Ultrafast Optical Probing of Carrier Dynamics in
Semiconductor Heterostructures in Magnetic Field

Thesis for the Ph.D. Degree
by
Shimshon Bar-Ad

Department of Physics
The Weizmann Institute of Science

Submitted to the Scientific Council
of the Weizmann Institute of Science
Israel

November 1993



UMI Number: DP16945

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform DP16945
Copyright 2009 by ProQuest LLC
Al rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346



This work was carried out under the supervision
of Dr. 1. Bar-Joseph in the Department of Physics at
the Weizmann Institute of Science, Rehovot.



Acknowledgements

I wish to thank all the people who helped me
accomplish this research work. Special thanks are due to
Israel, who always provided help, encouragement and
advice, and the ever necessary criticism and balancing.
Obviously, without his contribution this work wouldn't have
been possible. I am also very grateful to Proffesor Yehoshua
Levinson, for his support in almost every theoretical aspect
of this work. His genuine interest in experimental work I will
always remember, as well as the successful colaboration with
Gleb Finkelstein, which he initiated. Special thanks are also
due to Dr. Michael Rappaport, who taught me everything I
know about cryogenics and leak-testing (and unfortunately I
know a lot about thaf). Thanks to all the students in the
optical lab, who were always there to help save a dying
cryostat, discuss physics, drink coffee and gossip, and in
particular Yoram, 2 x Guy, I'leb, Amit, David and Omer. I
wish to thank Nathalie for her help with the Polaron (as well
as other duties nobody else was willing to volunteer for). I
am particularly indebted to Gleb for his contribution to the
modelling of the biexcitonic effects. Hadas Shtrikman
deserves thanks for the awesome samples which she grew,
as are Amit and Yaniv, for the assistance with writing this
thesis. Special thanks to all the people who provided the day
to day support: Janet, He-rmann and Yossi... And last but
not least - all the other students, technicians, secretaries,
staff members and other friends, who made their respective
lairs friendly places to stay, or at least friendly retreats.



Abstract

Advanced semiconductor growth techniques have in recent years stimulated a
tremendous progress in the exciting research field of low-dimensionality systems such as
quantum wells. One of the most important tools being applied to the study of these
structures are short-pulse lasers, allowing the investigation of dynamical processes which
the charge carriers undergo. This thesis describes a research work on GaAs quantum
wells, in which sub-picosecond laser techniques, such as differential absorption and four-
wave mixing, have been applied. The time-dependent nonlinear optical response of
intrinsic and doped structures were studied in the high magnetic field regime.

Starting with the investigation of the spin relaxation of excitons in intrinsic samples,
we present data which supports theoretical calculations, predicting a suppressed hole spin
relaxation in quantum wells. We were the first to unambiguously resolve this slow process,
and take advantage of the spin orientation which it implies in a demonstration of Zeeman
absorption quantum beats. We use the beating in a measurement of the exciton g-factor,
and extract the exciton dephasing time from their decay. Next the biexcitonic coupling
between the excitons is discussed in detail. This coupling is manifested in a novel type of
oscillations, which persist only as long as there is a temporal overlap between the two
exciting laser pulses. Comprehensive modelling of the time-dependent nonlinear
interaction yields an excellent agreement with experiment. Beyond unveiling the nature of
the coupling between spin-polarized excitons, these oscillations give the opportunity to
measure the biexciton binding energy and its dephasing time.

The final part of this work is devoted to an investigation of modifications to the
nonlinear response in the presence of a two-dimensional electron gas in doped samples.
Our measurements show a decrease of electron-electron scattering rates at the high
magnetic field regime, and a strong footprint of the Fermi edge singularity. We discuss the
effect of the magnetic field on electron-electron scattering in detail.
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1. Introduction

1.1. Scientific and technological background

In recent years there has been a great progress in the field of epitaxial growth of
ultrathin semiconductor layers.! Growth techniques such as MBE (Molecular Beam
Epitaxy) allow the preparation of samples made up of layers of different semiconductor
materials (such as GaAs, AlAs and AlGaAs alloys), each layer having a typical width on
the order of tens of angstroms. These heterostructures have discontinuous potential
profiles of the valence and conduction bands, due to the different energy gaps in the
different materials. The confinement by the potential profile along the growth axis results
in the energy spectrum in these structures being characterized by discrete levels, and the
electrons and hole exhibiting a two dimensional behavior.

Basic examples of such heterostructures are heterojunctions, quantum wells and
superlattices. In the simplest heterojunction, a layer of low-gap material is grown on a
high-gap material. A quantum well is formed by growing a layer of low-gap material
between two layers of high-gap material. Several quantum wells may be grown in
succession, and if the barriers between them are wide enough, a multiple-quantum-well
structure is formed, in which the wells are uncoupled. A superlattice is a multiple-
quantum-well structure with narrow barriers, in which the coupling between the energy
levels of the separate wells results in the formation of minibands.

Modulation-doping of multiple quantum wells, i.e. doping the potential barriers while
leaving the potential wells undoped, allows the formation of a high-mobility two-
dimensional electron (hole) gas, free of scattering dopants, in the wells. Alternatively, such
a 2DEG (two-dimensional electron gas) may be formed at the interface plane of a
heterojunction, by doping the high-gap material. Due to the reduced impurity scattering,
the low-density Fermi sea which is formed in these semiconductor systems has many

metal-like properties.

The advancement of growth techniques led to extensive research of the transport and
optical properties of the two-dimensional systems, and of systems of lower dimensionality



which are produced from them by lithographic techniques.! The rich transport phenomena
which are exhibited by the 2DEG include quantum mechanical interference effects in the
electric conductivity of the layers and tunneling across potential barriers. The 2DEG under
combined electric and magnetic fields gives rise to the celebrated Integer and Fractional
Quantum Hall Effect in the high magnetic field regime.2

The formation of bound states and the confinement of carriers to two dimensions by
the heterostructure potential are clearly evident in their optical spectra, so a large part of
the research in the field of GaAs heterostructures concerned their optical properties. These
have been extensively studied by various cw (continuous wave) optical techniques,!
primarily photo-luminescence and absorption. In recent years, an increasing interest in
dynamical processes in these quasi-two-dimentional structures, coupled with technical
developments in the field of tunable short pulse ("ultrafast") lasers, stimulated the study of
fast phenomena in two dimentions.3 '

In this work we used sub-picosecond short pulse laser spectroscopy in a study of the
time-dependent nonlinear optical response of GaAs heterostructures in high magnetic
fields. The rest of this chapter is devoted to a brief review of the basic physical aspects of
optical experiments in heterostructures. We describe the band structure and the selection
rules for optical transitions in GaAs heterostructures, and discuss their modification in the
presence of a magnetic field. In chapter 2, previous works on related subjects are
surveyed, with emphasis on time-resolved optical experiments. Some of the questions
which were left open by these early studies are cited, leading to the formulation of the

research objectives.

1.2. Band structure and optical selection rules in GaAs

GaAs is a well known direct bandgap semiconductor of the III-V group, in which the
bottom of the conduction band and the top of the valence band are located at the center of
the Brillouin zone (I" point).# The band structure of bulk GaAs in the vicinity of the I’
point is schematically shown in Fig. 1.1. The conduction band is S-like, and the P-like
valence band consists of three subbands: the heavy-hole and the light-hole subbands,
which are degenerate at k = 0, and the split-off subband, which has a lower energy.
Without taking into account small terms caused by the absence of an inversion center, all
these bands have spin degeneracy. They are all approximately spherically-symmetric, with




parabolic dispersions. Both the large splitting of the valence subbbands, and the different
effective masses which are associated with them, result from the large spin-orbit coupling,
which is characteristic of most III-V compounds.
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FIG. 1.1: The band structure of bulk GaAs
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There are several deviations from spherical symmetry, parabolicity and degeneracy.
The absence of an inversion center gives rise to a small spin splitting of the bands and a
small displacement of the band edges from the point k = 0. The interaction with remote
bands results in nonparabolicity of all the bands. This mechanism is particularly important
for holes with excess energy close the the spin-orbit splitting A (Fig. 1.1). Finally, the fact
that GaAs has cubic rather than spherical symmetry causes warping of the energy surfaces
(i.e. the effective mass is dependent on the direction of k). These deviations play an
important role in spin relaxation processes, as will be detailed in the following chapters.

If nonparabolicity of the conduction band is ignored, the electron spin can be
considered as a good quantum number, s = 1/2. Similarly, the angular momentum of the
hole (or hole "spin") is also a good quantum number, as long as the energy of the hole is
low compared to the spin-orbit splitting A. Close to the I" point the heavy-hole and light-



hole subbands correspond to the angular momentum quadruplet J = 3/2. The projection of
the angular momentum along the z axis is J, = £3/2 for heavy-holes and J, = £1/2 for the
light-holes. The split-off band corresponds to the angular momentum doublet J = 1/2, with
eigenvalues J, = £1/2 for its projection along the z axis.

The allowed interband dipole transitions in bulk GaAs are presented in Fig. 1.2. They
reflect the selection rule for optical transitions, which states that angular momentum must
be conserved in the absorption or emission of a photon: Am =+1,0. If the quantization axis
(z axis) is directed along the wave vector k, then the allowed transitions from the heavy-
hole subband to the conduction band correspond to circularly-polarized light, with the
dipoles rotating clockwise and counterclockwise in the plane perpendicular to k. The
allowed transitions from the light-hole and split-off subbands to the conduction band
correspond to circularly-polarized light, with the dipoles rotating in the plane
perpendicular to &, or to linearly-polarized light, with the dipoles oscillating along the

direction of k.
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FIG. 1.2: The allowed interband dipole transitions in bulk GaAs. The numbers near the levels
correspond to the projection of the total angular momentum on the quantization axis directed
along the quasimomentum. The small arrows indicate the corresponding light polarizations.

The above picture is fundamentally changed in heterostructures like quantum wells.
This is the result of the energy quantization introduced by the potential discontinuities
along the sample growth axis. First, the degeneracy between the heavy-hole and light-hole
subbands at the Brillouin zone center is removed. This removal of degeneracy is
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accompanied by changes to the effective masses of the subbands. The higher energy band
turns out to have the lower effective mass at the I point, and away from the zone center
the subbands anti-cross each other.5 In the anti-crossing wave-vector range the two
subbands mix and become nonparabolic. These effects are shown in Fig. 1.3, which is
reproduced from the calculations of Bastard. Furthermore, the potential discontinuities
introduce a prefered quantization axis for the angular momentum, which is reflected in
changes of the optical selection rules. Close to the zone center the hole subbands become
approximate eigenstates of J,, where z is now the heterostructure growth axis.6 The
higher-energy subband, with the lower effective mass at the zone center, has angular
momentum J; = 3/2, and is still being referred to as the "heavy-hole". The wave-vector
range in which angular momentum is a good quantum number increases as the separation
between the two subbands increases, as the quantum well is being narrowed. The modified
selection rules near the zone center are shown in Fig. 1.4 for light propagating
perpendicular to the heterostructure layers. It can be seen in the figure that the allowed
transitions from the heavy-hole and light-hole subbands to the conduction band
correspond to circularly-polarized light (for the above experimental geometry).
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FIG. 1.3: In-plane dispersion relations of the valence subbands of GaAs-Gay ;Al, ,As quantum
wells, of widths L =100 ./OX and L= 150 ;\ The dashed lines are the subband dispersion obtained

without mixing.5
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FIG. 1.4: The allowed dipole transitions from the heavy-hole subband to the
conduction band in GaAs quantum wells. The numbers near the levels correspond to
the projection of the total angular momentum on the quantization axis directed along
the quasimomentum. The small arrows indicate the corresponding light polarizations.

An important aspect of optical experiments in semiconductors is the excitonic
phenomenon.” An exciton is an optical excitation in which a bound state of a conduction
electron and a valence hole is formed below the semiconductor bandgap. The excitonic
phenomenon is particularly significant in heterostructures, since the confinement of the
electron and the hole in a quantum well increases the exciton binding energy appreciably
(in GaAs the binding energy increases from ~ S meV in the bulk to ~ 10 meV in quantum
wells). The selection rules for the creation and annihilation of excitons are a direct
consequence of the selection rules for the respective electron and hole which form the -
exciton (an exciton may be simply described as a wave packet which is constructed from
the free electron and hole states at the band edges, so the angular momentum of the
exciton is well-defined). Thus an optically-active exciton, that is, an exciton which can be
optically excited, has angular momentum *1 (fot light perpendicular to the heterostructure
plane). Excitons are the lowest energy excitations in intrinsic samples, and their large
oscillator strength and comparatively slow relaxation encouraged many experimentalists to
study them, as will be discussed in the following.

In MD samples the 2DEG excludes absorption into states below the Fermi energy. The

excitonic interaction is screened, but a logarithmic divergence of the absorption develops
for optical transitions to the vicinity of the Fermi energy.8 This effect, which results from
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the scattering of the electrons in the Fermi sea by the photo-excited holes, is the well-
known Fermi-edge singularity (or "Mahan exciton").

1.3. Heterostructures in a magnetic field

The spin degeneracy of the electronic band structure in GaAs quantum wells is
removed by the application of a magnetic field. This Zeeman splitting is characterized by
the Lande g-factor. The deviation of the g-factors in semiconductors from the g = 2 of the
free electron can be quite remarkable, and its sign may be either positive or negative: while
in the conduction band of GaAs it is as low as -0.41, in InSb it reaches a high value of -50.
This considerable variation is a result of the spin-orbit interaction,?® the strength of which
varies between various materials and the different bands in each material. In quantum
wells, the g-factor of the valence subbands is dependent on the well width and the
magnetic field orientation. Although spin-orbit effects are less important in the conduction
band, there is still well-width dependence of the g-factor of conduction electrons. The
spill-out of the electron's wave function into the AlGaAs barriers, which have a different

g-factor, makes a strong contribution. 10

The effect of a magnetic field on a heterostructure is however not limited to their
Zeeman splitting. When the magnetic field is applied normal to the layers of the
heterostructure, the electronic density of states and wave functions of the semiconductor
material radically change.ll The zero field continuous density of states of the quasi-two-
dimensional structures changes into a discrete spectrum of degenerate Landau levels,
while the electronic wave functions change from plane waves to localized (gauge
dependent) functions. In intrinsic samples the combined magnetic and Coulomb
correlations between optically excited electron and holes results in the appearance of
multiple magneto-excitonic lines in the optical absorption spectrum at the high magnetic
field regime. Each of these lines is associated with an allowed optical transition, from a
Landau level in the valence band to one in the conduction band.!2 The selection rule for
the transition is An = 1, where » is the magnetic quantum number. The spacing between
the magneto-excitonic lines is given by the sum of the cyclotron frequencies for the two
bands. In GaAs this spacing is approximately 10 meV in a magnetic field of 5 Tesla. In
such a field the magnetic length (classical cyclotron radius) becomes comparable with the
excitonic Bohr radius, defining the transition between the low and high magnetic field
regimes. The above simple picture is complicated by mixing and anti-crossing of Landau
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levels in the valence band.!3 This band mixing also affects the g-factor, making it

magnetic-field dependent.

The optical properties of doped samples in a magnetic field is strongly affected by the
2DEG. Similarly to the situation in zero magnetic field, the 2DEG excludes absorption
into Landau levels below the Fermi energy, and screens the excitonic interaction. The
optical absorption spectrum of MD samples in a magnetic field is characterized by peaks
which correspond to excitations of electrons from filled Landau levels in the valence bands
to empty Landau levels in the conduction band. These levels are significantly broadened
due to various scattering mechanisms which are present in any real sample (including
electron-electron scattering).14 As the magnetic field is increased the higher Landau levels
are emptied of electrons, and the Fermi energy gradually shifts to the lower levels.
Absorption into the emptied Landau levels becomes possible, and one observes a new
peak at the absorption edge each time the Fermi level shifts to a lower Landau level.1> A
well known consequence of this is the afforementioned Integer Quantum Hall Effect in

magneto-transport experiments on similar samples.!6
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2. The research objectives

In the last decade there has been an increasing interest in the dynamical aspects of
optical excitations in quasi-two-dimentional structures. This interest was stimulated by
technological breakthroughs in the field of mode-locked short-pulse lasers. Most of the
time-resolved studies on heterostructures focussed on the energy relaxation and
thermalization of optically excited carriers, in both intrinsic and doped samples.!7 Many
studies on intrinsic quantum well samples concerned the dynamics of the two-dimensional
excitons.!® During the last few years there is a growing interest in the application of
coherenct techniques to the study of fast processes. These techniques allowed the
determination of scattering rates by measuring the dephasing of the coherent signal, 19
Relatively slow dephasing rates were demonstrated in the case of excitons which are
localized due to the interface roughness in narrow quantum well samples.20.21 Another
interesting aspect of the use of coherent techniques is the ability to resolve small energy
splittings, otherwise hidden by the inhomogeneous broadening of spectral lines (the
splitting leads to the appearance of beating in the coherent signal).22

Time-resolved optical experiments on heterostructures in high magnetic fields have not
been published before the start of the current research work, but the interest in this field
was growing rapidly. The modifications to the density of states and phase space for
scattering, and alterations of the electronic wave functions and scattering matrix elements,
were expected to lead to substantial changes of the relaxation rates which are measured by
time-resolved optical spectroscopy. Such experiments were expected to reveal clear
differences between the relaxation of high Landau levels and magneto-excitons, and the
fast relaxation of above-band-gap free-carrier excitations in zero magnetic field.!7 The
main objective of the research was to study these modifications in both intrinsic and MD

samples.

In parallel to the start of our research work, other laboratories had also embarked on
short-pulse experiments on GaAs heterostructures in high magnetic fields. Among these
were groups at Bell labs., UC Berkeley and the University of Michigan, Ann Arbor.
Within this developing field we defined two main goals for our experiments: the
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investigation of spin dynamics of magneto-excitons in intrinsic samples, and electron-
electron scattering in MD samples in the high field regime.

Unlike energy relaxation, the spin relaxation of photo-excited carriers in
heterostructures has recieved relatively little attention until very recently. In the case of
GaAs heterostructures a slow-down of the hole spin relaxation was predicted, due to the
changes to the expectation values of angular momenta of the hole states away from the
zone center, and a suppression of the scattering between them.523 The polarization degrée
of freedom in optical experiments provides a convenient way for studying this spin
relaxation. Indeed, spin relaxation is frequently studied in cw experiments, by measuring
the depolarizations of the emitted luminescence, following excitation with polarized light.4
Time-resolved experiments with circularly polarized pulses have the advantage of
providing a direct measurement of spin relaxation rates, and a few such experiments have
been done previously in zero magnetic field.2425.26 The spin relaxation in high magnetic i
fields was previously studied exclusively by the cw photo-luminescence depolarization
technique.27 Yet, there was still no clear experimental evidence of the predicted slow hole
spin relaxation in quantum wells. It was also unknown how the excitonic interaction would
affect the spin relaxation, although the slow dephasing of localized excitons hinted that the
spin relaxation could be slow. These open questions had motivated us to start our research
with a study of exciton spin relaxation in intrinsic quantum well samples, its effects on the
dephasing of the excitons, and its dependence on the magnetic field strength.

Our interest in MD samples in high magnetic fields was stimulated by the unique
transport phenomena which are exhibited by them in this regime. Several workers have
addressed the complicated many-body interactions of the optically excited carriers with the
2DEG in the magnetic quantum limit, using various cw optical techniques such as inelastic
light scattering?8 and photo-luminescence.2? The clear footprint of the interacting 2DEG
in the cw optical spectrum of MD samples in a magnetic field, motivated us to study this
case in the time domain. We had realized that many-body effects will most certainly
modify the simple two-level system picture, which is generally used in the interpretation of
time-resolved optical experiments in intrinsic samples. It was also obvious that electron-
electron scattering would play an important role in the behavior of MD samples, and that
this behavior in a magnetic field would be different from that which was observed in earlier
experiments in zero field.17 Our motivation for using time-resolved optical spectroscopy in
the study of MD structures was thus two-fold: to study the effect of the magnetic field on

16



electron-electron scattering, and to examine the modifications to the simpler excitonic
non-linear response, which was to be studied first in detail.

Other questions which came up as the research work proceeded concerned the
interaction of light with the spin-degenerate exciton and the binding of excitons in
biexcitonic molecules. Numerous studies of exciton dynamics have shown that the
coherent nonlinear optical interaction in intrinsic quantum wells could be described in most
cases using a simple two-level atom model. However, the spin degeneracy of the exciton
means that it actually should be described by two sets of two-level systems. A substantial
part of the work was dedicated to the study of the coupling between these two systems,
and to the effect of the coupling on exciton dephasing. This study culminated in a
thorough investigation of the biexciton phenomenon. The application of a magnetic field
removed the degeneracy of the pair of two-level systems. In this case, the coherent nature
of the nonlinear optical interaction allowed us to observe quantum beats between the

Zeeman-split levels.

The structure of the work is as follows: In chapter 3 we describe the experimental
method and setup. In chapter 4 we present a study of spin relaxation in quantum wells. We
first review the mechanisms for the spin relaxation of electrons, holes and excitons, and
review earlier works on the subject. We then present our experimental data, which are the
first to unambiguously resolve the slow hole spin relaxation in quantum wells. Chapter 5 is
dedicated to the demonstration of the Zeeman quantum beats, and to a discussion of
appropriate level diagrams for the heavy-hole exciton system. In chapter 6 the biexcitonic
coupling is introduced. This coupling is manifested in remarkable oscillations, which
appear during the overlap of the pump and probe pulses. Comprehensive modelling of the
time-dependent nonlinear interaction yields an excellent agreement with experiment. In
chapter 7 we investigate modifications to the nonlinear response due to the presence of a
two-dimensional electron gas. Our measurements show a decrease of electron-electron
scattering rates at the high magnetic field regime, and a strong footprint of the Fermi edge

singularity.
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3. The experimental method

3.1. Time-resolved differential absorption and four-wave mixing

Time-resolved differential absorption (DA, also known as "pump-probe") and four-
wave mixing (FWM) are two nonlinear experimental techniques which are often used in
investigating the nonlinear response of quantum wells.85 In these techniques two pulses,
delayed by 7, with respect to each other, are incident on a sample. In a DA experiment
(Fig. 3.1) one of the pulses (the "pump" pulse) excites the sample, and the change of
absorption of the second pulse ("probe") is measured as a function of #,. To measure the
change of absorption due to the pump, the latter is modulated by a low-frequency
chopper, and the changes in the output probe intensity are detected by a slow detector and
a lockin amplifier. In a FWM experiment (Fig. 3.2) the two laser pulses coherently excite
the sample, and the signal which is emitted following the excitation is measured as
function of the delay. In this experiment the two pulses have wave vectors k, and k, with a
small angle between them, and the integrated light intensity in direction 2k,-k, or 2k -k, is
measured by a slow detector. A chopper is used in this experiment as well, to reduce

backgound signals.

detector

FIG. 3.1: A differential absorption (DA)
experiment.
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FIG. 3.2: A Four-Wave Mixing (FWM) experiment.

In ultrafast nonlinear optical experiments the measured signal is proportional to the
third order dipole moment.30 It can be shown that this is the case in the DA and FWM
experiments. In DA experiments the signal which is measured by the detector contains first
order contributions as well, but the differential measurement at the chopping frequency
filters out only third order terms. In the FWM signal the "diffracted" signal in the
directions 2k,-k, and 2k,-k, by definition contains only third order terms, as can be
realized from momentum conservation arguments. The change of absorption 0@ in a DA
experiment is given in terms of the third order dipole moment by:

oW = Tthﬂ(t)-aétd/(,”(t) , (3.1)

where d(” is the B polarization component of the third order dipole moment, proportional

to EﬂEj, and E, and E, are the pump and probe fields, respectively. Similarly, the signal
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in a FWM experiment is proportional to:

P~ Tdtld(”(l)lz , (.2)

and d®(¢)is the relevant contribution to the third order dipole moment proportional to
E:E, (direction 2k,-k,) or EZE, (direction 2ky-k;).

In Appendix A we use the density matrix formalism to give a general expression to the

third order dipole moment in a time-resolved experiment.3!

The DA experiment is commonly regarded as a measurement of the population. The
rate of decay (as function of the delay time) in a time-resolved DA experiment can be
related to the lifetime of the photoexcited population, which is usually denoted by 7). This
is clear if one considers only the phase space filling effect of the pump pulse. In most
cases, however, the excitation by the pump also leads to a shift of the absorption spectrum
(due to a change of the self-consistent energy spectrum of the crystal), as well as to its
broadening (due to scattering by the optically excited carriers). Each of these effects is
reflected differently in the spectral variation of the DA signal, but the rate of decay in a
temporal measurement at any fixed spectral position will always be related to T;.

The FWM signal is a measure of the induced polarization in the sample, and the rate of
decay of this signal as function of the time delay is a measure of the phase relaxation rate
of the coherent excitation. It should be emphasized that the phase relaxation rate in FWM
experiments is generally different from the phase relaxation rate of electrons in transport
experiments. Assuming a phase relaxation time 7, the decay rate of the FWM signal is
2/T, and 4/T, for homogeneous and inhomogeneous broadening, respectively.32 For
homogeneous broadening the FWM signal is a "free polarization decay”, emitted
coincidently with the second pulse.32 For inhomogeneous broadening it is a "photon-
echo", which is emitted at a delay of 7, relative to the second pulse.32

DA and FWM are thus complementary techniques, which give information on different
relaxation processes.
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3.2. The experimental system

Figure 3.3 illustrates the experimental setup for the DA and FWM experiments. The
figure depicts the mode-locked Nd-YAG laser, which emits approximately 20 Watts of IR
radiation (1.06 pm) in 90 ps pulses, at a PRF (Pulse Repetition Frequency) of 80 MHz.
The IR beam is focussed on a KTP nonlinear crystal, in which part of it is up-converted to
1-2 Watts of visible light by second-harmonic generation. The output pulses of 532 nm
radiation are synchronously pumping a two-jet dye laser - either Pyridine 2 (700-780 nm)
or Styryl 8 (760-840 nm). The autocorrelation time of the pulse is approximately 1 ps in
both dye lasers, which sets the temporal resolution of the experiment. To stabilise the
pumping of the dye lasers we used a closed-loop stability augmentation system, with

feedback to the Nd-YAG cavity.

FIG. 3.3: The experimental setup: (1) Mode-locked Nd-YAG
laser with frequency doubling; (2) Beam stabilization; (3) and
(4) Dye Iasérs; (5) Variable delay step-motor; (6) Chopper; (7)
Polarization and beam-width control; (8) Magneto-optical
cryostat; (9) Detector; (10) Lock-in amplifier.

The laser beam is
split to a pump and
probe beams with an
intensity ratio of 10:1.
The probe beam is then
passed through a variable
delay, consisting of a
retroreflector mounted
on a linear step-motor.
The step-motor has an
accuracy of 1 pum,
translating to a temporal
resolution of 6.7 fs. The
two beams are then
brought, through the
chopper slits, to the
optical aperture of the
cryostat. The
polarizations of the two
beams are independently
controlled by means of
half-wave and quarter-

wave plates, or Fresnel rhombs. In most of our experiments the probe beam was expanded
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by a factor of three, to give a smaller spot size and reduce the sensitivity to misalignment
of the delay line (this was particularly important in our spin relaxation measurements, in
which the full 14-cm travel of the step-motor was used). The beams are focussed on the
sample by a single 250-mm lens, and a CCD imaging system is used for fine adjustment of
the beams overlap. The beams exiting the cryostat are analysed by a polarizer, and
focussed on a silicon photodetector. The detector is aligned either to the probe (in DA
experiments) or to the direction of the emitted FWM signal (2k,-k,).

In the experiments we use one of two split-coil magneto-optical cryostat with variable-
temperature inserts. One has a 5 Tesla magnet, while the other has a 7 Tesla magnet which
can be operated at 8 Tesla when pumping on its Lambda-plate. Most experiments were
performed at liquid-helium temperature. An important feature of the cryostats are their
low-birefringence antireflection-coated windows, which are mounted on strain-relief leak-
proof mounts. This arrangement is critical for controlling the polarizations of the exciting

laser beams.
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4. A study of spin relaxation

4.1. Spin relaxation in bulk GaAs

In an ideal parabolic, spherically symmetric band structure the two degenerate spin
states are orthogonal, and one wouldn't expect spin-flip processes to occur. Deviations
from this ideal structure, which were outlined in the introduction, may give rise such
processes. Optical experiments, which allow selection of the spin states by varying the
polarization of the light, make it possible to investigate these processes. The subject of
optical orientation in bulk semiconductors of the III-V group was extensively studied both
theoretically and experimentally. It was found that the mechanisms which dominate the
spin relaxation of electrons in the conduction band are quite different from those which

affect the holes in the valence bands.33

A valence hole in bulk GaAs can relax its spin through scattering between the different
hole subbands. The large spin-orbit coupling in the valence band, which is characteristic of
most III-V compounds, implies that the hole spin is a good quantum number as long as the
energy of the hole is low compared to the split-off band (see section 1.2). In other words,
the heavy-hole and light-hole subbands are eigenstates of the angular momentum operator
J, close to the subbands' edges. At the instant of photoexcitation the holes are oriented.
However, because of the strong coupling between the hole's angular momentum and
quasimomentum k, which is the result of the spin-orbit coupling, the orientation of the
holes is quickly destroyed. For holes with high excess energy this occurs in parallel to the
fast energy and momentum relaxation to the bottom of the band. The thermalization of
holes with low excess energy to states with a finite momentum also brings about spin
relaxation within a period which is on the order of the momentum relaxation time. This
relaxation is fast even at low temperatures, since the two subbands are degenerate at the
subbands' edges, where & vanishes.

The degeneracy of the two valence subbands at the zone center is easily removed by
mechanisms which break symmetry, such as deformations? (externally-applied or phonon-
induced) and inhomogeneities. This leads to the destruction of the coupling between the
angular momentum and quasi-momentum, but may also bring about spin relaxation by
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phonon scattering.34 In any case, a valence hole in bulk GaAs typically relaxes its spin
within less than a picosecond. Indeed, instant depolarization of the holes was assumed in
optical experiments on bulk GaAs, as well as in some works on GaAs quantum wells.33

The spin relaxation of electrons in the conduction band of bulk GaAs is more subtle.
These electrons can relax their spin by the Elliott-Yafet34.36 or D'yakonov-Perel37
mechanisms, both of which are the result of deviations from the spherical-parabolic band
approximation near the I" point of the conduction band. The Elliott-Yafet mechanism is
due to the weak spin-orbit mixing of the valence band states into the conduction band for
k+0. This mixing produces a non-zero matrix element for scattering between spin-up and
spin-down electron states. The D'yakonov-Perel mechanism also originates from the spin-
orbit interaction, and is unique to semiconductors which lack inversion symmetry, such as
the III-V group. When this lack of inversion symmetry is taken into account in the spin-
orbit interaction, a splitting of the conduction band results, which is equivalent to a pseudo
magnetic field acting on the electrons. This pseudo magnetic field leads to a precession of
the electron spin, which depends on the direction and magnitude of the electron's
momentum. Collisions, which change the momentum of the electron, rotate the precession
axis, and if the time interval between collisions is much smaller than the precession period

a spin relaxation process ensues.

There is a fundamental difference between the Elliot-Yafet and D'yakonov-Perel
mechanisms: while the Elliott-Yafet mechanism causes a conduction electron spin to flip in
a momentum scattering event, in the D'yakonov-Perel mechanism spin reorientation
actually takes place in the intervals between spin-preserving collisions. The collisions are
essential to the D'yakonov-Perel mechanism in that they randomise the direction of the
precession. As the rate of these collisions (the momentum relaxation rate) increases, the
mean angle of precession between collisions is decreased, and so does the spin relaxation
rate. This leads to a characteristic inverse proportionality of the spin relaxation time and
the momentum scattering time: T~1/(Q27,), where Q is the precession frequency. (Such
an inverse proportionality is known as "motional narrowing": since in the absence of
collisions the precession is momentum-dependent, the momentum distribution of the
electrons leads to an inhomogeneous broadening of the spin resonance line, in analogy to
the effect of a random local magnetic field; collisions result in the spin resonance line being
narrowed back). It is believed that the D'yakonov-Perel mechanism is dominant in GaAs,38
in which Q-1 is estimated to be on the order of 10-10 sec for thermalized electrons at low
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temperatures (4°K). A characteristic momentum scattering time of 10 ps therefore
translates to a spin relaxation time of ~ 1 ns in bulk GaAs.

The spin relaxation processes discussed so far are relevant for non-correlated free
carriers. When excitons are considered, it is obvious that their spin can be changed by
flipping the spin of either the electron or the hole, or by simultaneously flipping the spins
of both constituents. Bir et al. have shown3? that the exchange interaction can lead to an
efficient spin-flip scattering of electrons by holes. There are two different contributions to
this mechanism, one of them related to the exchange-induced splitting of heavy holes
excitons (optically active and inactive states). The other contribution is related to a long-
range annihilation interaction, the exchange counterpart of the long-range direct Coulomb
interaction which binds the exciton. It had been shown in cw photo-luminescence
experiments on p-type GaAs that at low temperatures (7<100°K) this Bir-Aronov-Pikus
(BAP) mechanism dominates.40

4.2. Spin relaxation in quantum wells

While the confinement in a quantum well does not result in any substantial
modification of the spin relaxation of the conduction band electrons, beyond its k
dependence (due to the two-dimensional dispersion), it does modify the spin relaxation of
holes in a pronounced way. As outlined in the introduction, the energy quantization which
is introduced by the potential discontinuities along the sample growth axis results in a
removal of degeneracy, at the Brilouin zone center, between the heavy-hole and light-hole
subbands, accompanied by mixing of the two subbands, changes of their effective masses,
nonparabolicity and changes of the expectation values of the hole angular momenta. There
exists an in-plane wave-vector range where the valence subbbands are approximate
eigenstates of J,, and this wave-vector range increases as the separation between the two
subbands increases. The removal of degeneracy and the well-defined J, eigenstates at the
band edge result in a suppression of the heavy-hole spin relaxation,623 and gives rise to
spin-flip times which are much longer than in the bulk semiconductor. This suppression of
the hole spin-flip is increasingly effective as the quantum well is narrowed.

Since excitons are made up of linear combinations of free electron and hole states, the

slowing down of the hole spin relaxation in quantum wells would result in a corresponding
slow down of the single-particle spin flip in excitons. However, the enforced close
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proximity of the electron-hole pair leading to the strong exciton binding in a quantum well
is also expected to lead to a strong spin relaxation due to exciton exchange. At the start of
this research work there was no experimental study of these effects. It was not clear
weather single-particle spin-flip would lead to a sequential relaxation of the hole and the
electron spins, or strong exchange-induced spin-flip will dominate. The assumption of a
slow down of the hole spin relaxation indeed led to a different and more satisfactory
explanation of cw luminescence polarization in quantum wells,23 but there was still no
direct experimental evidence of this effect. It was also unclear to us how the slow
dephasing of localized excitons in narrow quantum wells2? is related to the spin relaxation

process.

4.3. Optical probing of spin relaxation - experimental considerations

Let us now consider an optical experiment, with circularly polarized light incident
along the growth axis of the quantum well, tuned to the lowest-energy heavy-hole exciton.
The my, = £3/2 components of the angular momentum dominate the valence hole of that
exciton, so that the total spin of a photo-excited heavy-hole exciton is 1. For these
optically active heavy-hole excitons, spin flip of either constituent would transform the
exciton to a spin £2 optically inactive state, while simultaneous flipping of the spins of
both the electron and hole will transform one optically active exciton to the other.

From the above discussion it can be understood how spin dynamics would be reflcted
in optical experiments. Consider as an example a cw luminescence experiment in which the
sample is excited by ot light, and the polarization of the emitted photons is analysed. The
probability to emit a 6~ photon would equal the probability to emit a 6+ photon only after
a complete depolarization of the excitons had occured, so a measurement of the
luminescence polarization, plus the knowledge of the exciton recombination time, can be
used to derive an estimate for the spin relaxation time. However, this method of extracting
the spin relaxation time is reliable only in simple cases. Such is the case of bulk GaAs,
where instant spin relaxation of the holes can be assumed, and consequently the only
relevant dynamics are those of the conduction electrons.

Time-resolve optical spectroscopy allows better understanding of the spin dynamics.

The two techniques which can be used in this case are time-resolved photo-luminescence
and time-resolved DA ("pump-probe"). Consider an optical excitation by a o+ circularly
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polarized laser pulse. A spin-flip event of a single constituent (electron or hole) into an
optically inactive state produces a decay of the o* photo-luminescence emission, but no
corresponding increase of the o~ photo-luminescence emission. Only when both
constituents flip their spins does a o~ photo-luminescence signal show up. A comparison
of the initial decrease of the o+ signal to the rise of the o~ signal can thus give information
about the spin-flip rates of the different excitonic constituents. To allow the observation of
a single-particle fast hole spin relaxation in a photo-luminescence experiment, it is possible
to provide an equilibrium population of unpolarized electrons in the conduction band by
means of doping.4! This inevitably modifies the well potential, introduces scattering
centers, and does not allow a study of excifon spin relaxation. Another disadvantage of the
time-resolved photo-luminescence technique is its basic signal-to-noise limitation in

resonant excitation.

Contrary to time-resolved photo-luminescence, time-resolved DA allows resonant
excitation and probing of the excitonic transition. Another advantage of a DA experiment
is that following a spin-polarized (ot or o~) excitation, one may expect to observe
changes in the absorption of both circular polarizations as a result of a single-particle
spin-flip event. This is easily understood if free carriers are considered. In this case the
probability of absorbing a photon is dependent on (f. - fy), the difference between the
occupation of the conduction band f, and that of the valence band f,. A hole spin-flip
following a ot excitation, for example, involves the destruction of a valence band state
which could otherwise be excited by a c— photon, and the creation of a valence band state
which may be excited by a a* photon. In other words, a hole spin-flip changes f,, for the
transition associated with both circular polarization. In the excitonic representation one
must take into account the fact that the phase space for the creation of optically active and
inactive excitons is coupled, i.e., the same valence band states are required to build one
optically active exciton and one optically inactive exciton (note that in a DA experiment an
additional exciton must be created by the probe, while in a photo-luminescence experiment
the phase space for the creation of excitons does not matter).

Before the start of the current research work, most studies of spin relaxation in GaAs
quantum wells were by the cw luminescence polarization technique. The electron spin
relaxation time, deduced with the assumption of an instantaneous hole spin relaxation, was
found to be ~200 ps at 4K.35 This is not very different from the electron spin relaxation
times which were reported for bulk GaAs and AlGaAs. Freeman ef al. combined cw and
time-resolved photo-luminescence measurements and showd that spin lifetimes cannot be
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reliably extracted from cw measurements.4 Their work had also indicated that the
depolarization rate is sample dependent. Damen ef al. also used time-resolved photo-
luminescence spectroscopy in the study of spin relaxation.26 These early works, which
were performed on relatively wide quantum wells (~100A), failed to resolve the spin
relaxation of the holes. Time-resolved DA measurements had been reported for narrow
quantum wells at room temperatures only,23 in which case an instantaneous depolarization
of the holes was found. With these early results in mind we had started our own

investigation of exciton spin relaxation.

4 4. Exciton spin dynamics - experimental results in zero magnetic field

In order to study the spin relaxation process of excitons in quantum wells we
performed a time-resolved differential-absorption experiment on several GaAs quantum
well samples at liquid helium temperature. Using circularly polarized pump and probe
tuned to the heavy-hole exciton, we were able to confirm the theoretical prediction of a

slow hole spin-flip in narrow quantum wells.

We used our mode-locked pyridine 2 and styryl 8 lasers in this experiment, both with
sub-picosecond resolution. The polarization of the pump (ct) was fixed, while the
mounting of a quarter-wave plate in the probe beam allowed reversing of the probe
handedness (from o+ to 6~) without affecting the zero time of our setup. Special care was
taken to eliminate possible birefringent elements in the setup.

We studied three different GaAs/AlGaAs samples: a square multiple quantum well
(MQW) sample, a stepped MQW sample, and a superlattice. Spectral transmission curves
of the three samples are shown in Fig. 4.1. The square MQW sample has 20 periods of 80-
A GaAs wells separated by 300-A Aly3Gay;As barriers, with a strong heavy-hole
excitonic absorption line at 1.570 eV. The stepped MQW sample has 100 stepped wells,
with adjacent layers of 30-A GaAs and 100-A AlyGageAs, separated by 100-A
Aly3Gag 7As barriers. The structure is embedded in the intrinsic region of a p-i-n structure.
The wave functions associated with the first energy levels of the electron and holes are
confined mainly in the 30-A GaAs layer. The first electron energy level in this structure
coincides with the potential step of the well, which makes the structure prone to large
potential disorder due to well width and alloy fluctuations. Indeed, the absorption
spectrum of that sample shows a wide (=6 meV), inhomogeneously broadened, heavy-hole
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excitonic peak at 1.617 eV. The superlattice sample consists of 100 periods of alternating
30-A layers of GaAs and Aly3Ga,As, with the heavy-hole excitonic absorption line at
1.683 eV. This structure is also embedded in the intrinsic region of a p-i-n junction.
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FIG. 4.1: Spectral absorption curves for the three samples used in the study of exciton spin
relaxation: (a) the stepped MQW sample; (b) the superlattice; (c) the square MQW sample. The
feature at the long wavelength end of each spectrum is a Fabri-Perot fringe.

Figure 4.2 shows the temporal evolution of the signal when the stepped MQW sample
is degenerately pumped and probed just below the heavy-hole exciton absorption peak
(1.613 eV). Figure 4.2(a) shows the change of absorption of a ot probe and that of a o~
probe, following excitation by a o+ pump. In Fig. 4.2(b) the o~ signal is plotted with
better definition. The data shown in the figure were taken with a pump intensity of
approximately 30 W/cm2 (corresponding to an exciton density of 1.5x1010 cm2). The first
few tens of picoseconds after the excitations are characterized by a sharp decrease of the
o+ signal and a sharp rise of the o~ signal. The two curves then converge gradually and
coincide approximately 350 ps after the excitation, indicating that complete spin relaxation
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has been reached by then. This behavior suggests the existence of two sequential
processes. In Fig. 4.2(c) the logarithm of the difference between the two signals of Fig.
4.2(a) is plotted, as a measure of the net relaxation rate of the difference between the o+
and o~ exciton populations. Two time constants, approximately 50 ps and 120 ps, are
clearly observed. We associated the fast decay with the spin relaxation of the heavy-hole,
and the slow one, following which the two spin populations are equalized, with the
electron spin relaxation. Note that the o signal is decaying at long delays rather than
increasing with the spin relaxation of the electrons (this point will be adressed in section
6.5). The same general behavior, of two time constants and a decrease of the o~ signal
when spin relaxation is not complete, was observed when the pump intensity was lowered
over two decades. This is demonstrated in Fig. 4.3, which shows the o~ signal measured
with a pump intensity of 3 W/cm? (exciton density of 1.5x10? cm-2).
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FIG. 4.2: The differential absorption signal AT/T slightly below the heavy-hole exciton of the
stepped MQW sample, with * pump polarization and intensity of 30 W/cm?2. (a) The signal for
o* and o~ probe at B=0. (b) The o™ signal with better definition. (c) The logarithm of the
difference between the o* and o™ signals.
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FIG. 4.3: The differential absorption signal in the stepped MQW sample, with *
pump polarization, o~ probe polarization, and intensities of 3 W/cm?2 (B=0).

The superlattice sample also shows a clear double-exponent behavior, with somewhat
different time constants (35 ps and 250 ps for the holes and electrons, respectively), as
shown in Fig. 4.4(a,b). In the square MQW sample, on the other hand, the rise of the o—
signal is very fast and the hole spin relaxation cannot be reliably resolved. This is seen in
Fig. 4.4(c), in which the the c— signal and the o+ signal approach the same level after 400
ps. This behavior is similar to that which was observed by Damen ef al. in a time-resolved
photo-luminescence experiment on a high-quality sample with 80-A wells. The difference
between the square MQW sample and the two other samples shows up in another form:
The pump-probe signal in that sample does not show any Stokes shift relative to the
absorption spectrum, contrary to the case of the two other samples. The existence of such
a shift between the linear and the nonlinear responses is an indication of the existence of
localized excitons in the sample.42 The role of exciton localization will be discussed in

more detail in the following chapters.
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FIG. 4.4: (a) The differential absorption signal in the superlattice, with c* and ¢~ probes and
intensities of 3 W/cm2. (b) The logarithm of the difference between the o* and o~ signals in the
superlattice. (c) The differential absorption signal in the square MQW sample, with o* and 6~

probes and intensities of 20 W/cm?2. All signals measured at B=0. -

Our experimental results were the first to unambiguously demonstrate the slow spin
relaxation of excitons in intrinsic samples. Concurrently with our work, a group at Bell
labs measured a hole spin relaxation time of ~4 ps in a time-resolved photo-luminescence
experiment on a slightly n-doped 80-A quantum well sample.4!
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4.5. The evolving picture of exciton spin relaxation

Following the publication of the experimental data, the subject of spin relaxation in
GaAs heterostructures has generated a lot of interest. Quivy-da Silva et al. studied the
degree of the polarization of the cw luminescence as function of energy in undoped and
modulation-doped samples, and confirmed that the hole spin relaxation time must be taken
into account in the explanation of their findings.43 This group also studied the effect of
magnetic field, both perpendicular and parallel to the heterostructure layers. They found
that in undoped samples a very high field (10 Tesla) parallel to the layers and
perpendicular to the light propagation (Hanle configuration?) was needed to depolarize the
luminescence, which is a further indication of very long spin relaxation times. Roussignol
et al. investigated the dependence of the hole spin relaxation on the electron density in an
n-modulation-doped 75-A quantum well, in a time-resolved photo-luminescence
experiment.44 Their rate-equation fit to the data gives a density-independent hole spin
relaxation time on the order of 1 ps. Wang ef al. have estimated an "effective" exciton spin
relaxation time of 100 ps from cw FWM spectral hole-burning measurements on a 100-A
quantum well.43 Brener ef al. have found an extremely fast hole spin relaxation (~400 fs)
in shallow GaAs / Al,Ga,.,.As quantum wells, with a transition from a two-dimensional to
a bulk-like hole spin relaxation at x ~ 5%.46 These measurements again show that the spin

relaxation is strongly sample dependent.

Very recently a comprehensive theory for exciton spin dynamics in quantum wells was
proposed,4” which calculates the spin relaxation of heavy-hole excitons due to the
exchange Coulomb interaction between the electron and the hole. It is found that the
exchange-induced exciton spin relaxation belongs to the "motional narrowing" class, with
its characteristic inverse proportionality to the momentum scattering time of the exciton
center of mass. The dependence on momentum scatterings means that exciton spin
relaxation should indeed be sample-dependent. The authors then use a rate equation to
describe recombination and the scattering between the exciton states, also taking into
account single-particle spin-flip into optically-inactive states. This procedure was shown to
give a very good fit to the experimental data from our stepped MQW sample. The authors
attribute that the initial rise of the o~ signal in our data is due to the exchange-induced
spin-flip rather than due to a slow hole spin-flip (which they claim is undetectable in the o~
signal since it produces an optically inactive exciton; however, their rate equation
formalism ignores the coupling in the phase space for the creation of optically active and
inactive excitons, which was discussed in section 5.1.2). The model also does not include
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inhomogeneous broadening of the excitonic line and the associated spectral diffusion (the
possibility that excitons would scatter within the inhomogeneous line), which are evidently
important in our case. Nor does the theory include the biexcitonic™ effects (as will be -
discussed in detail in the following chapter, an instantaneous rise and a long-term drop due
to the biexcitonic interaction must be included in the treatment of the ¢~ signal).

Meanwhile, Ferreira and Bastard have proposed an alternative model for the spin
relaxation in quantum wells.48 They have shown that spatial assymetry leads to a
D'Yakonov and Perel-like mechanism for the relaxation of the hole spin. Their work
suggests that the hole spin relaxation time will increase in "low quality" samples, and that
this may explain the strong sample dependence of the measured spin relaxation rates (it is
possible that this also applies to our square MQW sample, in which disorder may be less
important, leading to a slow momentum relaxation and a fast spin relaxation). Clearly,
more experimental work and theoretical analysis are required, to understand the
differences between various measurements, and to establish the validity of the different

models in each case.

4.6. Exciton spin relaxation in a magnetic field

The spin relaxation in GaAs quantum wells in a magnetic field was studied in cw
photo-luminescence depolarization experiments, in the same manner that the zero
magnetic field spin relaxation rates were measured.2743 An inhibition of the spin-flip of
conduction electrons during thermalization was observed in a photo-luminescence
excitation experiment in a quantum well sample, in magnetic fields up to 20 Tesla. Time-
resolved optical experiment on heterostructures in high magnetic fields were at their
infancy as we started our work. Only early results had been reported, including the
pioneering work of Stark es al,% who have studied the energy relaxation and
thermalization of conduction electrons in a fsec DA experiment, in magnetic fields up to
12 Tesla. The spin relaxation in this regime was not measured yet.

We have studied the effect of moderate magnetic fields, up to 5 Tesla, on the spin flip
of excitons under resonant excitation. Figure 4.5 shows typical measurements with
oppositely handed circular polarizations on the stepped MQW sample. The three
measurements, at zero magnetic field, 2 Tesla and 4 Tesla, were all taken with a pump
intensity of 3 W/cm? (exciton density of 1.5x10° cm2). The three curves show a few
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differences which will be discussed later in this section. The spin relaxation times,
however, remain nearly constant: a careful analysis of the data, by subtracting the o—
signal from the o+ signal, shows a modest decrease of no more than 25% in the relaxation
rates between 0 to 4 Tesla. We also looked at the case of pumping with o~ polarization
and probing with o+ polarization, by reversing the direction of the magnetic field. In this
case a slight increase of the relaxation rate was observed.
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FIG. 4.5: The differential absorption signal in the stepped MQW sample, with o*
pump polarization, o~ probe polarization, and intensities of 3 W/cm?2, at magnetic
fields of OT, 2T and 4T. The OT curve is identical with Fig. 4.3.

The only theoretical work on spin-flip of excitons in a magnetic field is that of Maialle
et al.47 Their calculations, which are valid only for low magnetic fields (when Landau
levels are not important), predict that the effect of a magnetic field normal to the layers is
to inhibit exchange-induced spin relaxation. They show that the spin relaxation rate due to
exchange is proportional to (1+Q212)-1, where Q is the Zeeman splitting and T is the
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momentum relaxation time. Therefore any finite €, positive or negative, would slow the
spin relaxation due to exchange. This implies that, in contrast to our observations,
identical results should have been measured with o+ and o~ excitation. The symmetry with
respect to the magnetic field orientation in the work of Maialle et al. results from the fact
that they do not consider the thermodynamic aspects of the problem. As the spin
relaxation of o+ excitons in a magnetic field requires absorption of acoustic phonons, it
must be slower than the spin relaxation of o~ excitons. This was verified by Wang ef al.,
who used FWM spectral hole-burning measurements to study the effect of magnetic fields
up to 6 Tesla on the spin-flip induced spectral hole.4> However, the 6+ to 6~ ratio in their
measurements, which is related to the spin relaxation time, was found to depend strongly
on the magnetic field: this ratio decreased by a factor of 4 when the magnetic field was
increased from 2 Tesla to 6 Tesla. To explain the difference between our measurement and
theirs, the effects of temperature and the Zeeman splitting should also be considered. The
quantum well used in the experiment of Wang ef al. exhibited a splitting of 0.37 meVina
field of 6 Tesla, and the experiment was carried out at 2.5 K. Based on our quantum beats
measurements (which are discussed in following sections), we estimate the Zeeman
splitting in our step MQW sample to be 0.4 meV in a field of 4 Tesla. Our experiments
were carried out above 4.2 K. It is possible that that the lower relative temperature kgT/Ae
in Wang's experiment quenched inelastic scattering processes more effectively as the

magnetic field was increased.

Since the publication of our data, Stark e/ al. have extended their fsec DA
measurements in high magnetic fields to studies with circularly polarized light.50 Their
studies give the following spin relaxation times at 12 Tesla: 105 ps and 65 ps for the spin-
flip of o+ and o~ excitons, respectively, into optically inactive states, and 200 ps for
complete relaxation. These relaxation times are consistent with our measurements in
moderate fields. The lack of data for zero magnetic field in their report, and different well
widths and sample qualities, make a direct comparison with our own data difficult.

Let us return now to the data presented in Fig. 4.5, and examine the detail differences
between the three curves. The B=0 curve shows a large instantaneous rise and a
pronounced drop at long delay times. When the magnetic field is applied, however, both
features gradually disappear. We observe that the larger the instantaneous rise, the larger
is the drop at long delays. A similar behavior is observed as the intensity of the excitation
is increased: note that the 4 Tesla curve in Fig. 4.5, which was measured at 3 W/cm?,
shows a similar temporal evolution to the zero field measurement at 30 W/cm?2 which is
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plotted in Fig. 4.2. We attribute both the instantaneous rise of the o~ signal and its
pronounced drop when spin relaxation is not complete to biexcitonic effects, which will be
discussed in detail in chapter 6. The detail changes of the o~ signal therefore represent a
relative diminishing of the biexcitonic contribution with increasing magnetic field and
excitation intensity.

37



5. Quantum beats of spin-polarized magnetoexcitons

The fact that spin polarization is preserved for a relatively long time in quantum wells
has allowed us to observe quantum beats between spin polarized magneto-excitons as the
spin degeneracy was removed by an applied magnetic field. These quantum beats appeared
when linear polarizations were used to coherently drive the two nondegenerate, Zeeman-

split magneto-excitonic two-level systems.

Quantum beats are usually associated with coherence-sensitive experimental methods,
such as four-wave-mixing, photon echoes, coherent Raman scattering, and resonance
fluorescence. When two nondegenerate states are coherently driven by an optical field, the
induced polarizations in the medium interfere and give rise to a beating in the radiated
wave, at a frequency given by the difference between the energies of these states (which
must be smaller than the bandwidth of the driving optical field). Time-resolved DA
measurements are usually considered as a coherence-insensitive method for investigating
decay rate of the population in excited states (as in our study of spin relaxation with
circular polarizations). However, this is not always the case, and quantum beats can be
observed in the temporal evolution of the absorption. This is implicit in the Bloch
equations, which couple the polarization and population in a two-level system. In fact,
absorption quantum beats have been reported in the literature for the case of hyperfine
splitting of atomic states.>! |

In semiconductors, the continuous density of states at the band-to-band transition is
generally considered as a cause for rapid dephasing and loss of coherence. Bound
excitons, however, form discrete transitions which make coherent phenomena observable
in semiconductors. Indeed, quantum beats had been previously observed in four-wave-
mixing experiments in GaAs quantum wells.22 In that case the two split energy levels in a
coupled-well structure produced the beating.
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5.1. Absorption quantum beats

We have demonstrated absorption quantum beats which originate from the Zeeman
splitting between spin-polarized magneto-excitons. Figure 5.1(a) shows the relative
change in transmission, AT/T, at B = 0 in our stepped MQW sample, when pumped and
probed with roughly equal intensities of approximately 3 W/cmz, slightly below the heavy-
hole exciton absorption peak (1.619 eV). Since AT/T<<1 (~5%) this signal is directly
proportional to the change of exciton absorption Aa.. The slow decay (~20 ps) of the

ATT (au.)
ATIT (au.)

1 I} 1 Il ] Il

0 0 20 30 0 0 20 30
time delay (s) time delay (ps)

FIG. 5.1: Temporal evolution of AT/T at the heavy-hole exciton for (a) B=0 and (b) B=4T. The
solid curves were measured with cross-linearly polarized pump and probe, and the dotted curve
was measured with parallel linear polarizations.

signal is attributed?0 to spectral diffusion of low-energy localized excitons within the
inhomogeneously broadened excitonic line. As a magnetic field is applied normal to the
layers, oscillations appear in the time-resolved DA signal. The solid curve in Fig. 5.1(b),
which was measured at B = 4 Tesla with crossed linear polarizations (CP), exhibits a slow
rise (relative to the pulse width) followed by deep, damped oscillations. These oscillations
have a period of 8 ps, with the first minimum occuring a full period after t = 0. A similar
temporal behavior is observed in the case of parallel linear polarizations (PP), as shown by
the dotted curve of Fig. 5.1(b), but in this case the oscillations have a ©t phase shift relative
to the signal in the CP configuration. The envelope of the oscillations is identical in both
cases, and is decaying with a time constant of ~20 ps, approximately the same as the decay
time for the B = 0 case. Fig. 5.2 demonstrates that the period of the oscillations is
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inversely proportional to the magnetic field strength. The two traces were measured at 2
Tesla (solid curve) and 4 Tesla (dotted curve), in the CP configuration. We observed less
pronounced oscillations with a slightly longer period in the superlattice sample (Fig. 5.3).
The square MQW sample showed no trace of coherent beating.

;_\ - - FIG. 5.2: Pump-probe
\m_', - - signal at 2T (solid curve)
=L i and 4T (dotted curve).
= :
< | 4
0 10 20 30
time delay (ps)
;.\ I 1 F1G.5.3; Quantum beats in
g the superlattice sample in a
E field of 4T.
<
0 7 10 20 30
time delay (ps)
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5.2. Theoretical interpretation

Consider the energy level diagram depicted in Fig. 5.4. The spin splitting between the
different J, levels in each subband is given by 2g1zBAJ,, where g is the Lande g-factor in
the subband. In bulk GaAs g is negative for electrons in the conduction band and positive
for electrons in the vallence band.52 Since spin-flip is not important on the time scale of
this experiment, the four-level system in Fig. 5.4 may be treated as a simple superposition
of two uncoupled two-level systems, which interact with either o+ or o— circularly
polarized light. As the splitting between the two spin states is small compared to the
bandwidth of the laser, linearly polarized pump and probe interact with both transitions. In
other words, a linearly polarized pump excites the two transitions coherently, and the
polarizability of the medium seen by a linearly polarized probe is a linear combination of
these eigenstates. The two different transition energies result in two different time
dependencies of the induced polarization, and their linear combination exhibits a beating
behavior. How this comes about will be shown in the following.

T —— -1/2
1/2
- A 7
@ b \) FIG. 5.4: Electron energy levels in a
0.+ G~ normal magnetic field, and allowed
B dipole transitions from the heavy-
, 8/2 hole subband to the conduction
band.
i -3/2

For any one of the two-level systems in Fig. 5.4, the total absorbed intensity in the
sample can be written in general as:

Al = [dtE- dP/dt (5.1)
where E is the time-dependent optical field and P is the induced polarization. We now
derive the change in absorption resulting from excitation by the pump pulse from the

Bloch equations.30 Assuming that the relaxation times 7} and 7, are much longer than the
duration of the pulse, and that the laser frequency is tuned to resonance, we can write the
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change in the probe intensity J,, as measured by a slow detector, as:

Al, ~ [ aUE, -dv(1)]t ~ [t E} - aw() (5.2)

where E, is the amplitude of the probe field, v(2) = —i [p2()-pu ()], W) = por()—pui(Y),
Aw(t) = w(t)-w,q, W,q is the steady-state value of w, and p;(1) are density matrix elements.
The effect of the pump pulse is implicit in this expression through Aw(%), which is the
change in w(?) due to the excitation of the two-level system by the pump. Using the fact
that Tr(p) = 1, and taking w,, =-1, i.e., the system in steady state is at its ground state, we
get that Aw(?) = p,,(1). We therefore conclude that A/, which is measured in a pump-probe
experiment is proportional to py,(%) induced by the pump pulse. When the short pump field
is turned off, the induced population w decays exponentially with a relaxation time 73, and

the excitonic wave function can be written as:

w(1) =| e, )explim 1 - 1/) (5.3)

where | ;) (|w,)) is the wave function of an exciton created by a photon with 6+ (67)

polarization and energy Ao, (ho,).

The same analysis holds for the case of two uncoupled two-level systems, but since a
linearly polarized probe interacts with both systems we should take the joint density
matrix. To construct this joint density matrix let us consider the case in which the pump is
polarized in the x direction. The wave function of the system right after the excitation by
the pump can be written as ¥(0) =|w,)=(|w,)+|w,))/v2 and the temporal evolution of
the system after the pump pulse has left the sample is given by:

W)= v)e™ + | ) ) (54)

We now rewrite the spin eigenfunctions in terms of x-like and y-like wave functions,
A =(| y/x)—il y/y)) /JZ— and Il//,_)=( y/x)+il y/y)) /\/5 . Inserting these expressions into
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Eq. 5.4 we express Y1) in terms of | y,) and |y/y) :

'//(t) - yze-tﬁi [(eim,t +eimzl)l Wx) _ I-(eim.l — ' )l Wy)] =

(5.5)
=a(1)|w,)+b()| v, ).

As we have seen, the measured DA signal depends only on the density matrix element
p22(t), which is defined in terms of the coefficients a(2) and b(1). A probe which is linearly
polarized along the x direction would detect only the component a(?), while a probe
which is linearly polarized along the y direction would detect only the component 5():

AL (1) ~ |a(t)|2 = %[l +cos(w, - wz)t]e'z’”' ,

5.6
AL(r) ~ lo(e)f = %[l - cos(a, — wz)t]e’z’”' . ¢9

It follows that the DA signals for linearly polarized pump and probe exhibit
interference terms which oscillate at the difference frequency ©,— ©,. This frequency is
linear with B, as indeed observed experimentally. Note that the oscillations in the PP case
(x - polarized probe) start at a peak and are shifted by a & phase with respect to the CP
case (y - polarized probe), also in agreement with the experiment [Fig. 5.1(b)].

5.3. Discussion - g factor, dephasing and spin orientation

Obviously the simple two-level system model, which is generally used in the
interpreatation of optical experiments in GaAs heterostructures, is incomplete. In the
interpretation of our measurements of spin relaxation rates and Zeeman quantum beats, we
have used a four-level system picture, as presented in Fig. 5.4. An alternative excitonic
picture is shown in Fig. 5.5. In this picture the two allowed optical transitions are between
the vacuum ground state and two spin-polarized excitonic states, and the beating results
from interference through the ground state. It was noted by Koch ef al., in a recent
discussion of interference versus quantum beating effects,3 that the common ground state
is essential in defining the observed oscillations as "true" quantum beats. Our original
approach, which treats the oscillations as a quantum interference phenomenon, has the
advantage of being more transparent as far as an absorption experiment is considered.
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FIG. 5.5: An excitonic
, representation of the energy
0‘+ (@) levels associated with optical
transitions from the heavy-hole
valence subband to the
conduction band.

The previous section establishes the oscillations which were observed in our DA
measurements as Zeeman quantum beats. Similar Zeeman quantum beats were also
observed in FWM experiments in a magnetic field, which were performed by Carmel ez al.
on the same samples in which we have demonstrated the absorption quantum beats.>4:53
The period of the beating in the FWM signal is identical to that measured by us in the DA
experiment. The characteristic m phase shift of the oscillations in the CP case relative to
the oscillations in the PP case was also observed. The analysis of the results in these FWM
experiments was based on the excitonic level diagram depicted in Fig. 5.5. In this
representation the excitonic g-factor g, is defined in terms of the total Zeeman splitting
between the two excitonic transitions: 2g,, 115B.

The g-factors of electrons and holes in GaAs were intensively investigated in both bulk
and heterostructures, using various techniques. Measurements show a dependence on well
width,36:57 magnetic field strength,45:58 and orientation.5” From our DA experiment, the
effective excitonic g-factor in the stepped MQW sample is g,.. ~ 0.9 in a field of 5 Tesla.
In his MSc work, Carmel applied the technique which was demonstrated by us in
systematic FWM measurements of the excitonic g-factor and its variation with the
quantum well width and the magnetic field strength.54.55 He also used this technique in
evaluations of the g-factors of higher heavy-hole magneto-excitons and light-hole
excitons.>> Carmel ef al. have found that g,.. is magnetic field dependent, and their fit to
the step MQW data gives g,.. = 0.76+0.016B, with an estimated error of 10%. A lower g-
factor was measured for our superlattice sample. These values are consistent with
measurements by other groups, which have used different experimental techniques, as
discussed in detail by Carmel ef al.. It should be noted that in parallel to our work on
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quantum beats in GaAs, other groups demonstrated similar Zeeman quantum beats in
different semiconductors - CdS3? and AgBr.60 A major advantage of this technique is that
it makes it possible to measure very small energy splittings in cases where inhomogeneous
broadening precludes direct spectroscopic measurements.

Another interesting aspect of the beating in the DA experiment is the capability to
accurately and unambiguously extract dephasing times from the decey rate of their
envelope (note that the signal in a pump-probe experiment is much stronger and easier to
detect than a FWM signal). We found out in the experiment that the decaying envelope of
the oscillations corresponds to the difference between the PP and CP signals in zero
magnetic field. This observation is substantiated by the theoretical expression for the
coherent signal (Eq. 5.6), which at zero magnetic field yields a vanishing CP signal and a
non-vanishing but decaying PP signal. This justifies the association of the initial decay of
the zero field signal with the dephasing of the excitons. '

We find that the dephasing time of the excitons is correlated with their spin relaxation
time. This is borne from a comparison between the three samples which we have studied:
while in our stepped MQW and superlattice samples the spin-flip and dephasing times are
long, in the square MQW sample the hole spin relaxation is instantaneous and quantum
beats are not observed. O. Carmel's FWM measurements in different samples substantiate
the relation between the duration of the Zeeman quantum beats and the well-width
dependent spin relaxation. On the other hand, the dephasing time of approximately 20 ps
in our stepped MQW and superlattice samples is comparable to spectral diffusion times of
localized excitons.2? Qur data also show that the dephasing rate is energy dependent, in
the sense that the oscillations appear only in the low-energy side of the exciton absorption
line. Such a behavior is indeed expected in the case of localized excitons. We are thus led
to believe that spin-flip leads to dephasing, and that where spin-flip is slow spectral
diffusion determines the rate of dephasing.
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6. The biexcitonic coupling

ween spin-polarized exciton

The slow spin relaxation in GaAs quantum wells, which was discussed in detail in
chapter 4, makes it possible to excite and explore the behavior of spin-polarized excitons
in the picosecond regime. One interesting subject which has recieved only limited attention
is the correlation between o+ and = excitons, or in other words - how the creation of a
o+ exciton would affect the possibility to excite c— excitons.

Consider the three-level system model in Fig. 5.5. This model does not allow the
creation of an exciton with a certain spin at a certain site following the creation of an
exciton with the opposite spin in the same site, since there is no dipole matrix element
between the two spin-polarized states. In such a system the DA signal with pump and
probe with the same circular polarization would be identical to the DA signal with
oppositely-handed circular polarizations. In the alternative electronic four-level system of
Fig. 5.4, on the other hand, there is no coupling of o+ and o— excitons: this system can be
excited independently by o+ and 6 photons.

As a matter of fact, it can be recalled that the DA signal which we measured with
oppositely-handed circular polarizations did exhibit coupling between the two transitions.
A careful examination of Figs. 4.2 and 4.3 reveals an instantaneous (within the pulse-
width) change of absorption of o~ light which accompanies the o+ excitation. Our
experiments, as well as theoretical calculations, ruled out the possibility that this abrupt
response represented a spin relaxation phenomenon. Clearly, this observation was
inconsistent with any of the above models, and further studies were required.

To resolve this issue we performed high resolution measurements of the instantaneous
rise of the signal. These measurements revealed a striking phenomenon. Fig. 6.1 is a 20 ps
scan of the 6= DA signal with o+ pumping, which was measured in the stepped MQW
sample, with pump and probe intensities of 3 W/cm2 (corresponding to an exciton density
of 1.5x10? cm:2. It is clearly seen from Fig. 6.1 that the sudden change of absorption is
accompanied by an oscillatory response. Three main features are apparent in the figure: a
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negative dip at negative delays, followed by deep damped oscillations, and a final positive
signal (decreased absorption) at positive delays. All three features exist throughout the
low-energy side of the excitonic absorption line, and the amplitude of the oscillations
scales linearly with the intensity of the probe and also linearly with the intensity of the
pump, across almost three orders of magnitude. Figure 6.2 shows a few measurements at
various intensities. Note that although the signal changes as function of intensity,
particularly close to saturation intensity, the period of the oscillations is independent of
intensity. It was also found to be independent of the excitation energy. The oscillations'
period was measured to be 1.6 ps for the stepped MQW sample.

ATIT (a.u.)
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time delay (ps)

FIG. 6.1: The transient differential absorption signal in the stepped MQW sample, with c*
pump polarization, ¢~ probe polarization, and intensities of 3 W/cm?2 (8=0).
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FIG. 6.2: The oscillatory differential absorption
signal in the stepped MQW sample, with s* pump
and o~ probe polarizations, for several intensities.

From top to bottom: 0.3 W/cm?2, 3 W/cmZ2, 20
W/cm?2, 100 W/cm?2 (8=0).

Similar oscillations were observed
with our superlattice sample. In this
case the oscillations' period was 2 ps
(Figure 6.3). We used the superlattice
sample to study the -temperature
dependence of the oscillations, and
found that their amplitude decreases
slightly at 30 K, while at 60 K they are
completely washed out. We also
verified that the oscillations' period
was not dependent on the pulse width
and pulse shape of the laser or on a
transverse electric field. The main
effect of an increase of the pulse width
was a corresponding increase of the
number of observable periods in the
oscillatory signal.

6.2. The biexcitonic interpretation

We examined several possible
mechanisms to explain the observed
oscillations, whose fixed period in a
given sample is indicative of the
existence of a fundamental energy gap
of 2 - 25 meV. We considered
removal of spin degeneracy due to
spin-orbit coupling, which can exist in

principle in assymetric structures (such as the step MQW sample or the superlattice which
is embedded in a p-i-n structure, with a built-in reverse voltage). However, the energies of
the o+ and o~ transitions remain degenerate in this case. In addition, this effect is too small
(by orders of magnitude) to explain such a large energy gap. Other experimental
observations also ruled out the possibility that assymetry is the common factor behind the
oscillatory transient: the measured signal in the superlattice sample in a flat-band situation
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was identical to the signal which was measured with no electrical contacts, which
convinced us that the optically excited charge carriers screen the electrical field in the no-
contact situation. We later also observed oscillations in a symmetrical MQW sample.
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FIG. 6.3. The oscillatory differential absorption signal in the superlattice, with c*
pump and o™ probe polarizations, and intensities of 3 W/cm?2 (B8=0).

Another possible explanation to the oscillations was based on optical nutations,30 but
the insensitivity of the oscillations' period to the energy and intensity of the excitation
tended to reject this explanation as well. The fact that the oscillations are observed only
for pump and probe with oppositely handed circular polarizations led us to attribute the
phenomenon to the formation of biexcitons.

This interpretation suggests that the fixed beating frequency is directly related to the

biexcitonic binding energy. It also gives a plausible explanation to the instantaneous o~
change of absorption following o+ excitation. The change results from the fact that the
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pump-generated o+t excitons create a possibility to form a bound biexcitonic state with a
single o~ photon, at the expense of a reduced probability to create independent o~
excitonic states. This corresponds to a transfer of oscillator strength from the o~ excitonic
transition to the single-photon exciton-to-biexciton transition energy, which is the exciton
energy minus the biexcitonic binding energy (Figure 6.4). Such a change is seen by a probe
which is tuned to the excitonic transition as an abrupt decrease of the absorption, as

indeed observed experimentally.

FIG. 6.4: The change of the absorption spectrum for a ¢~ probe following an excitation with a o*
pump. The absorption curve before the arrival of the pump is shown in pale gray, and the
spectrum following excitation is drawn in dark gray. Oscillator strength is removed from the
exciton lineshape at energy € and added at energy ¢ - A, where A is the biexciton binding energy.

The intuitive picture presented above is substantiated by a calculation of the third
order polarization for a four-level system model of the exciton-biexciton interaction. This
model, which is described in detail in section 6.3, gives a very good agreement with our
experimental results, and also confirms the appearance of oscillations with identical period
in FWM measurements in the CP configuration. Such oscillations were observed by
various groups,m’»62 and were also attributed to biexcitons. O. Carmel, in his FWM
experiments on our samples,34 observed-similar oscillations in the CP signal (Fig. 6.5), the

50



period of which were identical to the period of the oscillations in the DA experiments.
The similarity between the oscillations' period in the DA and FWM experiments clearly
indicates that they originate from a common mechanism.

FWM signal (a.u.)

time delay (ps)

FIG. 6.5: The oscillatory signal measured by Carmel et al.5¢ in a four-wave
mixing experiment with crossed limearly-polarized exciting beams, on our
stepped MQW sample.
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6.3. A four-level model for the biexcitonic nonlinearities

In collaboration with Y. Levinson and G. Finkelstein we have proposed a model for
the nonlinear optical response of quantum wells, which takes into account the biexcitonic
state. We show that within this model, the interaction of two laser pulses, mediated by the
nonlinear susceptibility, results in oscillations and in coupling between o+ and ¢~ excitons.
The frequency of the oscillations is the binding energy of the biexciton. This explains the
temporal behavior which was observed in the DA and FWM experiments described above.

/ b \
ot o~
FiG. 6.6: The four-level system
consisting of a ground state g, two exciton
states o, and a biexciton state b with a
o ot binding energy A.

We assume that two excitons may bind to form a biexciton only if the z projections m
of their angular momenta are m = +1 and m = -1, that is, if they are created by circularly
polarized light of opposite handedness. We describe the system with the four-level
diagram shown in Fig. 6.6. The ground state | g), with m = 0, corresponds to the state of
no excitons and no biexcitons, and the states Io"), with degenerate energy € and m = %1,
correspond to one exciton with either a right or a left polarization. The state | 5) with
energy 2€ — A and m = 0 corresponds to the singlet biexciton, A being the binding energy.
The Hamiltonian of this four-level system is:

H,=¢a’at+ec’c-Aa’ac’c (6.1)

where at (a) and ct (c) are creation (annihilation) operators of right and left excitons,
respectively. Note that this model neglects the continuous spectrum of the biexciton and is
valid only at low excitation densities, where the average distance between excitons is
larger than the biexciton area.
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The coupling of the four-level system with light is given by:
V=-dE,-dFE, (6.2)

where E,; are the right and left components of the total electric field (of both pulses),
defined in terms of the cartezian components:

E,=(E+iE)NZ ., E,=(E-iE)/V2 (6.3)
and d, zare non-Hermitian dipole moment operators, defined by:
d,=(d.-id N2 ., dy=(d +id)/NZ (6.4)
and given in terms of the creation and annihilation operators:
d,=da+dc" , d;=d; 6.5)
The nonvanishing matrix elements of these operators are:
(gld]o")=(o|d|e)=(gld]o) =(o"|d)|g) =d.
(o|d|b)=(bld|o")=(c"|d| ) =(bld]o") =4,

Here d., is the dipole moment of the exciton transition, while dj, corresponds to the
transition from an already existing exciton to the biexciton state.

(6.6)

In matrix form one gets:

0o 0 o0 ©0
0 € 0 O
H,=
0 0 €& O
0 0 0 2e-A
0 d, 0 0 0 0d4d, O
0 0 0 O d 0 0 d
d,= d,=| ¢ b
d, 0 0 d, 1o o 0 o
0 4, 0 0 0 0d, O

(6.7)

To calculate the nonlinear response in a DA or FWM experiment it is necessary to
evaluate the third order dipole moment, which is proportional to the third power of the
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electric field. The change of absorption O® in a DA experiment with two oppositely
handed circularly polarized pulses, £,(f) (pump) and E#) (probe), is given by:

oW = Tthﬁ(t)-gdl(,”(t) A (6.8)

where df,’)(t) is the P polarization component of the third order dipole moment,
proportional to EﬂEz Similarly, the signal in a FWM experiment with two linear cross-

polarized pulses E(f) and E,(f) (CP configuration) is:

P~ [atld®(0f (6.9)
and d®)(f) is the relevant contribution to the third order dipole moment proportional to
EZE or EJE,.

To find d®(¢) for either case, we solve the equation for the time evolution of the
density matrix p iteratively, with the Hamiltonian H, + V, expanding it in powers of £ and

collecting terms of order E3, which give p®. This is most conveniently done in the
interaction representation (see Appendix A), in which:

A1) = (Yin)’ jdt. 'fdtz Tdtz[z(t. ),[V;(tz),[V,(tn),p‘”]]] : (6.10)

Next, the dipole moment is calculated from:
d)=Tr{(a,) )} . 6.11)

where o stands for the appropriate polarization (o, 8, x or y). While all the optical
frequencies cancel out in the expression for d®(1), several terms involving the slowly

varying pulse envelopes appear. Only the relevant terms for each case are retained, with
the appropriate field dependencies, as discussed in Appendix A. Only the final expressions
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for several cases are given in the following. We use the following notation in their
presentation:

(4(BCtON) = Jatdle) () fatscls) i)

()= [auas) 6.12)

A, =A()e™

and where A(f) and B(?) are the slowly varying envelopes of the pump and probe pulses,
respectively, and are real.

6.3.1. Differential absorption

Let us consider first a DA experiment with two oppositely handed circularly polarized
pulses. Calculating O for our system and taking the detuning v = € — @, of the center

laser frequency ©, from the excitonic transition as a parameter, we arrive at the following
expression for 0¥:

V=0 +0P+0P +G. QY
0P = (B0, (4)+ (40, (B))
09 =~{(B) 4 (B)) ]
08 ={(B) 4B () +cc]

(B,)
0¥ =Bz (4)) + o}

(6.13)

where G is defined by G=|d,u|2/|d¢x|2. Figure 6.7 shows the results of a numerical
calculation of Eq. 6.13 for assymetrical Lorenzian-shaped pulses (i.e. with different widths
I' for the Lorenzian function for positive and negative 7). The different traces were
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calculated for two values of v/A. In the calculation we also assumed different dipole
moments for the exciton and biexciton transitions (as will be explained in the following).
In the figure O® is plotted as function of the delay time 7, between the pump and the
probe pulses, defined by B(#) = A(f - 1p). We find that 0% oscillates in the delay time 7,
with a period which depends on both A and v. The pattern of the calculated signal, a dip at
the beginning and then damped oscillations, is in agreement with our experimental
observations. One can clearly see that the oscillations persist only as long as there is
overlap between the pump and probe pulses. However, the strong dependence of the
oscillations' frequency in the calculated signal on the detuning of the laser is in sharp
contrast to the behavior which was observed in the experiment. Similar results were
obtained for different pulse shapes.
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FIG. 6.7: The calculated differential absorption signal —Q(3) as a function of the

time delay for assymetrical Lorenzian-shaped pulses with an autocorrelation
width of ~1.5 ps. The solid curve was calculated for zero detuning, and the dotted
curve was calculated for v/A = 0.25.
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6.3.2. Inhomogeneous broadening

The contradiction between the detuning-independent period in the measured signal and
the results of the above calculation led us to consider the role of inhomogeneous
broadening of the exciton line, which occurs in many quantum well samples, and in
particular in the samples in which an oscillatory DA signal was measured. Inhomogeneous
broadening implies that the laser excites an ensemble of four-level systems, each of them
with a different detuning. This must lead to an averaging out of the detuning. The only
parameter which determines the oscillations' period would then be the binding energy of

the biexciton.

To take into account the inhomogeneous broadening of the excitonic transition we
assumed that there is a distribution of four-level systems with different € but with the same
A, and averaged d® over €. The width of the inhomogeneously broadened line W was
taken to infinity, which is appropriate for W >> A, v, &, where 3 is the spectral width of
the laser. For such an inhomogeneously broadened four-level system we get the following

expression for the DA signal:

@ -3

0% ~ Ids(ae—m _1) _fmdt :Ldt' o

{[B)B (=54 () At - 5)+ BU)A(t =) B (1) A"(1' = 5)] +e.c.}

where G is defined by G= |d,n.|2 /Idexlz, and all the omitted prefactors are positive. Note
that v does not appear in Eq. 6.14, and thus there is no dependence of the oscillations'
frequency on the detuning. The result of a numerical calculation with single-sided
exponential pulses [i.e. A(f) = exp (#/ <) for t <0 and A(f) = 0 for t > 0] is shown in Fig.
6.8, where the value of G was taken to be 5. As will be discussed in section 6.3.4, this
value agrees with theoretical estimates for the oscillator strength of the biexciton
transition. One can clearly see that there is a good qualitative agreement between the

calculation and the measured signal (Fig. 6.1).
It follows from our numerical calculations with different pulse shapes that the main

features of O® vs 1, namely, zero signal for large negative delays, a dip for small negative
delays (of the order of the pulse width), oscillations for positive delays within the overlap
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of the pulses, and finally a constant positive value for large positive delays, are all pulse

shape independent.

ATIT (a.u.)

1 " L - 1 s 1

-5 0 5 10
time delay (ps)

FIG. 6.8. The calculated differential absorption signal —Q(” as a function of the

time delay for an inhomogeneously-broadened exciton absorption line. The
signal was calculated for single-sided exponential pulses with an autocorrelation
width of 1.8 ps and assuming G = 5.

For delays which are much larger than the pulse width one can easily show that:

oP ~-2 j ds(1-GeosAs)|K(s)[ (6.15)
0

where K(s) is the pulse autocorrelation function. Equation 6.15 clearly shows that, due to
the biexcitonic coupling, a differential absorption signal is obtained at large delays. This
signal indeed reflects the transfer of oscillator strength from the excitonic transition to the
biexcitonic transition due to the redistribution by the pump pulse of the population in the
four-level system, as was suggested in section 6.2. It can be seen from Eq. 6.15 that
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depending on the value of G and the relative size of A and §, which defines the temporal
spread of K(s), the sign of Q% can be either positive or negative. In general, large G
values would tend to make Q% positive, while a large A would tend to make it negative.

The main experimental observations which appear in our model when inhomogeneous
broadening is introduced are the positive sign of 0¥ and frequency A/h of the
oscillations, both of which are independent of detuning. It is as if the laser was always
tuned to the excitonic transition. It is interesting to note that when the original expression,
without inhomogeneous broadening (Eq. 6.13), is used for calculating the DA signal for
zero detuning, and G is inserted (by attenuating O, which is the only term which does
not involve the biexcitonic transition), a very good fit to the experiment is obtained, and
the oscillations are deeper than they are in Fig. 6.8. The decrease of the oscillations
amplitude in Fig. 6.8 is the result of assuming an infinite broadening in the calculation of
Eq. 6.14. ‘

6.3.3. Four-wave mixing

We now apply our model to the calculation of the signal in FWM experiments in
inhomogeneously broadened systems, where two pulses with wave vectors k; and k,, and
envelopes X(7) and Y(¢), are polarized along x and y, respectively. The field emitted in the
direction 2k,—k, is polarized along y and is given by Eq. 6.9, where the third order dipole

moment is:

t t
dO(1) ~ |d,.[ d, e [dr X (1) e j A X (MY +1"=t)+ce.  (6.16)

In the calculation of the FWM signal we must consider the decay and the dephasing of
the biexciton. We describe the decay b — ¢ + o~ by a population relaxation I', while the
dephasing of the nondiagonal matrix elements (b [p‘” Io:) is described by a phase
relaxation . If we further assume that the relaxation rates for the excitonic states are much
smaller than those associated with the biexcitonic state, we get that I' does not enter d®,
while the dephasing rate y appears in Eq. 6.16 through the substitution A — A-7y.

A numerical calculation of the FWM signal with single-sided exponential pulses and

1/y =8 ps is presented in Fig. 6.9, where we plot P as function of the delay between the
two pulses. It can clearly be seen that oscillations with frequency A appear as long as there
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is an overlap between the two pulses. The overall decay of the FWM signal is governed by
biexciton dephasing rate y. Again there is a good agreement between our calculation and
the experimental data of Carmel ef al. (Fig. 6.5).

FWM signal (a.u.)
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FIG 6.9: The calculated four-wave mixing signal as a function of the time delay,
for single-sided exponential pulses with a width of 0.9 ps, for an
inhomogeneously-broadened exciton absorption line. We assumed 1/y = 8 ps.

6.3.4. Discussion of the model

The origin of the oscillations in the DA and FWM signals can be understood in terms
of the time-dependent third order susceptibility x®), defined by the following general
expression for the third order dipole moment:30

C,S)(’) = Z jdtl fd’z fdl3 03'3162(13 (” tl > ’2 ’ 13 )Eai (tl )Ea'.’ (tz )Ea3 (’3) (6 1 7)

Oj - -0

60



where the polarization o can be o, (when the beams are circularly polarized) or x,y (in
the case of linear polarizations). The nonlinear response x® is a function of the time
intervals # — ¢ (i=1,2,3), oscillating with the eigenfrequencies of the four-level system,
namely € and € — A. An additional frequency in the system is obviously @, - the laser
frequency. As a result, @ (¢) oscillates in ¢ with frequencies €, € — A, and ®,, as well as
with sums (and differences) of these. In the special case where E(¥) is a superposition of
two laser pulses with delay 7, @(¢) oscillates not only in real time but also in f,,. Since in
time-resolved optical experiments one measures slow time variations of the signal (relative
to the laser frequency), the only frequency which survives is A - the binding energy of the

biexciton.

The biexcitonic oscillations of d®(s) which we have observed in our two-pulse
experiments are thus a result of interference of the two pulses, mediated by the oscillating
susceptibility @) (7). These oscillations are different from known interference and quantum
beat phenomena. An important characterisic of these oscillations is that, in contrast with
known beating phenomena, they appear only as long as the two pulses overlap in time.

The only free parameters in our model are A and the enhancement factor
G =|d,.["/|d.|" which is used in the calculation of the DA signal. For its estimation we
refer to Ref. 63, according to which the ratio of the biexcitonic absorption (from an
already existing exciton) to the excitonic absorption in two dimensions is 0t,,/0lex ~ Ny
a2, where N,, is the sheet density of excitons and a,, is the biexciton diameter. On the
other hand, in our model we get an independent estimation a,, /o, ~ G n,, where n, is the
population of the excitonic levels 6%, assuming #,<<1 and a population of the ground
state np~1. In our model N, = n, N,, where N, ~ a,~2 is the density of four-level systems.
From these arguments it follows that G ~ a2/ a2 ~ E,, /A , where E,, is the binding
energy of the exciton. Taking A ~ 2 meV and E,, ~ 10 meV for the binding energies, we
get an estimate of G ~ 5 for the enhancement factor, as used in the calculation of the DA

signal.

6.4. Measurements in magnetic field

Figure 6.10 shows measurements of the biexcitonic DA signal in our stepped MQW
sample in a magnetic field parallel to the growth axis. Two different measurements in a
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field of 7 Tesla are shown, corresponding to two different orientations of the field -
parallel to and anti-parallel to the exciting laser beams (this is equivalent to a reversal of
the pump and probe polarizations in a fixed magnetic field). The DA signal in zero
magnetic field is shown for comparison. The data shows three main effects of the magnetic
field: one is a small change in the oscillations' period, which increases.for one orientation
of the field and decreases for the other; another effect is a "phase shift" of the oscillations,
which begin as a dip for one orientation of the field and as a peak for the other; and the
last effect is a decrease of the signal at large delays, for both field orientations. '
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FIG. 6.10: The transient differential absorption signal in the stepped MQW
sample, with oppositely-handed circular polarizations, in three magnetic fields:
0T (solid curve), and 7T in two orientations (thick curve and dotted curve).

The small changes in the period of the oscillation as function of the magnetic field are
barely discernible in Fig. 6.10. However, in our measurements we were able to tune the
laser for maximum pulsewidth, to allow an accurate measurement of the beating
frequency. A plot of the change in frequency as function of magnetic field strength is
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shown in Fig. 6.11. The data points are in very good agreement with the Zeeman splitting
of the heavy-hole exciton (the curve in the figure), as deduced from Zeeman quantum
beats data.>*
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FIG. 6.11: The change of the period of the biexcitonic oscillations relative to their period in zero
magnetic field (squares), compare with the Zeeman splitting in the stepped MQW sample. The
curve shows a calculation of the splitting, taking the magnetic field dependent g-factor to be
0.76 + 0.016 B, as estimated by Carmel ef al.54 for the same sample.

The above effects are obviously resulting from the removal of degeneracy between the
excitonic transitions due to the Zeeman energy term. To test this observation and the
validity of our model, we have introduced the Zeeman splitting © into the four-level
system model. For simplicity we have used the expression for the DA signal without
inhomogeneous broadening (this model has all the ingredients of the measured signal less

63



the dependence on detuning). Equation 6.13 now takes the form:

0(3) 0(3) 0(3) +O(3) +G~l ] 0(3)

80 =[(Bpa) + (A aBon)
00 =) _Aw_a,(A:M ) +ec)
0% = {(B,, (_M(B:,mw J))+ec)

0® ={(B. B (4u(42.) +o}

(6.18)

where we assume that the biexciton binding energy is not dependent on the magnetic field
(only slight changes of the biexcitonic binding energy are expected in the moderate
magnetic fields in which the experiment was performed). A numerical calculation of this
expression is presented in Fig. 6.12. The three curves correspond approximately to the
experimental parameters of Fig. 6.10 (we estimaté the Zeeman splitting in a field of 7
Tesla to be approximately 0.8 meV, or 0.3xA). It is remarkable that the calculation
reproduces all the features in the experiment. In particular, the opposite phase shifts for
the two field orientations are reproduced, and so is the decrease of the signal at large
delays, for both field orientations. The oscillations' period is somewhat ambiguous in the
calculated signal, but the average distance between successive peaks and dips scales with
the magnetic field similarly to the experiment. (In the experiment, tuning of the laser cavity
for maximum pulsewidth, in order to measure as many periods as possible, results in
pulses which are not transform-limited, meaning that the spectral bandwidth remains large
enough to overlap with the excitonic and biexcitonic transitions at the same time. This is
not the case in the model, which assumes perfect mode-locking of the laser. We are thus
unable to simulate the signal for these distorted pulses).
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FIG. 6.12: The calculated differential absorption signal for three values of the
magnetic field, which correspond to the measurements presented in Fig. 6.10.

6.5. Implications on nonlinear experiments and the biexciton binding energy

We have shown that the four-level model of the exciton-biexciton system explains very
well the temporal oscillations and the coupling between c* and o~ excitons which are
observed in nonlinear optical experiments in GaAs quantum well samples. An important
- test of the validity of the four-level model is the effect of a magnetic field on the DA
signal. The predictions of the theory with regard to this effect were verified
experimentally, and an excellent agreement between experiment and theory was
demonstrated. Our work thus emphasizes the importance of biexcitons in nonlinear optical
experiments in GaAs quantum wells.

The coupling of the two excitonic states through both the ground state and the

biexcitonic state gives a possible explanation to the polarization dependence of FWM
experiments in GaAs quantum wells in zero magnetic field. The model attributes the
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different relaxation rates of the FWM signals which are observed in the PP and CP cases
to the dephasing time of the exciton and biexciton, respectively. Cundiff e/ al. have
proposed an alternative explanation,® in which they attribute the CP signal to extended
excitons and the PP signal to localized excitons (their explanation implies the simultaneous
presence of localised and extended excitons of equal energies). Other groups proposed
generic couplings between the excitonic levels®3 or dephasing due to excitonic screening6
as alternative explanations. We believe that our four-level system model provides a more
consistent description of the excitonic nonlinear response.

There are plenty of data that suggest that biexcitons indeed exist in GaAs at low
temperatures. High quality GaAs quantum wells, 80-A to 300-A wide, were reported to
exhibit a biexciton-related photo-luminescence peak below the free exciton line at high
intensity excitations.57 This peak is separated by ~1 meV from the free exciton line. When
the temperature is increased to =10 K (k3T ~1 meV) the intensity of the biexcitonic peak
diminishes. Another characteristic of this peak is the low polarization of the emitted
photo-luminescence following an excitation with polarized light, as a result of the equal
probability to emit ot and o~ photons. Recent photo-luminescence measurements in
narrow quantum wells give biexciton binding energies up to 2.8 meV.68

Thus, photo-luminescence experiments on high quality GaAs quantum well samples
give biexciton binding energies in the range between 1 and 3 meV. Kleinman has made a
variational calculation of that binding energy,? and found that it is 3-4 times larger than
the corresponding quantity in the 3D case, but still obeys the rule E,, ~ 0.1 E, which was
found in the bulk case. Nevertheless, this calculation predicts a large enhancement of the
binding energy for well widths below 100-A, and for very narrow quantum wells it

approaches 2 meV.

The association of the fast oscillations in the DA and FWM experiments with the
biexciton phenomenon suggest binding energies of 2-3 meV. From the biexcitonic
oscillations in the FWM measurements of Oberhauser ef al. a binding energy of 1.75 meV
is deduced for a 116-A quantum well.62 Lovering ef al. report a lower biexciton binding
energy of 1.15 meV for a 102-A quantum well,6! but it is possible that an unexplained
second harmonic in their data should be considered, leading to a larger estimation, by a
factor of 2, of the binding energy. These values are in agreement with the afforementioned
photo-luminescence experiments, but are higher than the 1-2 meV which are predicted by
the variational calculations. It should be noted, though, that photo-luminescence
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experiments on bulk GaAs have indicated a biexcitonic binding energy of up to 0.7 meV,70
high above the 0.13 meV value which was estimated by variational calculations.67 It is
possible that localization effects give rise to a significant enhancement of the biexciton

binding energy.

Finally, biexcitonic effects must be considered when analysing the slow spin dynamics
of the excitons which were discussed in chapter 5. Our four-level system model has shown
that due to the biexcitonic coupling, a differential absorption signal is obtained at time
delays which are large compared to the pulsewidth. It follows that the instantaneous
(within the pulsewidth) rise of the o~ signal which was reported in our spin relaxation
studies represents a contribution of biexcitonic origin. Such a contribution is not included
in any of the attempts to give a comprehensive explanation to spin relaxation

measurements.

As noted in section 5.1.3, in our spin-flip studies we have observed a correlation
between the instantaneous rise of the o~ signal and a pronounced drop of that signal along
with the slow spin relaxation of the conduction band electrons: the larger the
instantaneous rise was, the larger was the drop at long delays. Another finding was that
both the rise and the drop were suppressed as the magnetic field strength or the excitation
intensity were increased (see section 5.1.3). We believe that this behavior can be
understood as resulting from the interplay between spin relaxation and biexciton pairing.
According to this interpretation, the pure biexcitonic contribution, which is responsible for
the signal at 7 = 0, must be suppressed for a probe pulse which arrives after a long delay,
when the system is not spin-polarized any more. The observed intensity and magnetic field
dependencies then suggest a relative diminishing of the biexcitonic contribution with
increasing magnetic field and excitation intensity. While the decrease of the long-delay
biexcitonic contribution at high magnetic fields is explicitly contained in our biexcitonic
" model (Fig. 6.12), the intensity dependence might be related to the low density limit for
which our model is valid. Further investigations are required to fully resolve the issue.
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7. The 2DEG in high magnetic fields

7.1. Optical properties of degenerate semiconductors

In the previous chapters we have considered the optical response in intrinsic quantum
well samples. In these semiconductor structures the Coulomb interaction between the
optically excited electron and hole pairs results in the formation of excitons. The relatively
large binding energy of these excitons implies that when the laser is tuned to the exciton
line, one may ignore the higher-energy continuum states, and treat the dynamics of the
exciton independently. As previously discussed, it is possible to describe these dynamics in
the framework of a four-level system, and in many cases even a simpler two-level model

suffices.

The relatively simple excitonic picture is substantially modified in doped
semiconductor structures, in which a degenerate electron (hole) gas is formed in the
conduction (valence) band. An obvious modification is the shift of the optical absorption
edge to higher energies, known as the Moss-Burstein shift,”! as a result of the inhibition of
transitions into filled states. One also expects that the screening of the Coulomb
interaction by free carriers would result in the absence of excitonic effects. However, it
turns out that the Coulomb interaction between the electrons and the hole in the final state
still drastically affects the optical spectra. Using many-body techniques, Mahan had
shown?® that the main effect of the sharp Fermi edge is to make the Coulomb interaction
nonlocal, and to restrict the electron's scattering. Were it not for lifetime broadening, a real
electron-hole bound state would exist. Mahan also demonstrated that the scattering of a
noninteracting electron gas by a photo-excited hole leads to a logarithmic divergence of
the absorption at the band edge. This is the well-known Fermi-edge singularity. It was
subsequently shown by Mahan and other workers’ that a similar singularity exists for an
infinite hole mass.

The Fermi-edge singularity was first investigated in the X-ray absorption and emission
of metals (in which the infinite mass approximation applies to the deep localized holes).”
Its experimental observation in doped bulk semiconductors is, however, practically
impossible because of the strong impurity scattering. The spatial separation between the

68



ionized donors and the carriers in MD structures makes possible the observation of the
Fermi-edge resonance in semiconductors. Indeed, this resonance was recently observed in
the low-temperature absorption’ and photo-luminescence?> spectra of such structures.
Ruckenstein ef al. adapted the Mahan formalism to semiconductors.”® Recent calculations
for semiconductor quantum wells?7 have treated the evolution from bound excitons to the
Fermi-edge singularity as function of the two-dimensional carrier density. It was shown
that the effect of the finite hole mass is to wash out the singularity in absorption.

The presence of a sharp Fermi edge also modifies other carrier-carrier scattering
processes, most importantly electron-electron (e-¢) scattering in n-type MD quantum
wells. In a recent FWM experiment on n-type MD quantum wells,’8 Kim ez al. have
shown a strong inhibition of e-e scattering rates near the Fermi energy. Their
measurements show that the dephasing of the induced polarization varies with excess
energy as predicted by the Fermi liquid theory for e-e scattering, i.e., the scattering times
are inversely proportional to the square of the excess energy above the Fermi level. While
hole dephasing times were claimed to be much longer than those of the electrons, the role
of the electron-hole scattering in the dephasing of the nonlinear signal was not treated in
this work. The afforementioned Fermi-edge singularity, however, implies that this

scattering mechanism must be quite important.

Various experimental and theoretical works in high magnetic fields have shown that
the many-body interactions which are manifested in transport measurements, such as the
integer and fractional quantum Hall effect, are also evident in optical experiments. Among
the many-body effects which were studied in optical experiments were the enhanced
exchange interaction,”” and resonances in photo-luminescence and inelastic light scattering
experiments which were correlated with fractional collective states.30 The clear footprint
of the Fermi surface is also evident in these measurements, and the Fermi-edge singularity
in the photo-luminescence spectra of the 2DEG has proved to be a crucial aspect of
optical studies of many-body interactions in the integer and fractional quantum Hall effect
regimes.29 These works motivated us to study the behavior of the 2DEG in the time
domain. The purpose of our research was to perform time-resolved measurements in MD
samples in high magnetic fields, and to investigate possible modifications to the relatively
simple dynamics of magneto-excitons, which we had observed in intrinsic samples and

discussed in detail in the previous chapters.
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Of particular interest to us was to extend the zero-field measurements of Kim et al.78
to the high magnetic field regime. The magnetic field changes the electronic density of
states, from the zero field continuous density of states to a discrete spectrum of
degenerate Landau levels, whose occupation varies with the magnetic field strength. Thus
the available phase spacé for scattering is modified by the magnetic field. At the same time
the change of the electronic wave functions, from plane waves to localized (gauge
dependent) functions, is reflected in changes of the scattering matrix elements. We had
expected these effects to modify the simple excess-energy dependence of e-e scattering
which Kim ez a/. had observed in their time-resolved experiment.

7.2. FWM on a 2DEG in high magnetic field

We have studied two MD samples, consisting of 30 periods of 100 A GaAs wells
between 500 A Aly;Gay ;As Barriers, the center 100 A of which were doped with silicon.
The carrier concentrations in the wells at 4 K, 1.8x10!! cm-2 in one sample and 1.0x10!!
cm2 in the other, were deduced from V.d.P. measurements, which also gave a low
temperature mobility of 4-5x104 for both samples (implying a Drude relaxation time of = 2
psec). The excitation power densities were kept below ~ 1010 cm2, or about 5% of the

electron densities in the wells.

Fig. 7.1 shows the evolution of the absorption spectrum in the two samples with
increasing magnetic field. The gradual change from a continuous two dimensional density
of states to a discrete Landau level spectrum is clearly observed. At low magnetic fields a
step like absorption spectrum with two peaks, associated with the heavy and light hole
transitions, is observed. As the magnetic field is increased the higher Landau Levels are
emptied from electrons and absorption to these levels becomes possible. Consequently, we
observe the appearance of a new peak at the absorption edge each time the Fermi level
shifts to a lower Landau level. It can be seen that at the high magnetic field regime, above
5 Tesla, the electrons in both samples reside at the lowest Landau level and the absorption
spectrum consists of broad but well separated peaks.!4
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FIG. 7.1: Absorption spectra for increasing magnetic field, for the low (a) and high (b) density
MD samples (1.0x1011 em2 and 1.8x1011 cm™2, respectively.

7.2.1. Dephasing rates

The FWM signal from both samples shows an identical behavior, up to a scaling with
the carrier concentration of the magnetic field dependencies. The peak intensity at 7 Tesla
is weaker by about 3 orders of magnitude than that measured in intrinsic samples. This
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reflects the absence of excitonic effects in the MD samples due to screening of the
electron-hole Coulomb interaction by the Fermi sea.
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FIG 7.2: The temporal evolution of the FWM signal in the MD samples: (a) close to the Fermi
energy at OT and in the first Landau level at 6.5T (high density sample), and (b) at two
excitations energies within the second Landau level at 6T (low density sample).

Figure 7.2(a) compares the time dependence of the FWM signal, which is measured
close to the Fermi energy at B = 0, to that measured at a high magnetic field. It can be
seen that both the rise and the fall times of the signals are different. The B = 0 signal is
slightly asymmetric but roughly follows the autocorrelation of the laser pulse, peaking at
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zero time delay. Such a behavior indicates a very fast dephasing time, comparable with the
pulse autocorrelation width (0.7 ps). This is in agreement with Ref. 78, where dephasing
times of less than 1 ps were measured close to the Fermi energy at similar excitation
densities. The high field signal rises more slowly, with a rise time which is the pulse
autocorrelation width, and decays exponentially with a time constant of 1.5 ps. The same
temporal behavior is measured throughout the lowest Landau level. Clearly, there is a
drastic change in the e-e scattering rate as well as in its dependence on excess energy

above the Fermi level.

The slow dephasing time observed at the first Landau level implies that e-e scattering
rate is lower in high magnetic fields than at B = 0. Our measurements can only set an
upper limit for the e-e scattering rate. It is possible that impurity scattering is the limiting
process which determines the dephasing time. In fact, the measured dephasing time of 1.5
ps is very similar to the Drude scattering time determined from the mobility measurements.

In Fig. 7.2(b) we show two temporal scans taken at different spectral positions at the
second Landau level. Two temporal components can be identified in both scans: a fast
component, which follows the pulse autocorrelation, and a s/low component, which has the
same decay time (1.5 ps) as the signal in the first Landau level. The relative weights of the
two components depend on the polarizations of the exciting pulses and on the spectral
position, but they both peak approximately at the center of the second Landau level and
gradually fall at the high and low energy sides. The FWM signal at the second Landau
level is much weaker than that measured at the first Landau level.

7.2.2. Enhancement at the Fermi edge

* We now turn to the spectral behavior of the FWM signal. Figure 7.3(a) illustrates the
evolution of the FWM spectrum as the magnetic field is increased. These spectra were
measured at zero time delay with cross polarized exciting pulses. Similar results were
obtained at later time delays and with exciting pulses with parallel polarizations. It can be
seen that the FWM spectra are dominated by a single peak, which at 3 Tesla shifts to
lower energy and significantly increases in intensity. This behavior is markedly different
from that of the linear absorption, where multiple peaks of comparable height are
observed. The substantial spectral changes in the FWM signal which occur above 3 Tesla
are correlated with the jump of the Fermi level from the second to first Landau level.
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TWM Intensity

FIG 7.3: FWM spectra for increasing magnetic field for the low density sample, plotted on (a)

linear and (b) logarithmic scales.

Replotting the FWM spectra on a logarithmic scale [(Fig. 7.3(b)] it is possible to
identify the signal from the second Landau level, which is weaker by more than two orders
of magnitude than the signal from the first Landau level in high magnetic fields. The peak
which dominates the spectra at low fields evolves into the second Landau level transition,
but decreasing its strength with increasing magnetic field. This anomalous behavior is
demonstrated in Fig. 7.4(a), where we show the FWM signal at the second Landau level
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as function of magnetic field, in the two samples. In these measurements the laser was
tuned to follow the second Landau level peak energy, as determined from the absorption
spectra, and the magnetic field was ramped. A sharp decrease in the signal is observed in
both samples at the magnetic field at which the Fermi level drops into the first Landau
level. (The increase of the signal between 3 Tesla to 4 Tesla in the high-density sample
reflects the emptying of the second Landau level.)
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FIG. 7.4. (a) FWM intensity at the peak of the second Landau level as a function of magnetic

field at zero time delay. The solid and dashed lines describe the low and high density samples,

respectively. (b) FWM intensity as a function of temperature for the low density sample at zero
time delay and 7T, and a fit to an exponential decay.
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It is evident from our results that the proximity of the Fermi energy to the excitation
energy strongly affects the observed FWM signal in the MD samples. A strong
dependence of the FWM intensity on the excess energy above the Fermi level was also
observed in zero field.”8 In that case it was attributed to the decrease of dephasing time as
function of excess energy (a short dephasing time leads to a weak. integrated signal).
However, tuning the laser across the first Landau level did not produce any noticeable
change in the dephasing time. The strong enhancement at the Fermi level suggests that the
observed signal is related to a singularity at the Fermi level. An insight into the origin of
this singularity is obtained by examining the témperature dependence of the signal. Figure
7.4(b) shows the measured FWM signal at the first Landau level in a field of 7 Tesla as a
function of temperature. The rapid decrease of the signal can be very well fitted to an
exponential decay, with a decay constant of 17 K or = 1.4 meV. The dephasing time
changes much more slowly as a function of temperature, and no significant change is
observed up to 30 K. Therefore, the fast drop of the signal with temperature can not be
attributed to a fast dephasing. On the other hand, these temperature and energy scales are
characteristic of the decay of the Fermi-edge singularity in absorption and photo-
luminescence measurements.’ We thus arrive at the conclusion that the measured signal
in our FWM experiments is the nonlinear response of the Fermi-edge singularity.

7.3. Electron-electron scattering in a magnetic field

In order to understand the effect of the high magnetic field on the interaction between
the photo-excited carriers and the 2DEG in the sample, we have carried out a formal study
of the problem, concentrating on its dynamical aspect. We analyse the e-e scattering of the
optically-excited electrons with the conduction band electrons and, following Kim et al.,78
neglect the effect of holes.

We are not aware of any detailed calculation of e-e scattering rate in two dimensional
structures in a magnetic field. However, some simple considerations can provide an
insight into the origin of the observed behavior. Generally, scattering rates depend on the
scattering matrix elements and on the density of final states. In the following we will show
that at high magnetic fields the matrix element for inter-Landau level e-e scattering, in
which a test electron in the second Landau level is scattered by the Fermi sea into the first
Landau level (and an electron from the Fermi sea is scattered into the second Landau
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level), is suppressed. Therefore, the dominant e-e scattering mechanism at high magnetic
field is intra-Landau level processes, the rate of which increases with magnetic field.

The e-e scattering rate is calculated using the Fermi golden rule. For this approach to
be valid one must assume that the degeneracy of the Landau levels is removed by some
kind of perturbation. Otherwise degenerate perturbation theory must be applied. We
therefore assume that the Landau levels are inhomogeneously broadened due to disorder.
We first calculate the scattering matrix elements for the homogeneously (lifetime)
broadened case, and then consider the modifications which result from the inhomogeneous

broadening.

7.3.1. The degenerate problem

Consider an electron in the lowest conduction subband of a heterostructure in a
magnetic field.8! In the Landau gauge, the eigenstates of that electron are characterized by
two quantum numbers: the Landau quantum number / and the wavevector component k,.
The transition rate of two electrons from the states /&, and Lk, to the states k! and L'k}

as a result of e-e scattering can be written in the following form:

le = '2_”,}\41,241'.2' r 5(81 TE & & )f: (1 _fr )(1 "fz) (7.1)

2002
~ h

where we have used the abbreviated notation: [k =1, [k/ = 1', etc.. M|, is the

transition matrix element from the state |1,2) to the state |1‘,2'). This matrix element is

defined as:

M., 2), (7.2)

rx = <1a2|Uw("1"'z)

is the Coulomb interaction potential for two electrons and

where U(r,,n,) = €* /x|, - 1,
K is the dielectric constant. U* depends only on the difference r=r —r, and may be
written in terms of its Fourier components U,":
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In the calculation the Fourier components of the screened Coulomb interaction are
inserted into Eq. 7.3, which is in turn used in the calculation of the matrix elements defined
by Eq. 7.2. Care should be taken with regard to screening, since in quantum wells the
Coulomb potential is three-dimensional, but the 2DEG screens only in two dimensions.32
The details of the calculation are given in Appendix B. It turns out that.for both 3d and 2d
screening the dependence of the e-e scattering rates on the magnetic field-strength turn out
to be the same. Furthermore, in our samples the screening length is comparable to the
width of the quantum well, so the results for the two screening models also turn out to be
comparable. Thus in the following only 3d screening is discussed. We get the scatfering
rate for a given set of Landau indices 1,l,— Il; in the degenerate problem:

1 Y L )86+ 5 -6 — ) (- L)1 1,) (T4

z-—?-
Tl K

where d is the width of the quantum well, x is the dielectric constant of the intrinsic
semiconductor, and « is defined bya=a;}, / 2, where a,, is the magnetic length and 1 is
the screening length. The dimensionless parameter ¢ is inversely proportional to the
magnetic field strength, and the dimensionless function F is given in terms of exponential
integrals £ (a).83 The function F is plotted in Fig. 7.5 for three different cases: the first,
denoted by F;, describes the process in which a photo-excited test electron is scattered
within the second Landau level by the 2DEG in the partially-filled first Landau level: F,=
F(2,1,2,1,0). The second case, denoted by F,, again involves the scattering of a photo-
excited test electron in the second Landau level by the 2DEG in the first Landau level, but
this time the test electron is scattered to the first Landau level, while an electron from the
2DEGQG is scattered into the second Landau level to conserve energy: [,=(2,1,1,2,a). By F;
we denote the process in which the test electron is photo-excited into the first , partially-
filled Landau level: F3=F(1,1,1,1,a). It can be seen from Fig. 7.5 that in the high magnetic
field limit F; and°F3 increase like 1/ct, while F, decreases slightly. In a field of 7 Tesla,
where a;, ~100A, o is expected to be of order unity. In this field regime the matrix

elements F; of all three processes are also of order unity.

Although Eq. 7.4 provides insight to the dependence of the various e-e scattering
matrix elements on the magnetic field strength, it is impossible to use it for the calculation
of the scattering rates. This is because the delta function in Eq. 7.4 diverges for the
degenerate problem. As already noted, this is in turn a consequence of using the Fermi
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golden rule instead of degenerate perturbation theory. In the following section we discuss
how inhomogeneous broadening due to a disorder potential modifies the above
calculation, leading to a suppression of the divergence. Such broadening is always present
in quantum well samples, including our samples (see Fig. 7.1), and was reported!5 and
discussed!4 in the literature.

FIG. 7.5: The functions Fi(x), describing the different inter-level and intra-level
electron-electron scattering matrix elements in the first and second Landau
levels. The three different processes are defined in the text.

7.3.2. Disorder and inhomogeneous broadening

In the calculation of the e-e scattering rates for the degenerate case we assumed an
ideal sample with no disorder. Therefore, in the calculation of the scattering matrix
elements (Eq. B.7 in Appendix B) we could simply sum over all possible degenerate initial
and final states. When disorder is introduced the degeneracy is removed and care should
be taken in summing over the scattering states. Such a procedure is complicated for an
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arbitrary disorder potential. For simplicity we consider a special type of disorder potential,
in which the energy € is dependent on the coordinate of the guiding center. In the Landau
gauge, in which we formulated our problem (Appendix B), this means that the disorder
potential is dependent on only one coordinate, the y coordinate for which a, is defined. (In
the general case a different gauge should be used ; We believe that the result would remain

the same, up to a geometrical factor of order unity).

Let us characterize the disorder potential by its correlation length A, and consider the
scattering process depicted in Fig. 7.6. The magnetic length a, defines a length scale
within which the initial and final states of each particle should reside. A defines the length
scale over which two initial states can interact. Moreover, in a scattering event both
energy and momentum (i.e. the mean y coordinate in the Landau gauge) must be
conserved. Clearly, the fluctuations of the disorder potential inhibits the scattering by
those states for which energy and momentum would not be both conserved. This
effectively reduces the phase space for scattering and the scattering rate.

| { FIG. 7.6: Length scales
for e-e scattering in

7\‘ presence of a disorder
potential: the correlation

length A, the magnetic
length a,, and the
screening length A.

One can define several regimes depending on the relative magnitude of @, 4 and A. ay
is dependent only on the magnetic field. It is large for low fields and small in the high field
limit. The magnitude of A is less clear: in the ideal 2d case it is independent of the electron
sheet density, while in three dimensions it decreases as the density of electrons is
increased. A is sample-dependent. In the following we discuss two of these regimes: a
short range disorder potential and a long range disorder potential.
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FIG. 7.7: A short range disorder potential.
Electron 3 can only gain energy, so it cannot
scatter electron 1.

a. short range disorder potential:

A short range disorder potential is
defined . by A<<ay,A , and is
schematically shown in Fig. 7.7.
Conservation of energy and momentum
implies that an electron in a state 1)
can be scattered to the state |1’) by the
electron in state |2) (which is scattered
to state |2')), but cannot be scattered
by the electron in state |3). For a short
range potential one can take the density
of states g(&) (the inhomogeneous line
shape) to represent the probability that

any given change of nomentum would be accompanied by a corresponding change of
energy. The summation in Eq. B.7 (Appendix B) should therefore be modified to a triple
integration over energy of such probabilities, multiplied by the delta-function representing
energy conservation. For a short range potential the probabilities are independent, and one
should therefore integrate over g(s, )g(e,.)g(ez.). In formal writing this "statistical
approach" gives the following averaging expression:

-fZ(l_ji’)(l_.fZ')a(gl +EH & - 32') -

- J‘“‘dgz de, dey g(e,)g(e,)g(e:) /(&) x
X [l_f(gl')][l_f(gz')]5(3| +&, — & —82,) =

=de52 de, g(&,)8(s,.)g(s + &, _52').[(32) X
X [l—f(s, +&, —82.)][1—f(6‘2.)]

(1.5)
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We now define A as the excess energy of the photo-excited electron. We differentiate
between two different cases: When the test electron is excited into the first broadened
Landau level (F; in Eq. 7.4) A is defined relative to the Fermi energy ; When the test
electron is excited into the second broadened Landau level (¥, and F, in Eq. 7.4) A is
defined relative to the bottom of this level. It can be shown that for a small A and zero
temperature this approach leads to a factor A%/ I¥3 in the expression for the scattering rate,
where W is the inhomogeneous width of the Landau levels. Such a quadratic dependence
on excess energy is similar to the behavior in zero magnetic field. ’

b. long range disorder potential.

In the high magnetic field regime the long range disorder approximation, defined by
A >> A>a, and depicted in Fig. 7.8, is more appropriate. Since the shift of the center of
the electron orbit in the scattering event is limited by ay, the energy transfer is restricted
by Ae < a, V(1) = airWIA = W . Tt follows that for a large excess energy A the available
phase space for scattering is determined by # and not by A. For A > W the density of
states factor in strong magnetic field is W2 W3 = a, ,'(W . Az). Consequently, the
scattering rate and its energy dependence are suppressed.

A FIG. 7.8: Along
i | range disorder

potential - the

K change of energy
in a scattering

event is limited to
W , determined
by ay. Wis the
width of the
a u broadened level.
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The final expression for e-e scattering rate in high magnetic field, in the presence of a
long-range disorder potential is (assuming 3d screening):

1
7}~ fd’ =fila ) ’ ' 7.0

where the index j = 1,2,3 was defined above for the three scattering processes which we
consider. For a 100A -wide quantum well the pre-factor 4e* / (fz dzlfz) equals 1.2 erg/sec,
or approximately 7.5x1014 meV/sec. Taking F;~ 1, W~ 5 meV and ay = IOOA the 1.5 ps
phase relaxation time which was measured in our experiments is consistent with a
correlation length A = 14 x a, = 1400A. We can use the mobility measurements on our
samples to get an independent estimate for the length scale of the potential fluctuations.
Taking the Fermi velocity to be ~ 107 cm/sec and a 2 ps Drude relaxation time, we get a
mean free path of 20004, in reasonable agreement with the above estimate.

7.4. Discussion

To explain the temporal and spectral aspects of our FWM measurements on the two
MD samples, we have calculated the e-e scattering rates in high magnetic fields, and found
that they exhibit important changes relative to the e-e scattering in zero magnetic field.
Our calculation suggests that the relatively low, energy independent dephasing rates which
we measure in the first Landau level can be explained by these changes. The calculation
also predict a suppression of the e-e scattering rates at the second Landau level, but in this
case the dephasing rates which we measure in the experiment are very close to the laser
pulse width, preventing a reliable quantitative analysis.

The analysis of our data in terms of e-e scattering exclusively is clearly incomplete. It
is important to realize that we neglected electron-hole scattering completely. This
scattering mechanism in particular may explain the spectral dependence of the signal
intensity, since it is known to bring about the Fermi-edge singularity. Undoubtfully there is
a need for a more complete theory, that will include these effects. An initial step in this
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direction was done by Hawrylak,8% who has applied the theory of the Fermi-edge
singularity to give an alternative explanation to the experimental results of Kim et al.. To
the best of our knowledge there is no comparable calculation for high magnetic fields. It
was pointed out by Hawrylak that the Fermi-edge singularity in linear absorption is
expected to disappear in the limit of discrete Landau level,85 but the effects of Landau

level broadening were not investigated.

Assuming that the continuous density of states in the broadened level does give rise to
a Fermi-edge singularity, we believe that in the nonlinear signal it would be more
pronounced than in linear absorption. This is borne out of the following argument: one can
attempt to assign a phenomenological transition dipole moment d which characterizes the
transition from the valence band to the partially filled conduction band ; In this
phenomenological approach the absorption would be proportional to | d |2 and the FWM
signal would be proportional to | 4 |8, and it is obvious that a much stronger enhancement
is expected in the latter case.

It is surprising to note the apparent lack of any contribution to the FWM signal from
light hole related transitions. This absence of light hole FWM signal is in contrast to their
appearance in the absorption spectra (Fig. 7.1). A possible explanation for the absence of
the light hole signal could be the strong dependence of the Fermi-edge singularity on the
hole mass: the lighter the hole mass, the weaker is the enhancement.”’

The experimental results leaves some puzzling questions, especially with regard to the
polarization dependence of the signal. The behavior described above is generally true for
both the parallel and crossed polarizations cases. We find, however, different ratios of the
parallel polarizations to the crossed polarizations signals (CP/PP) at the first and second
Landau levels. While in the first Landau level this ratio is approximately unity, in the
second Landau level the parallel polarizations signal is much strongér. Although the
polarization dependence of the FWM signal in the first Landau level is apparently similar
to that of a four-level system with no biexcitonic coupling, there is no trace of the Zeeman
quantum beats which dominate the high magnetic field FWM signal in intrinsic samples. It
is possible that a large spin splitting due to exchange?® effectively transforms the doped
sample into a two-level system close to a filling factor of unity. It is equally possible that
the many-body interactions result in a fundamental change of the selection rules, and of the
simplified two-level model which generally applies in intrinsic quantum wells.
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A more rigorous theory is clearly required to fully explain the experimental results, as
are experiments with circular polarizations and an extension of the experimental work to
higher quality single quantum well samples. A detailed study of the gradual change from
an excitonic behavior to a Fermi-edge singularity, as function of carrier density, is also

required.
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8. Summary

In this research work we have implemented time-resolved spectroscopy in a study of
the time-dependent optical response of GaAs heterostructures. Our experimental results
demonstrate the power of time resolved spectroscopy as a tool in the research of
dynamical processes and many-body interactions in solid state, especially in the high
magnetic field regime. Apart from the capability to measure directly scattering processes,
this coherent technique allows the measurement of minute energy splittings, as
demonstrated in the various quantum beating phenomena which we have observed. As we
have shown for the case of the biexcitonic interaction and in our experiments on
modulation-doped samples, the nonlinear nature of this technique makes it very sensitive

to interactions which are beyond the single particle theory.

Through the study of the time-dependent optical response we have proposed various
modifications to the simple two-level system model which is generally used in the
interpretation of optical experiments in GaAs heterostructures. The application of a
magnetic field has allowed us to separate the two degenerate two-level systems. Following
the study of spin relaxation - the long term scattering between the four levels, we were
able to identify a biexcitonic coupling between the spin-polarized systems, and to propose
it as an explanation to the anomalous polarization dependence of FWM measurements in
zero magnetic field. Finally, we have studied how the interaction with the two-dimensional
electron gas in doped samples modifies that behavior. We have shown that many-body
interactions significantly modify the optical response of modulation-doped samples in the
high magnetic field regime. A further charactrerization is still needed, and this may
eventually lead to a better understanding of the many-body interactions in such systems.
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Appendix A: Calculation of the third order dipole moment

In this section we bring the standard density matrix formalism for the calculation of the
time-dependent dipole moment [1]. This formalism is most appropriate for short-pulse
experiments, and is well-known in the analysis of two-level systems. In this work we have
applied it to the calculation of the DA and FWM signals in the four-level exciton-biexciton
system. This procedure is inevitable if the response of the system is to be explained in
detail for overlapping pulses. In simpler cases simpler approaches can be used, such as the
coupled Bloch equations [2].

Consider p(¢), the density matrix describing the measured system. We suppose that in

the remote past, ¢ = —0, all perturbations vanish and the system is at its ground state, i.e.
H'(—w) =0 and p(-o)=p°. The subsequent development of p(r) in the presence of the

electromagnetic field is governed by the Liouville equation of motion:

dp(1)/dr = (Yin)[H(1),p(0]-{dp/di}, , (A1)
where H(t)=H,(1)+ H'(1), H'(¢) being the off-diagonal interaction between the electric

dipole and the radiation field, and the last term has been introduced to account
phenomenologically for the relaxation of the system. Equation A.1 can be solved most
conveniently by transforming to the interaction representation. In this representation we
denote all the physical quantities with the subscript 7, and Eq. A.1 has the form:

dp () de = (Vin) H}(1),p, ()1~ {dp, ldt},, . (A2)

The solution can be obtained by expressing p(f) in the form of a perturbation series
[power series in H'(¢)]:

p(0)=p"0)+5"(0)+ a7 +47(1) +--- (A3)

and then integrating by iteration. Substituting g, (¢) in Eq. A.2 and equating terms of the
same power in H'(¢) one obtains the chain of equations:

dg™ (t) dt =(1in) H!(0),5"" () -{dp}"’ dt}R , (A.4)

which can be solved by step-by-step integration:

t 4 by
ﬁ(n)(t)'—'(l ih)"-[dl,jdlz---fdf" Hll(tl)’ Hll(tz)a H;(’,:),Pw) IR (A-S)
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Once the density matrix is known, the mean value of the dipole moment operator is

calculated from:

(dy=Tr{pd}=Tr{pd,} . (A.6)

When the dipole moment is calculated in this way, all the optical frequencies cancel
out, and only the sum of the slowly varying pulse envelopes A(7)+ B(f) remain from
H'(f). As already mentioned above, only the third ofder dipole moment appears in the DA
and FWM experiments. The expression for it would thus consist of terms cubic in A(?),
B(#) and their complex conjugates. In calculating the DA signal only the terms which have
momentum along the direction of the probe are taken, provided that they are dependent on
both the pump and probe envelopes (other terms are filtered out by the chopper and lock-
in amplifier). In the FWM experiment only the terms which have momentum along the
direction 2k,-k, or 2k,-k, are taken.

[1] Christos Flytzanis, Theory of Nonlinear Optical Susceptibilities, in Quantum
Electronics, Vol. I (Nonlinear Optics, Part A), ed. H. Rabin and C.L. Tang,
Academic Press (1975).

[2] L. Allen and J.H. Eberly, Optical Resonance and Tivo Level Atoms, Wiley, New York
(1975).
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Appendix B:  e-e scattering in a magnetic field

In the calculation of the Coulomb interaction we take account of the screening by the
electron gas. In a quantum well the Coulomb potential is three-dimensional, but the 2DEG
screens only in two dimensions [1]. However, in order to simplify the calculation we
consider only two limiting cases: three-dimensional Thomas-Fermi screening, which is
appropriate for wide quantum wells, and an ideal two-dimensional case. In both cases the
dependence on magnetic field strength turn out to be the same.

B.1 Three-dimensional screening

We assume that the screening length is independent of the magnetic field strength. For
three-dimensional screening the Fourier components U ® is:

up=dr 2 (B.1)
K l1+q° X

Rewriting the Fourier decomposition as a sum, the square of the matrix element can be
expressed in terms of single-particle matrix elements in the form:

2 1 ec 1| iqr -; igr)1\¥ /A 1] ,-igr ’ -,',-. ¥
Mo = 5 DU RN Y. @)
s

In the Landau gauge the wave functions are:

)= 720, ()2(2),

o0 el 252 o 122)

H ay

(B.3)

where y, = -ajk,, a, is the magnetic length a,, = (fic/ eH)*, H, is a Hermite polinomial,
and y(z) is the envelope function for the first quantum well subband.
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Substituting these explicit expressions, it can be shown [2] that the single-particle
matrix elements in Eq. B.2 have the form:

eiqr

(l'leiqr“) = (Z(Z) Z(-'-' )> 5[‘.‘_\-,k|x+q\- Oy (‘]J.) X

X expl:—i%(l -1 +%ia,2,qy(kx + k;)]

(B.4)

where ¢, is the magnitude of the component ¢ perpendicular to H, and @, is the angle it
makes with the x-axis. The functions O, are expressed in terms of the Laguerre

polynomials L}'; for I 2 /'

1’!%-—“ AAf pi-1' ~2 a9 1 2 2
Quf(ql)=(7,-) eFERILI(R), ¥ =oadt, (B.5)

whereas for / </’ the symmetry relation 0, = (~1)"""Q,, can be used.

The scattering matrix element can now be written in the form:

'M,z—w.z'

2 1 ceyyee ' ' 2 ,
= E;'Z U, Uq’ *QI,I,'(([J_ ) Q1,1,' ((IJ. ) lelé ((IL ) Qllli ((/.L )l'f((].» )I I;(qz )]2 X
9.9

x O(k,q.q4') 6,

okt gy 6"(\:-":.»:*‘1,'\- 5"&\'-";\"“1,; kivkae—q

, (B.6)

where we have denoted (x(z)|e"|x(z)) by &q.), and where © is a phase factor (see Eq.
B.4). When calculating the scattering rate for a given set of Landau indices 11~ LI} in

_the degenerate problem, the energy is independent of &, so one can simply sum-up over
k., ki, and k;.. Summation over k_ brings out a factor 2/ (27raf,), while @ vanishes

2x2

(averages at zero) unless ¢, =¢; and g, =¢;. k. and k;, are uniquely determined by
k,

Ix>

k,.,qand q' (equivalent to momentum conservation, where ¢ and ¢’ define the
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momentum transfer). We get:

ZIM 12512 I 2 L" Z Z U”U;? *Ql,l; (‘IJ. )Q/,l,'((li )Q1,15 (‘11 )ngg (‘Il ) x
Kyekin ks
X lf((]z lf(qz Krdye+d, 5lzx dap+q, 6:1‘ Ay Y4,

I ZZZ q1+4; qnq ~'x’n(ql ”z (11 l§(1 l ‘5((12

2”“” 9 49 qz

= (B.7)

Replacing the sums with integrals, and substituting Eq. B.1 and Eq. B.7 into Eq. 7.1, we
get the scattering rate for a given set of Landau indices 11,— 1/} in the degenerate

problem:

1
T

27 (4n)°¢* 1 .
=— > . - d.. d ] a,(: x
ity N & (2 ﬂ)sa’-,.'. ‘hj q- f -

2 . 2
(1+ 2 + Zq2) (142 + 2q7

X ]é(q,)zlé‘(q_!)lz 5(31 t& - & "’éz') A1 —fy)(l ".f;)

) QZI,’(‘[.L)QZIQ((]_L) X (B.8)

Let us now take the limit of a wide quantum well. For ¢,,q! >>d™', where d is the
quantum well width, é(q__) and é(qz') are falling to zero. Assuming that d >> A (i.e. the
quantum well width is much larger than the screening length), we may neglect ¢, and ¢’ in
the denominator of the integrand, and replace the integration over ¢, and ¢! with a factor
of the order (277/d)’. In fact it can be shown that this approximation is good for d > 4.

This approximation leads to the following expression fot the scattering rate:

1 F(l LI 1, @) 8(s + ¢, ~&-&)L0-4)1-£) ®B9)

2 el
T lon 7 d

where the parameter @ =aj}, / A’ is inversely proportional to the magnetic field strength,
and the dimensionless function F is given in terms of exponential integrals En(a) [3]. The
behavior of the functions F(I,,lz,l{,lz',a) as function of the magnetic field is discussed in

the text (chapter 7).
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B.2 Ideal two-dimensional screening

In the ideal two-dimensional case the calculation is repeated along the same lines, but
this time the Fourier components U;® of the two-dimensional screening is:

w 27 A
e K 1+Aq

(B.10)

Inserting Eq. B.10 instead of Eq. A.1, we get an expression which is similar to Eq.
B.9: & in the pre-factor is replaced by2, and the dimensionless functions F(1,1,1,1, @)

are replaced by different ones F(/,4,/,/,). The functions F(l,4,/,/,a) behave
similarly to the respective Fl (1,,12,1,’, l, @) as function of the magnetic field. Furthermore, in
our samples the screening length is comparable to the width of the quantum well, so the
results for the two screening models are also comparable. In chapter 7 only the 3d case is
discussed in detail.

[1] T. Ando, A.B. Fowler and F. Stern, Electronic properties of two-dimensional
systems, Rev. Mod. Phys. 54, 437 (1982).

[2] V.F. Gantmacher and Y.B. Levinson, Carrier scattering in metals and
semiconductors, North-Holland (1987).

[3] M. Abramowitz, Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, ed. M. Abramowitz and I.A. Stegun, Dover (1965), p. 228.
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JPIVIIPIAN NIV XN NDNI NPT YONRND MY TPIRNI™RON NANNN
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DY IVUR 280 DY MNON
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