and classify these pat-
terns in an organized manner according to their key optical properties, and
to present characteristic distribution maps.

The current short review serves exactly this purpose and can be viewed
as the first step toward such a classification. It represents a compendium and
tentative classification of currently known light patterns, or light modes—
the solution sets of free space Maxwell’s equations. We begin by first divid-
ing the light pattern sets discussed in this review into two major groups:
Waves and Beams. Waves (sometimes termed PIOFs as mentioned above),
are the sets solving Helmholtz equation (HE); and Beams, are the sets solv-
ing the paraxial wave equation. Next, we divide Waves and Beams into
subgroups, according to the coordinate system to which they belong.
For each subgroup, we concisely list their main physical and mathematical
properties.

1.1 Waves

For fully self-contained treatment of the problem, we shall start with a stan-
dard derivation of the electromagnetic wave equation (Yariv & Yeh, 1984).
Assuming a monochromatic (time-harmonic) electromagnetic wave of
frequency @, Maxwell’s equations for the electrical field [E(#)], in the
absence of free currents and free charges, can be arranged as:

VZE(r) + ky - c(r) - E(r) = —V[VoE(r)] 1)
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where kj is the vacuum wave-vector (=w/c) and €(x, y, ) is the medium
permittivity.
Given a homogeneous-permittivity medium (free space):

€(x,y,2) =ey=—VI[VoE(r)| =0, (2)

Equation (1) is reduced to the scalar wave equation, or HE for each of the
electrical field components [y (x, y, 2)]:

Py(x,y,2)  Pylxy2)  Pylxy2)
Ox? 0y? 022

10} 2.z
kH:?w/éHEko-\/éyEA—-\/éy
0

+kyyy(x, y,2) =0
3)

where kyy = kg - /cp is the free space wave number, i.e., the (possibly com-
plex) wave number of a monochromatic wave of angular frequency @, prop-
agating through a homogeneous permittivity space.

Similar derivation holds for the magnetic field components (Yariv &
Yeh, 1984), so that HE (Equation 3) holds for all six components of the
electromagnetic field.

A common way of solving Equation (3) is using the separation of variables
method (Tikhonov & Samarskii, 2011; Willatzen & Lew Yan Voon, 2011).
Throughout this review, we adopt the common convention of assigning z to
be the propagation (axial) axis and assume for the separation of variables:
l//(qx, Qs z) = U(qx, qy) ¢k where (g, q,) are the transverse coordinates.
Under this assumption, the three-dimensional HE (Equation 3) is reduced to a
two-dimensional HE:

W(qm q)/’ Z) - U(qx, qy) . ei'k:'z
Vi [U(qe9))] K- U(ge 3,) =0 n

1
ke (k) = [If, — k7]2

We refer to the separation of variables constant (k,) in Equation (4) as the
transverse wave number.

The four sets of Wave patterns discussed below are the sets of solutions to
Equation (4) in four different systems of transverse coordinates.

Note, however, that the electric-magnetic field components are related
to each other through Maxwell’s equations. They can NOT all be calcu-
lated independently as solutions to HE (Equation 3). One rigorous way to
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compute all six components of the free space electric-magnetic fields is to first
construct, based on (one of the) solutions of HE (Equation 3), a vector known
as the vector potential (Feynman, Leighton, & Sands, 1964; Konopinski,
1978), or more generally to construct two vector fields (Stratton, 1941,
p. 394, equations 11 and 12). Then, from the constructed vector potential
or from the constructed vector fields, derive the desired electric-magnetic
field components (Levy & Silberberg, 2015; Volke-Sepulveda & Eugenio,
2006). Another way to calculate the electric-magnetic field components
is to independently define two of the six components, using angular spec-
trums functions, and then obtain the remaining components from Maxwell’s
equations (Turunen & Friberg, 2009).

Note also that the free space electric—magnetic fields are generally NOT
perpendicular to each other (Levy & Silberberg, 2015).

1.2 Beams

Beams are solutions of the paraxial HE discussed below. In this section of the
review, we present the equation for Beams and, following Gutiérrez-Vega
and Bandres (2005), discuss a special solution class—a class of wave-
originated Gaussian Beams.

1.2.1 Equation

Beams are the solutions of a slowly varying envelope approximation-paraxial
wave equation (SVEA-PWE) version of the full HE (Equation 3, Goodman,
1988; Kogelnik & Li, 1966):

. i~k”~z

‘//(Qx, dy> Z)Ef(qx, dy Z) e
0 (4 47.2) _, ®)
0z

Note that contribution to axial phase accumulation will come not only

Vf[}_(qx, 9y z)] +i-2kyy-

from the ky - z product but also from the z-dependent phase contributed by
the solution to the SVEA-PWE (Equation 5). In fact, in some cases, the axial
phase accumulation will no longer be a straight line (cf. Figure 8).

1.2.2 Wave-Originated Gaussian Beams Solution
It was shown by Gutiérrez-Vega and Bandres (2005) that if Ulq.(x,y),
q4,(x,y); k] is a solution of the transverse HE (Equation 4), then
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l//[%c(x7 )y, Y)’Z]

. k2
=¢ | 2kun. GB(x,y, z) - U[qx <f, Z),qy (f, X>;kt:|
W)\

1 _x2+}— (6)
GB(x,y,z)=—-¢ ku-z o pewp
u
Lz 1 5
u=u(z)=1+i-—;zp=="ky-wj
<R 2

is a solution of the SVEA-PWE (Equation 5). Thus, the four patterns of
Waves (solving HE (Equation 4) in different coordinate systems) “give
birth” to four patterns of Beams [solving the SVEA-PWE (Equation 5)].

1.3 Classification

The variety of Waves and Beams, some of which were already reviewed in
the literature (see, e.g., Korotkova, 2013) calls for classification. Here, as
stated above, we divide the free space light patterns into two groups
according to the governing equation they solve (columns of Table 1),
and into four subgroups according to the related coordinate system (rows
of Table 1). The Beams in blue (dark gray in the print version) fonts in
Table 1 originate from the respective Waves listed to their left (cf.
Equation 6).

1.4 Orthogonality and Completeness

Important properties, perhaps the most important properties, from a theo-
retical point of view as well as from a practical point of view, of the light-
pattern sets listed in Table 1, are their orthogonality and completeness. As
both HE (Equation 4) and SVEA-PWE (Equation 5) are solved by separa-
tion of variables, the resulting one-dimensional equations are of the Sturm—
Liouville problem type (although not regular), with the separation constants
as the eigenvalues (Morse & Feshbach, 1953; Tikhonov & Samarskii, 2011).
Thus, each set of solutions to both HE (Equation 4) and SVEA-PWE
(Equation 5) possesses orthogonality and completeness. For several sets listed
in Table 1, the results concerning orthogonality and completeness are
known in the literature (Freise & Kenneth, 2010; Forbes, 2014;
Hernandez-Aranda, Gutiérrez-Vega, Guizar-Sicairos, & Bandres, 2006;
Soifer, 2014). In particular, in Forbes (2014), the orthogonality and
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Table 1 Classification of Light Patterns Propagating in Free Space

Coordinate Waves Beams
System (Helmholtz Eq.) (SVEA-PWE)

E. Plane Infinite Beams (PIB)
F. Airy Infinite Beams (Ail)
G. Airy Finite Beams (AiF)
Cartesian A. (F}’Dlsc\?)WaveS H. Airy—Airy Beams (AAB)

I. Airy—Plane Beams (APB)
J. Hermite—Gauss Beams (HGB)
K. Plane-Gauss Beams (PGB)

Circular—-Cylindrical | B. Bessel Waves L. Laguerre-Gauss Beams (LGB)

(Polar) (BSL) . Bessel-Gauss Beams (BGB)

. Parabolic Infinite Beams (Pal)

C. Weber Waves

. Parabolic Finite Beams (PaF)
(WBR)

Weber—Gauss Beams (WGB)

Parabolic—Cylindrical

. Ince—Gauss Beams (IGB)
. Mathieu—Gauss Beams (MGB)

D. Mathieu Waves

Elliptical-Cylindrical (MTH)

X PlUWw o Z|=Z

The four Waves (center column) are solutions of the exact HE (Equation 4) in the respective coordinate
system. The 14 Beams (right column) are solutions of the SVEA-PWE (Equation 5) in the respective
coordinate system. The Beams in blue (dark gray in the print version) fonts originate from the respective
Waves (cf. Equation 6).

completeness of plane wave slices are proven. Rodriguez-Lara (2010) pres-
ented explicit expressions for decomposition of Weber Waves into Bessel
Waves and into Mathieu Waves (of the same transverse wave number
(k) based on the completeness of the latter sets.

General expressions for orthogonality and completeness are presented
below.

1.4.1 Orthogonality

Associated with the two transverse coordinates (for both HE (Equation 4)
and SVEA-PWE (Equation 5)) are two sets of eigenvalues (ay,a,). Two
functions of a given solution set that belong to different eigenvalue pairs
are orthogonal:

JJQ U(Qxa qy; Ax, dy) -U” (‘Zx, dy; dx: dy) : d%c ' dqy

q

=C, 8(ax—dy)-6(a,—dy) 7)
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where §(+) is a Dirac delta function and [(ax, a),); (dx, dy)] are the sets of
eigenvalues (discrete or continuous) of the equation (typically the separation
constants). The integration area (£2;) is the entire (here infinite)
transverse plane.

1.4.2 Completeness

Completeness 1s assured if (Forbes, 2014, and only if) the integral over the
eigenvalue space (or the sum in the case of a discrete set of eigenvalues) at
two difterent spatial points [(4y, q,),(4x,qy)] vanishes:

JJQ U(gss 4y3 ax, ay) - U™ (x, dys av, ay) - day - da
:Ca‘é(%‘_q\x)'é(%/_q\y)- (8>

The integration range (£2,) is the entire eigenvalue space. Given Equa-
tion (8), any square-integrable function (any input field, F(q.,q,)) defined
over the transverse plane, can be accurately reconstructed (expanded) by
the set of the solution functions:

F(qx, qy) = JJQ Capya, U(qx, 4y} ax, ay) -da, - da, 9)

a

with expansion coefficients (C, ) given by

Cax, ay = JJQ F(qx, q)/) : U* (qxa qys Ax, ay) : de ' dqy (10)
q
Completeness of the plane infinite beams (E in Table 1), for example, is
the basis for (paraxial) Fourier optics (Goodman, 1988).
Below, we illustrate set-completeness by one-dimensional the Airy
transform.

1.4.3 Example: Gaussian Propagation by the Airy Transform

Airy functions (cf. Section 3.1.2) make a convenient complete basis set.
Much like plane wave functions (cf. Section 3.1.1), Airy functions are
one-dimensional (counting transverse coordinates only) and are associated
with a continuous set of eigenvalues.

In the example illustrated in Figure 1, we compare the Airy transform to
Fourier transform. We use both transforms to decompose a one-dimensional
Gaussian (the input field) into the respective base functions, propagate the base
functions a certain axial distance (z), and recompose (perform the inverse
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Input field (z = 0)

1

-3 1 2 3
Airy & Fourier spectrum
1.0
0.8 — Airy
Fourier
0.6
0.4
0.2
=6 —3 ~2 2 s 4
Propagated Gaussian (z = 5)
o20f
.‘,4 \"‘
/ N\ i
/ \ — A
/ 0.5} \ :
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/
/ \
/ 0.10 \
/ \
/ \
\
/ 0.05} N
4 N\
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0“ %’h
1-'.’ ....'..
- ~
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Figure 1 Comparing the Airy transform to Fourier transform (cf. Equations 9 and 10).
The scenario of the Airy transform and a Gaussian input is just an example. Any
square-integrable function (the input field) defined over the transverse plane, can be
accurately expanded (and propagated) by each of the function sets listed in Table 1.
Note: here x, g, and z are dimensionless.
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transform) to get the resulted diffraction pattern. Both transforms indeed yield
the same diffraction pattern (expanded Gaussian in this specific example).

1.5 Countability

Each of the Wave and Beam function sets listed in Table 1 is associated with
two sets of eigenvalues (typically the separation constants). These eigenvalue
sets, by which the different Wave and Beam functions are identified (coun-
ted), can be discrete (i.e., countable) or continuous. In Table 2, we classify the
Wave and Beam sets according to their countability.

1.6 Diffraction Characteristics

As a single Wave (one pair of eigenvalues) or a single Beam (one pair of
eigenvalues) of Table 1 propagates along the axial (z) direction, changes
in the intensity pattern (relative to the intensity pattern at z=0) may or
may not occur.

In Table 3, we have classified Waves and Beams according to their dif-
fraction characteristics. Following is a brief explanation of the terms listed
along the left (Diffraction Properties) column.

1.6.1 No Diffraction
Intensity patterns at all axial distances are equal. Waves, as Table 3 shows, do
not diffract. In fact, any combination of waves associated with a fixed

Table 2 Countability of Wave and Beam Sets

Countability Waves Beams
Plane Infinite Beams
Airy Infinite Beams
Continuous/ Plane Waves A!ry F|r_1|te S
- Airy—Airy Beams
continuous Weber Waves .
Airy—Plane Beams
Plane—Gauss Beams
Weber—Gauss Beams
Bessel-Gauss Beams
Continuous/ Bessel Waves [ Parabolic Infinite Beams
countable Mathieu Waves | Parabolic Finite Beams
Mathieu—Gauss Beams
Countable/ Hermite—Gauss Beams
Laguerre—Gauss beams
countable
Ince—Gauss Beams

Decomposition of input fields into each of these function sets is a two-dimensional integral (top row—cf.
Equation 9) or a double-index sum (bottom row) or a combination (middle row).
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Table 3 Diffraction Properties of the Waves and Beams Listed in Table 1

lefractl_on Waves Beams
Properties
Plane Waves
. . Bessel Waves -
No diffraction Plane Infinite Beams

Weber Waves
Mathieu Waves

Hermite—Gauss Beams
Expansion Laguerre—Gauss beams
Ince—Gauss Beams
Airy Infinite Beams
Airy—Airy Beams
Airy—Plane Beams
Parabolic Infinite Beams
Acceleration and Airy Finite Beams

slow diffraction Parabolic Finite Beams
Plane—Gauss Beams
Bessel-Gauss Beams
Weber-Gauss Beams
Mathieu—Gauss Beams

Acceleration

Diffraction

See text for discussion of the terms in the left column.

transverse wave number (k,) does not diffract. As all waves in the combina-
tion accumulate axial phase at the same rate, the pattern remains unchanged
(Gutiérrez-Vega et al., 2000; cf. Equation 11).

1.6.2 Expansion

The intensity pattern at a certain transverse plane is a scaled copy of the pat-
tern at any other transverse plane. Scales in the x-direction and y-direction
can generally be different (i.e., aspect ratio is not generally preserved).

1.6.3 Acceleration

Intensity patterns can shift transversely. The shift rate [x(z); y(z)] is parabolic
with axial distance (hence acceleration). Other than a transverse shift, the
intensity pattern remains unchanged.

1.6.4 Acceleration and Slow Diffraction

Intensity patterns accelerate and in addition gradually change. The rate
of change is dictated by the value of an attenuation parameter (ct.
Sections 3.1.3 and 3.3.2).
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1.6.5 Diffraction

Intensity patterns generally do change with axial distance. As listed in
Table 3, all wave-originated Wave—Gauss Beams do diffract. They diffract
in one of the two modes (Gori, Guattari, & Padovani, 1987): a slow-
expansion mode [w) < 2/k] or a fast-expansion mode [wy > 2/k,]. In the
slow-expansion mode, the pattern due to a slow expanding wave (small
k;) remains under a (relatively fast-expanding) centered Gaussian. This mode
alone could have been classified under expansion. In the fast-expansion
mode, the pattern due to a fast expanding wave (large k,) is seen under (mod-
ulated by) a Gaussian ring (gradually formed during propagation).

These two diffraction modes of Wave—Gauss Beams, along with an
intermediate mode, are illustrated in Figure 2. And whereas the curves in
the figure are calculated for Plane—Gauss Beams, the same diffraction modes
characterize all four Wave—Gauss Beams (see Figures 14, 16, 19, and 21).

This discussion on diffraction characteristics ends the overview section.
We move now to presenting, one-by-one, mathematical equations, and
typical intensity patterns of all Waves and Beams listed in Table 1, starting
with Waves.

2. WAVES

Waves are solutions of the HE (Equation 4) in Cartesian coordinates
and in three Transverse-Cylindrical coordinate systems. Before treating the
individual Waves, let’s briefly elaborate on their nondiffracting feature.
One of the two eigenvalues associated with all four Waves (directly or indi-
rectly) is the transverse wave number (k). Combinations of Waves with a
fixed transverse wave number do not diffract. It clearly follows from the
angular spectrum equation displayed in the next subsection. Note that when
a given input field is decomposed into one of the Wave sets, the transverse
wave number (k) is NOT generally fixed, and the input field WILL gener-
ally diffract as expected.

2.1 Angular Spectrum

The PIOFs were discussed by Gutiérrez-Vega et al. (2000), where
the authors started with an angular spectrum equation (Stratton, 1941, sec-
tion 7.7—equation 58; Durnin, 1987) given by (slightly modified)
Equation (11):
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PGB/ .\112
[y =" x)1]
1.
— wo = 1.5/k
— wo =3.0/k
— wo = 8.0/k

N\

PGB,/ _\1712
[y =" @l]

— o= L.5/k

G — wo=3.0/k
— wo=8.0/k

/ 0.6 \
0.4
0.2
-1000 -500 500 1000 X {um}

Figure 2 Propagation modes of Wave—Gauss Beams (marked by blue (dark gray in the
print version) fonts in Table 1). The figure shows three (x,y =0) cross sections of a
Plane—Gauss Beam (cf. Section 3.1.7), made of superposition of seven Plane Waves
equally spaced on the azimuthal circle, under a centered Gaussian (cf. Figure 14).
Top: z=0. Bottom: z=2000pm {k; z2(pm)’1}. Looking at the bottom curves, in the
slow-expansion mode [wq < 2/k;], the pattern remains under a centered Gaussian
(red (gray in the print version)). In the fast-expansion mode [wq > 2/k;], the pattern
is seen under (modulated by) a Gaussian ring (purple (dark gray in the print version)).
See Figures 14, 16, 19, and 21).
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2.7
%(qxs 47)57 (0 4))¥ (w0 410 2) = exp (i~ ko - 2) - / Ale) gy

[exp i+ [5(ge 4y) - c05(@) + ¥(ge 4y) - sin(@)] }] - do

with A(@) being the (complex) angular spectrum. It was also remarked by
Gutiérrez-Vega et al. (2000), that Equation (11) is the solution of the HE in
any cylindrical coordinate system by performance of the corresponding coordinate trans-
formation. In the context of this review—the four Waves.

Let us zoom-in now and describe each of the four Waves in detail.

2.2 Cartesian Coordinates: Plane Waves

To solve the HE (Equation 4) in Cartesian coordinates, a next step of var-
iable separation is performed:

U(x Y) (x) (Y),
leading to a set of two equations (and one governing condition),
1 dZUx(x) _ 2
Uy(x) dx>
L eV (13)
V,(y) dy? !

~(R+k)+r2=0

The solution to Equation (13) is given by:

Wy)sz- ""ﬁ"”+By-e‘1 by (14)
- k§+k2) +k =

The general solution to HE (Equation 4) in Cartesian coordinates

PV (x,y, 2 ks, ky)] is thus:

v

:>WPWV(x7 Y, =5 kxa k)/) = (141JL ’ ef'k)('x + Bx : e*"'kX'x) ’
| | o (15)
(Ay- b7 4 By )k (21242 I =0

Two comments are pertinent here. The first comment is related to the
allowed values of the eigenvalues (ky,k,) that can be real or imaginary
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leading to oscillating or exponentially growing (or decaying) solutions, pro-
vided that Equations (13) are satisfied. In this review, we concentrate on
physical, i.e., bounded solutions, and ignore nonphysical (even if mathemat-
ically allowed) solutions.

The second comment is related to the countability (actually
uncountability) of the eigenvalues ((ky,k,) in Equation 13): the allowed
range for each of the eigenvalues is continuous (Tikhonov & Samarskii,
2011). A general solution that satisfies the initial conditions (typically a
square-integrable input field at z = 0), is given by a two-dimensional integral
of the solutions given in (14).

Example of an intensity pattern (nondiftracting) that results from a super-
position of Plane Waves having the same transverse wave number ((k,),
Equation 16) is shown in Figure 3.

Shown in Figure 3 is the following superposition of Plane Waves:

5
l//PWV .X’ Y7 Zet k- sin[(n—1)-¢] - x i-k,~cos[(n—1)~¢]~y
n=1
2. 2.7 N (16)
qb:—ﬂ, Ao=0.8um; ny =1.5; Q:Z; kH:ﬂ(pm) !
5 6 Ao

ke = kyy - sin (8) (pm) ™

Throughout this review, we adhere to the parameters of Equation (16)
with axial angle, where relevant, in the range 0 <6 <7 /6.

X [pum]

Figure 3 Intensity pattern due to a superposition of Plane Waves (Equation 16). The
pattern is nondiffracting.
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2.3 Circular-Cylindrical Coordinates: Bessel Waves

The well-known Bessel Waves are solutions of the HE (Equation 4) in
circular—cylindrical coordinates (Arfken, Weber, & Harris, 2012, chapter 9.6):

gr—p € [O’ OO); Q=P E [0’2 : ”)
x=p-cos(p); y=p-sin(p) (17)
Ulp, ) =U,(p) - Vy(9)

The two-dimensional HE (Equation 4) splits now into two one-
dimensional equations:

1 . dsz((p) — _12
Vf/)((p) d(pZ (18)
2
U,(p) dp dp

Solutions to the top Equation (18) are of course ¢='""?. To ensure a
physical (i.e., periodic) solution, ! must be an integer (I=0,1,2,...).

Thus, the physical solutions to Equations (18) (dropping the nonphysical
Bessel functions of the second kind) are:

Vy(p)=A;-é"?+B-e; 1=0,1,2...
U,(p) = Ci- Jilke-p)

The general physical solution to HE (Equation 4) in circular—cylindrical
coordinates [y (p, @, z; k, 1)] is thus:

(19)

V/BSL(p, @, 2 ke 1) =Ji(ke - p) - (Al,e{-l-(p +B- e—i-l‘(ﬂ) kR 20)
Examples of frequently encountered intensity patterns (nondiffracting) of

Bessel Waves with two difterent eigenvalue pairs (k;, /) are shown in Figure 4.

2.4 Parabolic-Cylindrical Coordinates: Weber Waves
In parabolic—cylindrical coordinates:
41 € (=00, 00); g,—¢ € [0, 00)

(n+i-&” @1)
2
U(n, &) =Uy(n) - Ve(£),

the two-dimensional HE (Equation 4) splits by separation of variables into

x+ti-y=

two one-dimensional equations:
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¥ [pm]
¥ [pm]

A X [pm] B X [pm]

Figure 4 Intensity patterns due to Bessel Waves (Equation 20) with two different eigen-
value pairs (k;, /). The patterns are nondiffracting.

1 d*U,(n)

+2 P =—2 k.
Uy (n) dn? o e

(22)
1 dz&f(é) 2 22
() >tk &T=+2k-a

The separation of variables constant (2 - k; - a) was written in this way for
convenience (Bandres et al., 2004).

Nondiftracting parabolic waves, or Weber Waves, which are the solu-
tions to Equations (22), can be presented as an infinite series (Bandres
etal., 2004). Here, we present the solution via even and odd hypergeometric

functions (Abramowitz & Stegun, 1964; Banders & Rodriguez-Lara, 2013;
Rodriguez-Lara, 2010):

Even:

ik 1 i-a 1l
Un,c(’?;a7kt):€ 2 '15[1—7,5,1‘/@'712]

_ik-& 1 i-al
Ve, o(& a, k) = 2 F |-t ik £
ge(&a k) =e 11[4 221t§:|

Odd:

_itken’ 3 i-a
U, a, k) =+/2ke-1m-e 2 ‘1F1[——

ik & 3 i-a
Vf,o(g;ﬂ,kt):\/z'kt'f'e 2 '1F1[Z+7, ,i'kt'§2:|
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The general solution to the HE (Equation 4) in parabolic—cylindrical

coordinates [y""?R(n, & z; a, k)] is thus:

WWBR(’?’ &, <5 4, kt) = (Ae ' U}y,e(ﬂ; a, k[) +Ao ' Ur],o(’/]; a, kt))
. (BC Ve, o(& a, k) + B, - Ve (& a, lef)) el keE
(24)

Zhang et al. (2012) indeed constructed forward propagating Weber
Waves by selecting specific values for the coefficients in (24). Nondiffracting

intensity patterns due to Weber Waves (Equation 24) are displayed in
Figure 5.
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Figure 5 Intensity patterns due to Weber Waves (Equation 24). (A) Even. (B) Odd.
(C) Equal-weight combination (Rodriguez-Lara, 2009). The patterns are nondiffracting.
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2.5 Elliptical-Cylindrical Coordinates: Mathieu Waves
In elliptical—cylindrical coordinates:
—C € [O’ OO); ‘ly_“ﬁ € [0,2 : ”)
x=fy-cosh({)- cos(¢); y=fo - sinh({) - sin(¢h) (25)
U, ) =Uc(£) - Vy(9),

the two-dimensional HE (Equation 4) splits by separation of variables into
two one-dimensional equations:

1 dEVy(p) k-1
e
(26)
1 U KW
T wh @0 =4
Let us define a dimensionless parameter Q; as
k2 - 2
= [4 (27)

and write (26) in its classical form (Equation 28), the top one known as the
canonical form of Mathieu’s differential equation (Abramowitz & Stegun, 1964)
or as angular Mathieu differential equation (Gutiérrez-Vega, Rodrigez-
Dagnino, Meneses-Nava, & Chavez-Cerda, 2003); and the bottom one is
known as modified Mathiew’s differential equation (Abramowitz & Stegun,
1964) or as radial Mathieu differential equations (Gutiérrez-Vega et al., 2003):

d%@g@%_z-@- cos (2 )] V() =0
d°U -
d§2(£) —[A—2-Q- Cosh(Z'C)]Ui(g) =0

Solutions to the canonical form of Mathieu’s differential equation (top of
Equation 28) are linear superpositions of

Mathieu C [/L,a, Qs ¢] {even}

(29)
Mathieu S[A,p, Q.. @] {odd}

where Mathieu C is an even Mathieu function with characteristic value 4,,
and parameter Q; and Mathieu S is an odd Mathieu function with character-
istic value 4,;, and parameter Q,.

Solutions to the Mathieu’s modified differential equation (the bottom
Equation 28) are linear superpositions of
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Mathieu C[ﬂt,a, Qi+ C] {even} 30
i~ Mathieu S[A,p, Q. i-¢] {odd} (0)

T3

Note: Preceding “i” multiplication in the lower part of (30) results in a
real target (i.e., target function values € R).

Characteristic values (4, ;5 4,,) are calculated to yield periodic solutions for
the even/odd Mathieu C/Mathieu S functions (Abramowitz & Stegun, 1964).
Given these characteristic values, we switch to the following short notations:

Mathieu C [/1,,", Q. d)] —ce,(¢h; Q); n=0,1,...,

(31)
Mathieu S[/lt,,l, Q,, qb] —se,(; Q1); n=1,2,...,

and

Mathieu C[l,,ﬂ,Q,,i-C] =ce,(Qui- ) =Je, (C; Q); n=0,1,...,
—i- Mathieu S[A;,,, Qi8] = —i+se,(Qui- &) =Jou (&3 Q) (32)
n=1,2,...,

The general solution to HE (Equation 4) in elliptical-cylindrical coor-
dinates [y @,z 4., Q)] is a linear superposition of solutions (31)
and (32):

M 25 A Q) = (Ao cen(Qi ) + Ay -seu(Qi )] -
[BeJeu(Qi €) + By - Jou(Q, £)] €4

Nondiffracting intensity patterns due to Mathieu Waves (Equation 33)

(33)

are displayed in Figure 6.

The shown Mathieu Waves intensity patterns (Figure 6) conclude our
review of Waves. We proceed now to discussing the 14 types of Beams
as listed in Table 1.

3. BEAMS

In this section, we bring forward the equations and sample intensity
patterns for the 14 Beam sets listed in Table 1. Each set of Beams is a solution
to the SVEA-PWE (Equation 5). The functions of each set are orthogonal
(with respect to the eigenvalues—Equation 7), and each set is complete
(Equations 8-10).

Four of the 14 Beam sets are wave-originated (Gutiérrez-Vega &
Bandres, 2005, colored blue (dark gray in the print version) in Table 1).
The Airy Finite Beams (Siviloglou & Christodoulides, 2007), and the
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Figure 6 Intensity patterns due to Mathieu Waves (Equation 33). Increasing order (of
the characteristic values) going from (A) to (C). (D) High order combination with
At,a=7;,6 = 3. The patterns are nondiffracting.

Parabolic Finite Beams (Bandres, 2008), are variants of their respective infi-
nite sets, their construction is based on the translation invariance properties
of the SVEA-PWE (Equation 5, Bandres, 2008).

Seven of the 14 Beam sets listed in Table 1 are solutions of SVEA-PWE
(Equation 5) in Cartesian coordinates.

3.1 Cartesian Coordinates
Given now are Cartesian coordinates:

gx—x € (—00, 00); ¢,y € (—00, 0)

34
‘7:(%67 dy> Z) —>.7:(x, Y Z)_ ( )
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A first step of variables separation (of Equation 5) is performed
(Banders & Gutiérrez-Vega, 2007; Siviloglou & Christodoulides, 2007)
by introducing a trial solution:

F(x,y,2) = Pulx, 2) - Dy (y, 2) (35)

The SVEA-PWE (Equation 5) in Cartesian coordinates, under the trial
solution (35), separates into:

2
Flul2) iy g, OP02)
axz 82 (36)
aZ(p),(y, 2) 12 0P, (y, 2):0
ayz H aZ

Equations (36) are solved by several distinct beam sets as follows.

3.1.1 Plane Infinite Beams
Probably, the simplest way of solving Equations (36) is yet another (second)
step of variable separation:

(37)
Py(1:2) = (1) - :(2)
This second step yields:
1 df 1 1 &f
o E o L LB
f(2) 0= 2-ky filx)  Ox 08)
.2 PN 'ngy(Y):_Q
@) 0= TV 2k g(y) 0P '
Let us define
ki =2 IQH . Qx
X (39
IQ)/ =2 kH . Qy

Now solve Equations (38) and through (37), (35) and top of (5), write the
Plane Infinite Beams solution [l//PIB(x, V>2 ke, k)] to the SVEA-PWE
(Equation 5) as
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J:PIB(_X,’ 7, 2 k., ky) — (Ax . ei~k,\-'x+Bx.e—i~k_\-'x)

u. Le\/y et al.
(Ay . Ei.kyvy + B)’ ’ eii'k".y) '

i (R Q) Sy ys 2 ke ky) (40)

=FPB(x,y, 25 kg, ky) 07

k% + k2
=k, =ky— (Q+ Q) =ky— !

2 kg

The orthogonal and complete set of paraxial Plane Infinite Beams

of Equation (40) is the basis of Fourier Optics (Fresnel diffraction,
Goodman, 1988).

An example of an intensity pattern (nondiffracting) that results from a
superposition of seven Plane Infinite Beams having the same transverse wave

number ((k,2 Eki + ki), cf. Equation (16) with five replaced by seven) is
shown in Figure 7.

X [pm]

Figure 7 Intensity pattern due to a superposition of Plane Infinite Beams having the
same transverse wave number ((kfzk§+kf), cf. Equation 16 with five replaced by

seven). The pattern is nondiffracting.
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3.1.2 Airy Infinite Beams
Equations (36) are solved by Airy functions with an argument that is a com-
bination of one transverse coordinate (x or y) and the axial coordinate (z). A
nonspreading Airy wave packet was analyzed by Berry and Balazs (1979) in
the context of a time-dependent Schrodinger equation (in one spatial coor-
dinate). The one-dimensional Airy equation also appears in quantum
mechanics in relation to a particle moving in a linear potential (Berberan-
Santos, Bodunov, & Pogliani, 2005). Since their relatively recent introduc-
tion to the optics field (Siviloglou & Christodoulides, 2007), several groups
studied the properties of Airy Beams and generated Airy Beams of various
types (Banders & Gutiérrez-Vega, 2007; Broky, Siviloglou, Dogariu, &
Christodoulides, 2008; Hu et al., 2012; Porat, Dolev, Barlev, & Arie,
2011; Siviloglou, Broky, Dogariu, & Christodoulides, 2007, 2008;
Voloch-Bloch, Lereah, Lilach, Gover, & Arie, 2013; Zhang et al., 2012).
We start from Equations (36). Define the following dimensionless vari-
ables (Siviloglou & Christodoulides, 2007):

X z z

Y
Si=—; §y=—; ¢ =——; & =—— 41
xoo "y : ki x5 2 ki 7 e
To obtain
2
1 0 &y) . 0Pl )
2 Os,2 0&. “42)
1 PP(s). ) i AP, (s, ¢,) .
2 0s,? g,
Physical solutions to Equations (42) are:
o Sx
D, (5, & ) = Al | (s, + ay) — (%) et [( 12)+(5x+ax) 2]
(43)

q5y(sy’ Sy ay) = Al 2

1 3
o - (2] oot
y y

where Aill(+) is an Airy function (one function of the pair of Airy functions
solving '’ — zw =0, Abramowitz and Stegun (1964), equation 10.4.1).

The Airy Infinite Beams solution [y"(x, y, z; a,, a,)] to the SVEA-PWE
(Equation 5) is thus:
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FAl (x, Y, 25 Ay, a),) =@, [S:(x),E(2); ay] - D, [sy(y),.fy(z);ay}

l//AiI ( (44)

X, Y, Z; Ay, ay) = FAl (x, Y, 25 dy, ay) AL RS
Note that for Airy Infinite Beams (as well as for other types of Airy
Beams), the accumulation of phase of the electric field, along (for example)
the axial axis (x =0,y =0) is not a straight line (k. - 2), but rather, a third-
order polynomial:
3
()] &:(2)

PhaseA,-,y(O, 0, z; ay, ay, leH) T +a,- 5

I G RO
12 T2

+ky-z (45)

Curves of accumulated phase along the axial axis for a Plane Infinite
Beam and for an Airy Infinite Beam are shown in Figure 8.

Examples of (accelerating/nondiffracting) intensity patterns of an Airy
Infinite Beam (44) are shown in Figure 9.

3.1.3 Airy Finite Beams

Airy Infinite Beams (Equation 44) extend to infinity in the transverse plane
and carry an infinite amount of energy. However, Siviloglou and
Christodoulides (2007), based on the translation invariance properties of
the SVEA-PWE (Equation 5), presented a finite-energy solution:

#(2) (Rad}
1500
1000
500
~—— Plane Beam
Airy Beam
z{pm
50 100 150 200 250 300 {pm}

Figure 8 Phase accumulation along the axial axis for a Plane Infinite Beam (red (dark
gray in the print version)) and for an Airy Infinite Beam (green (gray in the print version))
(Equation 45).
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Figure 9 Intensity patterns due to an Airy Infinite Beam. (A) z=0. (B) z=60pum. The
patterns accelerate (yet do not diffract—cf. Table 3).

@X(Sx‘ fx; Vx‘ ax)
$x

:Aﬁ[sx—(7)2—vx.§x+i-ax.,’tx

. [ax-sx—(axéf’%)—ax‘vx'fx] . ei.[<_%)+(a§—v§ ;Sx)<fz—x+vx»sx_(vxé€%)] (46)

Rela,] > 0; Slowdiffractionif Re[a,] < 1

and similarly for @y(sy, $yi vy, ay) with x — y.

The Airy Finite Beams solution [l//AiF(x, > 23V, Ay, Uy, ay)] to the SVEA-
PWE (Equation 5) is thus

FA(x, 7, 21 Uy, ax, 1y, ay) = B[ Se(x),E,(2); vasai] - By [S,(y). &, (2); vy,

AiF . _ TAiF . ik
l// (x9 Y7 Z’ yx,axa D}H ay) :F (x’ Y’ Z’ I/x’ ax’ l/y’ ay) e H

(47)

Note that now the argument of the Airy function (Al(+)in 46) includes a
z-dependent complex component (i-a, - £,) and so the pattern not only
translates but gradually changes (diffracts). The rate of diffraction depends,
of course, on the wvalue of the decay factor (a,) (Siviloglou &
Christodoulides, 2007).

Examples of (accelerating/slowly diftracting) intensity patterns of an Airy
Finite Beam (47) are shown in Figure 10.
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Figure 10 Intensity patterns due to an Airy Finite Beam. (A) z=0. (B) z=200pm (decay
factor=0.05). The patterns accelerate and slowly diffract (cf. Table 3. Other parameters
such as wavelength—cf. Equation 16). Looking at the (B) pattern, note the slight change
in intensity distribution at the top-right corner and the slight wash out of the pattern (vs.
the (A) pattern). Compare this figure patterns with the patterns in Figure 9 to see the
introduced left and down decay.

3.1.4 Airy-Airy Beams
In a paper by Bandres (2009), a new family of (an infinite energy) acceler-
ating beams was suggested. Two sister beams of that new family, having
a closed-form mathematical expression (along with parabolic beams as
discussed in Section 3.3.1), are Airy-related. Here, we name these two
beam-sets—Airy—Airy Beams and Airy—Plane Beams.

The Airy—Airy Beams solution [y'%(x,y, z;1, §)] to the SVEA-PWE
(Equation 5) 1s given as:

A= -+ A=
FA4B(x y, 2 4, B) = Ai n=4 €2 vtp T CAv=p

2
23 23
w(x, y, 252, ) = FA (x, y, 254, ) - 0
X X <
=—;v=—;{=——;1€R; R
=V Tx ¢ 2 kepy - K2 b

(48)

Examples of (accelerating/nondiffracting) intensity patterns of an Airy—
Airy Beam (48) are shown in Figure 11.
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Figure 11 Intensity patterns due to an Airy—Airy Beam. (A) z=0. (B) z=1000pum. The
patterns accelerate but otherwise remain unchanged.

3.1.5 Airy-Plane Beams
The second sister beam-set described in the above cited paper (Bandres,
2009) is the set we name here Airy—Plane Beams. A later paper by
Ruelas, Davis, Moreno, Cottrell, and Bandres (2014) presented a recipe
for the construction of accelerating light beams with arbitrarily transverse shapes
with Airy—Plane Beams as the basis functions.

The Airy—Plane Beams solution [y*"?(x, y, z;4,2)] to the SVEA-PWE
(Equation 5) is given as:

FAPB(x,y, 2,4, Q) :Ai(u—/l— c2 +Q2)

3
*exp i-C'(u—l—é'z)—i-i‘%—i-inQ‘v

ez 49
wB(x, y, 2 A, Q) = FAPB(x, y, 22, Q) - Fri = “9)
X x

=—v=—;{=———;1eR; 2R
K v K ¢ 2. K2

kg -
Examples of (accelerating/nondiffracting) intensity patterns of an Airy—
Plane Beam (49) are shown in Figure 12.

3.1.6 Hermite-Gauss Beams

Another well-known solution to each of Equations (36) is the Hermite—
Gauss function (Siegman, 1973, 1986), written here in one transverse
dimension:
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Figure 12 Intensity patterns due to an Airy—Plane Beam. (A) z=0. (B) z= 1000pm. The
patterns accelerate but otherwise remain unchanged.

exp [i- (;HR'(X; — (m+0.5) -wc(z)>]

=
S
=
o

¥ [um]
¥ [um]
(=]

~10 0 10 20 30 -3 -20 -10 0
A X [um] B X [um]

(50)
2
o(2) Ew(j); o(z)=wy-\/1+23; R(z)=z- [1 + (;}\) ]
ZN Ei 1 Zr E% kpy -w%; w(Z) =atan(Zy)

And similarly for @,(y, z;n) with x—y and m——n. In Equation (50)—
AYr- ¢ are normalizing amplitudes (for Hermite—Gaussian functions), and

H, (%) is a Hermite Polynomial of order m (Arfken et al., 2012,
o(z
chapter 18).
The Hermite—Gauss Beams solution [y"“®(x, y, z;m, n)] to the SVEA-

PWE (Equation 5) is thus:

FHEB(x v, zim, n) =D (x, z;m) - D, (y, 3 n
Y Y

' (51)
yHOP(x, y, 2 myn) = FHOP(x,y, 2 m, ) - 03
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Figure 13 Intensity patterns due to a centered Hermite—Gauss Beam. (A) (x,0,z) plane.
(B) (x,y,0) plane. The patterns expand but otherwise remain unchanged.

In fact, a more general solution to the SVEA-PWE (Equation 5) is a
Decentered  Hermite—Gauss  solution which is Equation (51) with
(x, y)—(x — x4,y — y4), based on the translation invariance of Equa-
tions (38), in addition to a filt (Schimpf, Schulte, Putnam, & Kirtner, 2012).

Examples of (expanding) intensity patterns of a centered Hermite—Gauss
beam (51) are shown in Figure 13.

3.1.7 Plane-Gauss Beams
Following Gutiérrez-Vega and Bandres (2005), the Plane—Gauss Beams
solution [y “P(x, y, z; ky, k,)] to the SVEA-PWE (Equation 5) is given by:

DGB( - 'm‘;'cB(X,y,Z)'

14 X, v, 2; ky, ley) = ¢

Examples of (diffracting) intensity patterns of a Plane—Gauss Beam (52)
are shown in Figure 14. The shown starting pattern (A) is a superposition of
seven plane waves (cf. Figure 7 in Section 3.1.1), this time under a limiting
Gaussian. The patterns in general carry a finite amount of energy. The
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Figure 14 Intensity patterns due to Plane—Gauss Beams at four axial distances
[z(A, B, C,D) = (0, 20, 30, 200) pm]. The initial (finite energy) pattern is a superposition
of seven plane waves (cf. Figure 7 in Section 3.1.1), this time under a limiting Gaussian
(Equation 52). The pattern propagates in a fast-expansion mode [wo >2/k:] (cf.
Section 1.6 and see Figure 2). The inset in (D) is just a zoom-in to one of the seven
diffraction spots visible under the (formed) Gaussian ring. Clearly the pattern diffracts
(cf. Table 3).

shown pattern is propagating in a fast-expansion mode [y >2/k,] (cf.
Section 1.6 and see Figure 2). The inset in (D) is just a zoom-in to one
of the seven diffraction spots visible under the (formed) Gaussian ring.
Clearly the pattern diftracts (cf. Table 3).

3.2 Circular-Cylindrical coordinates

In circular—cylindrical coordinates (cf. Equation 17), The SVEA-PWE
(Equation 5) is transformed to
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1 *F(p,p,2) 1 8{ 8.7-"(,0,4),2)]
p O p Op dp (53)
+i-2-/<H-7af(g’fp’z):0

with a well-known solution in terms of Laguerre—Gauss beams which we
will now consider.

3.2.1 Laguerre-Gauss Beams

The SVEA-PWE in circular—cylindrical coordinates (Equation 53) 1s solved
by the well-known Laguerre—Gauss functions (Carbone, Bogan, Fulda,
Freise, & Waillke, 2013; Siegman, 1986). Thus, the solutions to the
SVEA-PWE (Equation 5) in circular—cylindrical coordinates [y"“®(p, ¢,
z;p, )] are Laguerre—Gauss Beams:

FrP(p, ¢, 2:p, 1)

I
[ 2-p! } L el w;(z).[\@‘/’],

UEDIREER e
L’( s (Tikn 2q()+ll¢ (54)
(=)
‘J(Z =z+ti-zp
p=0,1,2, ...;; oo —-1,0,1,2, ..
w o, @, 2 p. 1) :fLCB(p, @,z p, 1) e"k”'z

In Equation (54), L}I,l | are the generalized Laguerre polynomials
(Abramowitz & Stegun, 1964), and the functions @(z), are defined by
Equation (50).

Examples of (expanding) intensity patterns of a Laguerre—Gauss Beam
(54) are shown in Figure 15. The patterns in the top row of the figure show
the intensity of only the real part of the beam {|Re(w™“"(p, @, z;p,1)|*}.

3.2.2 Bessel-Gauss Beams

The Bessel-Gauss Beams solution [q/BGB(p, @,z;k, )] to the SVEA-PWE
(Equation 5), is given as (Gutiérrez-Vega & Bandres, 2005, see Equation (20)
for the generating Bessel Wave):
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Figure 15 Intensity patterns due to a Laguerre—Gauss Beam (Equation 54). (A and B)
[Re(w “B(p, @, z;p, D)2 (C and D) |'°B(p,0,.zp. )% (A and C) z=0. (C and D)
z =150 pm. The Intensity patterns (C and D) expand but otherwise remain unchanged.

2 ky

= In

BGB( —i-

vl (p, @,z ki, )= e

k- p
(Al P+ B e_i'l"/’)

Bessel-Gauss Beams (with focus on the zero-order Bessel function) and
their diffraction characteristics were first considered by Gori et al. (1987).
Here, we extended these derived diffraction characteristics to apply to all
four wave-originated beams, one of which is the Bessel-Gauss Beam
(Gutiérrez-Vega & Bandres, 2005, cf. Section 1.2.2). A few years ago, a
novel class of higher order Bessel-Gauss beams defined as superpositions
of decentered Hermite—Gaussian beams was reported (Schimpf et al., 2012).
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Examples of (diffracting) intensity patterns of a Bessel-Gauss Beam (55)
are shown in Figure 16. The shown starting pattern (a) is a Bessel Wave (cf.
Figure 4 in Section 3.1.1), this time under a limiting Gaussian. The patterns
in general carry a finite amount of energy. The shown pattern is propagating
in a fast-expansion mode [@wy > 2/k] (cf. Section 1.6 and see Figure 2).
The spots in (e) are visible under the (formed) Gaussian ring (f). Clearly
the pattern diftracts (cf. Table 3).

3.3 Parabolic-Cylindrical coordinates

Discussed next are three sets of beams that solve the SVEA-PWE
(Equation 5) in the parabolic—cylindrical coordinate system.

3.3.1 Parabolic Infinite Beams
To solve the SVEA-PWE (Equation 5) in parabolic—cylindrical coordinates
(Equation 21), let’s first define dimensionless variables (Bandres, 2008):

<

2-ky k2 (56)

x Y
u=—;v==;¢f=
K K

and write the SVEA-PWE (Equation 5) in these Cartesian dimensionless
coordinates:

PF(u,v,) N PF(u,v,¢) L OF (u,v,{)

=0 57
EYe B Yo S
In parabolic coordinates (Bandres, 2008, cf. Equations 21 and 56):
2 g2
n_¢
— /1 - 25 =\ == 9 58
(-2-220) = (5 -5 ) &)
the solution to Equation (57) is given as
FP 0,52 n) = P 050.0,(7)-0,(i-&); n=0,1,2,...  (59)
with
2 2 3
a n _5 Z.:
‘I’Pl(ﬂ,f,C)EC'gﬁL— (60)

2 3
and 0,(n),0,(i- &) are, respectively, the solutions to the quartic potential
Schrodinger equation (Banergee, Bhatnagar, Choudhry, & Kanwal, 1978;
Dusuel & Uhrig, 2004) with the Hamiltonian H = %2 % and to its modified

(or associated) version (for the nth eigenvalue):
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Figure 16 Intensity patterns due to a Bessel-Gauss Beam (Equation 55). The shown pat-
tern is propagating in a fast-expansion mode [wg >2/k] (cf. Section 1.6 and see
Figure 2). The curves in (b, d, and f) are intensity cross sections along the x-axis
{jw®B(x,0,2)|% at z;= (0, 20, 40)um (cf. figure 1 of Gori et al., 1987).
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(_%+”—4>N(77)ZE'N('7)

on o (61)
(B +5)me-rx@

The Parabolic Infinite Beam solution [y (u,v,¢;4,n)] to the SVEA-
PWE (Equation 5) is thus:

W (u, v, & A n) = FP (0,8 A, n) - ki ? (62)

Examples of (accelerating) intensity patterns of two high order Parabolic
Infinite Beams (62) are shown in Figure 17.

C x [um] D x [pm]

Figure 17 Intensity patterns due to two high order Parabolic Infinite Beams
(Equation 62). (@ and b) z=0. (c and d) z=45um. The intensity patterns accelerate
but otherwise remain unchanged.
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3.3.2 Parabolic Finite Beams
Based on the translation invariance of the SVEA-PWE (Equation 5), the
expression for finite-energy parabolic beams 1s derived (Bandres, 2008) as:

j:PaF(M’ v, &5 A, n, ) _ O, 8,0 a) 0,(n)-0,(i-&);:n=0,1,2,...

(0= (At @) = (C—i-ayw) = (”—z—é,n:)

2 2

, 3
0. £. 8= —i-a) L) 00

Rela] > 0; Slowdiffractionif Re[a]<1

with [0,(17),0,(i- £)] as defined above (Equation 61).
The Parabolic Finite Beam solution [I//P“F(u, v,{;A,n,a)] to the SVEA-
PWE (Equation 5) is thus:

WP”F(u, v, A, n,q) :fP“F(u, v, {5, n,a)- ok z (64)

Note that now, with the introduction of a decay factor (a), the arguments
(n, &) of the functions [0,,(17),0,,(i - £)] solving Equations (61) are complex. This
is why patterns of Parabolic Finite Beams diffract (Bandres, 2008). The
diffraction rate depends on the value of the decay factor. Recall the very similar
diffraction characteristics of Airy Finite Beams (Section 3.1.3 and Figure 10).

Examples of (accelerating and slowly diffracting) intensity patterns of a
high order Parabolic Finite Beam (64) are given in Figure 18.
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Figure 18 Intensity patterns due to a high order Parabolic Finite Beam (Equation 64).
(a) z=0. (b) z=50pum. The intensity patterns accelerate and slowly diffract. The patterns’
decay going to negative x values is due to the introduced decay factor (a) (compare
with the patterns for the Parabolic Infinite Beams—Figure 17).
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3.3.3 Weber-Gauss Beams

The Weber—Gauss Beams solution [y “%(, &, z; a, k)] to the SVEA-PWE
(Equation 5) 1s given as (Gutiérrez-Vega & Bandres, 2005, see also parabolic-
Gauss beams in Forbes, 2014, chapter 8):

5
L

wVeB(n, & zia, k)= ¢ = 2k K-GB(x,y,z)-
X X
yVBR [,7 <_’ X>,§<_, X);a,kt}
pop) T \p

where y""PR(,&; a,k,) is the transverse part of the Weber Wave pattern

(65)

given by Equation (24).

Examples of (diffracting) intensity patterns of a Weber—Gauss
Beam (55) are shown in Figure 19. The shown starting patterns (a and
b) are even and odd Weber Waves (cf. Figure 5 in Section 2.4), this time
under a limiting Gaussian. The patterns in general carry a finite amount of
energy. The shown patterns are propagating in a fast-expansion mode
[wo >2/k,] (cf. Section 1.6 and see Figure 2). The spots in E and in F
are visible under the (formed) Gaussian ring. Clearly the patterns diffract

(cf. Table 3).

3.4 Elliptical-Cylindrical coordinates

The last two sets of beams reviewed here solve the SVEA-PWE (Equation 5)
in an elliptical-cylindrical coordinate system.

3.4.1 Ince-Gauss Beams
The SVEA-PWE (Equation 5) in z-dependent elliptical-cylindrical
coordinates:

x=f(2) - cosh(&) cos(n);y=f(z) - sinh(&)sin(n);z==
£y o(2) (66)

Wy

f(z)

is solved by Ince—Gauss functions (Bandres & Gutiérrez-Vega, 2004a):
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Figure 19 Intensity patterns due to Weber—Gauss Beams (Equation 65). Left: even.
Right: odd. Top: z=0. Center: z=30pum. Bottom: z = 100pm. The shown patterns prop-

agate in a fast-expansion mode [wg > 2/k;] (cf. Section 1.6 and see Figure 2). Clearly the
patterns diffract.
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C-w,

IGB mi .

Y, 2 p,m, €)= SCyi-grE)
WP (x,y, 25 p, m, €) e p(z &e)

x“ty

Crlme)-e 7 - exp

i <7k”'<x2”2)—<p+1> ol |-

2-R(z)

0<m<p;(—1)""=1

(67)
~ S- (O v
o' (x, y, 2 p, m, &) = o) (i-&e)
x2 +)/2

(4. @*(2) .
Sy(n;e)-e @) - exp

[l_ (kH.(x2+y2)_(p_l) 'l//c(z)ﬂ ks

2-R(2)
1<m<p;(1-)y"=1

The functions @(z), R(z) and w(z) are as those already defined by
Equation (50). The functions Cy,'(; €) and S,'(17; €) are, respectively, the even
and odd Ince Polynomials solving the Ince equation (Arscott, 1967) (top of
Equation 68) and the functions C)'(i- &) and S)'(i- §i¢) are, respectively,
the even and odd Ince Polynomials with a complex argument solving the
modified Ince equation (bottom of Equation 68):

d26§1(2’7>—€- sin(Z'U)'%;(:)‘*‘[a—P‘g‘ cos(2-1)]-N(17) =0
(P;E—f(za—s-sinh(lf)'%f)_[a—pf-cosh(2'§)]-1€(§)=0 (68)
_2-f5
=

Note: The parameter a in Equation (68) was chosen such that the phys-
ical solutions (67) (Bandres & Gutiérrez-Vega, 2004a, 2004b) are trigonomet-
ric polynomials, called Ince polynomials of a defined parity and therefore does not
explicitly appear in the SVEA-PWE solutions (Equation 67). An extensive
numerical and experimental work on laser selective-excitation of
Ince—Gauss Beams was performed by Chu and Otsuka (2007) and
Ohtomo, Chu, and Otsuka (2008). A Matlab package for calculating
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Figure 20 Intensity patterns due to a high order Ince—Gauss Beam (Equation 67).
(@) z=0. (b) z=480pum. The patterns expand but otherwise remain unchanged.

Ince—Gaussian beams at a given z-plane was provided by M.A. Bandres and
is available via an internet link (Bandres, 2014).

Examples of (expanding) intensity patterns of an Ince—Gauss Beam (67)
are provided in Figure 20.

3.4.2 Mathieu-Gauss Beams
General Mathieu waves (Equation 33), can be split into even and odd
Mathieu waves:

WeIMTH (C’ ¢a <5 /1[’”, Qt) :Ae : Ceﬂ(¢; QT) Jeﬂ(é” Qt) : ei"k:.z
II/OMTH (é’, ¢, < ﬂt,m Qr) =A,- 5€n<¢; Qr) '_]on(é’; Qr) : el‘kz h

The even [l//Q/IGB(x, ¥, 25 Aen Q)] and odd [l//ﬁ}/l(;B(x, Y5 25 Ae s Q)] Mathieu—
Gauss Beams solutions to the SVEA-PWE (Equation 5) in elliptical—cylindrical
coordinates (Equation 25) are given by (Gutiérrez-Vega & Bandres, 2005):

(69)

B
l/lf,MGB (x, Vs 25 /L,n, Qt) =A,- e_l "2k m GB(x, ¥, z) - cey, W(x, ¥, z);Qt] .
Jey [Z:(x’ ) Z);Qt]

1

N
WONIGB(x’ Y, =5 )vt,m Qt) :Ao : e_l . m . GB(X’ Y Z) - seé, IE(X, Y Z>;Qt] .
Jou[E(x, v, 2): Q)]

x:ﬁ) -//t(Z) - cosh (_Z) + COS (_¢)
y=fo-p(2) - sinh (£) - sin ()
(x,y)€R; (¢, ¢) €C

with u(z) as defined by Equation (6).
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Note that for z > 0, the functions ¢(x, y, z) and £(x, y, 2) become com-
plex such that (when performing the inverse coordinate transformation) the
transverse Cartesian coordinates (x,y) remain real in the entire space
(Gutiérrez-Vega & Bandres, 2005).

Like the other Wave—Gauss Beams, Mathieu—Gauss Beams diffract (cf.
Figure 21). Not surprisingly, the realization of Mathieu propagation patterns
was based on Mathieu Waves—Equation (33) rather than on Mathieu—
Gauss Beams. The first demonstration of a low-order Mathieu Wave in
the laboratory was reported by Gutiérrez-Vega et al. (2001). In a theoretical
study, Chafiq, Hricha, and Belathal (2005) propagated Mathieu Waves para-
xially, by expanding Mathieu Waves in terms of Bessel Waves.

Examples of (diffracting) intensity patterns of a Mathieu—Gauss Beam
(70) are shown in Figure 21. The shown starting patterns (a and b) are even
and odd combinations of Mathieu Waves, respectively (cf. Figure 6C and
D in Section 2.4), this time under a limiting Gaussian. The patterns in gen-
eral carry a finite amount of energy. The shown patterns are propagating in a
fast-expansion mode [@y > 2/k,] (cf. Section 1.6 and see Figure 2). The cir-
cular leaves-like structure in (e) and in (f) is visible under the (formed)
Gaussian ring. Clearly the patterns diffract (cf. Table 3).

4. SUMMARY

In 2 homogenous permittivity medium (free space), Maxwell’s equa-
tions are transformed to an exact HE for each of the six components of a
monochromatic electromagnetic field. Using separation of variables, this
three-dimensional exact HE can be reduced to a two-dimensional transverse
equation (designated here HE—Equation 4), assuming a time-harmonic

axially propagating field [ FRRES r)} .

The transverse HE (Equation 4), solved in four different coordinate sys-
tems, yields four different sets of orthogonal and complete two-dimensional
functions (Waves). The propagation (from z = 0 forward) of any input field
(carrying finite energy by definition) can be accurately predicted by the
sequence of decompose—propagate—recompose with any one of the four
Waves as a basis. We have reviewed the basic properties of each of the asso-
ciated solutions providing their mugshots, i.e., characteristic diffracting and
invariant intensity patterns as well as the characteristic symmetry properties.

We note that each of the surveyed 14 Beam sets is also a basis by which
paraxial propagation can be predicted. In addition, since the SVEA-PWE
(Equation 5) is actually an Optical Schrodinger Equation of a free particle
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Figure 21 Intensity patterns due to Mathieu—Gauss Beams (Equations 33 and 70). Left:
even. Right: combination. Top: z= 0. Center: z=30um. Bottom: z=60pm. The shown

patterns propagate in a fast-expansion mode [wq > 2/k:] (cf. Section 1.6 and see
Figure 2). Clearly the patterns diffract.
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(Marte & Stenholm, 1997), illuminating cross-inference can be easily
exercised. Similar cross-inferences can be made for gravitational waves as
well (Freise & Kenneth, 2010). Higher dimensions free-particle states were
discussed by Guerrero, Lopez-Ruiz, Aldaya, and Cossio (2011), leading to
the quantum mechanical versions of the Hermite—Gauss and Laguerre—
Gauss states of paraxial wave optics. Hence, the large variety of free space
function sets discussed in this review are not only fundamental for classical
optics but also intimately connected to quantum mechanics.
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