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Abstract

In this thesis we investigate carriers dynamics in GaAs/AlGaAs superlattices subjected
to external fields that directly affect the inter-well tunneling: electric fields normal to the
superlattice layers and magnetic fields parallel to them. We apply time resolved optical
techniques, such as differential absorption and four wave mixing, together with
conventional continuous wave techniques, such as transmission and photo-current

spectroscony.

Starting with the investigation of the coupling between tunneling and relaxation, we
study the decay of electrons from a symmetric coupled quantum wells system to a
continuum of states via a potential barrier. We demonstrate that at the limit of a thin
barrier the decay rate decreases with decreasing barrier thickness and the splitting of the
electron energy levels disappears. Next we study the electron transport in superlattices
subjected to normal electric fields with an emphasize on the Stark ladder regime. We
find that the electron motion across the superlattice is governed by a competition between
two processes: the destruction of the mini-band and tunneling into a higher mini-band.
When a Stark ladder is optically observed, the mobility of electrons in a direction normal
to the layers is reduced, as we gradually increase the applied fields. This marks the
electron localization and the destruction of the mini-band by the electric field. At higher
fields, when Stark localization is complete, tunneling into higher mini-band dominates

and the electron velocity increases with field.

A large part of this work is devoted to the investigation of optical properties of narrow
band superlattices. These structures are characterized by a mini-band width of the order
of the exciton binding energy. We observe a modified Stark ladder, with both the
negative and positive order transitions (inter-well excitons) appearing above the zero
order one (intra-well exciton). We find field dependent temporal oscillations in the four
wave mixing signal and show that they results from exciton quantum beats. Application
of a magnetic field parallel to the layers of this structure reveals a phenomenon that its
observation was eluded in superlattices so far: Fano interference between an exciton level
located in one well and a continuum of states located in an adjacent one. We demonstrate
how by varying the strength of the magnetic field we are able to tune the energy of a
spatially indirect exciton resonance relative to a continuum edge, hence vary the coupling

between the two. We measure the transmission spectra and the four wave mixing decay



patterns and show that both are substantially modified as the exciton crosses the

continuum edge.
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Symbols and Abbreviations

1D - One dimensional

2D - Two dimensional.

3D - Three dimensional.

A(r) - Vector potential.

B - Magnetic field.

c - Speed of Light.

C - Capacitance per unit area.
CQWs- Coupled quantum wells.
d - Superlattice period.

D - Diffusion coefficient.

D - Excitation operator.

DA - Differential absorption.

e - Electron charge.

eV - Electron Velt.

E, - Energy of the n-th level of a quantum well.

a

E,. -Indirect exciton energy.

oXC

Eb(") - Exciton binding energy with an electron and a hole wave functions centered v
periods away from each other.

f{E)- Energy shift due to Fano interference.

F - Electric field.

fs - Femtosecond.

FWM- Four wave mixing.

h, i - Planck's constant.

H - Hamiltonian.

J;(x) - Bessel function of order .

k, k, ,k,- Electron momentum: total, normal, and parallel to layers, respectively.
K  -Kelvin.

m" - Effective mass.

m, - Electron rest mass.



meV - Mili-electron Volt.

p - Momentum operator.

P - Principal value of an integral.
ps - Picosecond.

PL - Photo-luminescence.

R - Resistance per square.

R, - Rydberg energy.

S, S, - Area of sample and cross section of impinging beam, respectively.

{ - time.
T - First moment of the decay rate.
7, - Phase relaxation rate.

u(r) - Periodic part of a Bloch function at the center of the Brillouin zone.

v - Tunneling operator.
|4 - Volt.
¥V - Matrix element for tunneling.

V(r) - Potential energy.

I/:_(r) - Local screening potential.

V., - Energy dependent coupling term between a discrete state and a continuwm state.
W - Watt.

z, - Guiding center position of electron in a magnetic field.

o - Absorption coefficient.

I, - Decay rate.

) - Energy splitting between two degenerate energy levels.
A - Mini-band width.
A

o - Level shift.
A - Energy mismatch between two levels.
g, - Energy level in a system composed of several wells.
€. - Optical field amplitude.

(V)HH - Stark ladder state of index v, The subscript stands for excitation from the heavy
hole and light hole respectively

A - Polarization vector.



A - Modulus of a transfer integral between adjacent wells.

€ - Energy difference between indirect exciton and direct continuum edge.
p, - Maximal value for a density of states in a single mini-band superlattice.
p(e) - Energy dependent density of states.

T, - Period of Bloch oscillation.

T - Voltage diffusion characteristic time.

1, - Time delay between light pulses.

T, - Scattering time.

- Tunneling time.

T - Traversal time across a superlattice.

- Oscillation frequency of a FWM signal.

- Cyclotron energy.

- Localization length.



1. Introduction

1.1 Superlattices

Superlattices are periodic structures composed of alternating layers of low and high
gap materials. The high gap materials create potential barriers that confine the electrons
motion to be within the planes of the low gap material layers. This confinement results in
a modulation of the potential along the direction normal to the layers, where each layer of
a low gap material constitute a potential well. These structures are referred to as
superlattices if the separating barriers are made low and narrow enough to enable
tunneling between adjacent wells. The quantum coupling then results in a formation of

mini-bands and mini-gaps in the energy spectrum.!

Superlattices are, therefore, a generalized realization of the periodic Kromg Penney
potential.2  Their appeal stems from their physical measures.> While conventional
crystals have band widths in the range of a few electron Volts and a lattice period of a few
angstroms, in superlattices the corresponding parameters can be tailored to be a few tens
of mili-electron Volts and a few nanometers. Moderate electric fields of 10° - 10° V/iem
are then strong enough to produce a potential drop per period of the order of a mini-band
width in typical superlattices. In bulk materials the corresponding value is larger than 10
V/em. This field corresponds to a potential drop of ~0.3 Volis over typical inter-atomic

distances of 3 A, and can modify the atomic bonds. Similar considerations hold for the

application of magnetic fields. For example, a 10 Tesla field corresponds to magnetic

length of 80 A . While in bulk material this length covers many unit cells, in superlattices

it can cover one period or even less .

A tight binding analysis of a superlattice composed of 2N +1 wells leads to a quasi

continuous dispersion relation for its mini-band?

g, =E —2Acoslgd)  with gd =in/2(N+1) 1<i<2N+1 (1.1)

and the corresponding eigenfunctions are

,(2)=D.C,0lz—nd) (1.2)

n=—N

with



cos{ngd) gd = ju /(N +1) (1<)
C. =1/(N+1

iy

)”2 sin(ngd) qdm(j"*-%)ﬁ/(N“*‘l) (0<j'sN)

(1.3)

where E, is the isolated well energy level, A is the modulus of the transfer integral

between adjacent wells, d is the superlattice period, and o(z) is the wave-function of an

isolated well. The corresponding density of states is:

e<E =-2A
p —e+F
ple) = —;{"—a:cos( o ’) le— E| <2A
Po e> E, +2A
where
m (2N +1)S
Ppo=—""3 -

i

(1.4)

(1.5)

S is the area of the sample and m" is the effective mass. The probability amplitude of

four wave functions having the lowest energies and a superlattice density of states are

w
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Fig. 1.1: (a) A superlattice density of states (Eq. 1.4). (b} The probability amplitude of four wave

functions having the lowest energy, in a 9 wells superlattice at a flat band condition (Egs. 1.2 and 1.3).

d and L are the superlattice period and length, respectively.



shown in Fig. 1.1.

It should be noticed that the potential modulation and carriers confinement occur only
in the growth direction. Carriers having energies within the mini-gap range are free to
move in the plane of the superlatiice wells_. Thus, the term quasi mini-gap is often used

in the literature to describe the superlattice gap.

In this work we are concerned with superlattices composed of GaAs and AlGaAs as
the low and high gap materials, respectively. All the results derived so far can be directly
applied to the conduction band electrons. A few modifications are needed when the
valence band is considered. These are traced back to the properties of the bulk GaAs
valence band. The upper edge of this band consists of two sub-bands, the heavy and light
hole, which are degenerate at &£ = 0. In quantum wells this degeneracy is lifted.! Close
enough to the center of the Brillouin zone the heavy hole band edge becomes the upper
one and the light hole band lies below. The effective masses of the heavy hole and the
electron at the band edges in GaAs is 0.62m,, and 0.067m,, respectively, where m, is the
free electron mass.5 Consequently, the mini-band width of the heavy hole is much
narrower than that of the electron. This mini-band is, therefore, more sensitive to external
perturbations and is destroyed much faster than the electron mini-band at similar
conditions (e.g. applied external fields). In practice the heavy hole mini-band width can
be smaller than the energy fluctuations due to differences in the widths of the superlattice
wells. The translational symmetry is then broken and the holes are localized already at a
flat band condition.

1.2 Superlattices in the presence of a constant electric field

In the presence of a constant electric field, F, applied normal to the layers, the
continuous mini-band spectrum is replaced by discrete, evenly spaced, energy levels
known as the Wannier-Stark ladder:*

g, =E, +veFd —-N<vs+N (1.6)
The corresponding eigenfunctions, v.(z), are given by Eq. 1.2 with

C,=J _[(2A/]eFd) (1.7)

ny



where J,(x) is a Bessel function of order i . The properties of the Bessel functions
imply that increasing F' will cause the v-th wave function, ¥, (z), to be concentrated in
the vicinity of the v-th well. Energy levels of a superlattice in the presence of an electric
field and the corresponding probability density are plotted in Fig. 1.2.

> >
S S5

/)

N

N

N

Fig. 1.2: Energy levels and the wave functions probability density in a superiattice subjected to an

electric field (Egs. 1.6 and 1.7). Here, eFd = 0.38A, where A is the mini-band width.

The temporal manifestation of the Wannier Stark ladder is the oscillatory motion of
electrons in a periodic potential named after Bloch.6 A Bloch electron subjected to a
constant electric field, F, obeys the acceleration theorem, fidk/dt = eF, stating that the
. momentum varies linearly with the field. As a result of crystal symmeiry, it is Bragg
reflected from the edges of the Brillouin zone. The electrons motion is therefore
oscillatory, with an oscillation period t;, = i/ eFd and is extended over a spatial region
£=A/eF, where A is the mini-band width. The energy eld that characterizes the
Bloch oscillations is nothing else but the energy difference between two Wannier Stark
states centered in adjacent wells (Eq. 1.6).
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The notion of Wannier Stark ladder and the corresponding localization process were a
matter of controversy for many years.™s10 However, it is agreed that the results presented
above are correct for finite superlattices. The case of infinite superlattices was treated by
Krieger and Iafrate representing the electric field as a time dependent vector potential.l!
They obtained selection rules for the optical transitions that are compatible with those
predicted by previous theories of Wannier Stark ladder.

Wannier Stark ladder and Bloch oscillations were never observed experimentally in
bulk solids. The main obstacles were the short scattering times (~ 200 fs for optical
phonons) and the very strong electric fields (>107 V/cm) which are required. The large
unit cells of the superlattice and the ability to tailor a narrow mini-band provide a better

experimental environment for the realization of these phenomena.

Indeed a renewed interest in the problem was triggered by the development of
semniconductor superlattices. It was predicted that Bloch oscillations will be manifested
in the transport properties of a superlattice as a negative differential conductivity.12
Negative differential conductivity was.also predicted to occur when considering the
strong Stark localization regime, where inelastic hoping between different Stark level
states is the transport mechanism!3. These models were studied experimentally in a
series of transport measurements.!4-1¢  The results, however, were not conclusive.!” A
different scattering process that was considered theoretically is tunneling to the next
(mini-)band!S. It was even argued that this effect is strong enough to prevent the
observation of the Wannier Stark ladder.1?

Optical measurements proved to be more successtul in investigating this phenomenon.
In 1988 it was shown simultaneously by Mendez et al20 (using photo-current
spectroscopy) and by Voisin ef al2! (using reflection spectroscopy) that the peaks
appearing in the optical spectra of short period superlattices at low temperatures are
consistent with the notion of the Wannier Stark ladder. These experiments, made
possible by the growth of high quality superlattices, have set the stage for an intensive
study of fundamental as well as practical aspects of this effect. These include, among
others, the investigation of the temperature dependence of Wannier Stark ladder?Z, the

mixing of several sub-bands?3, and the behavior in crossed electric and magpetic fields4.

Recently, the experimental effort was extended to the investigation of the coherent
motion of electrons in the temporal domain.25-27 Time resolved four wave mixing and

tera Hertz electromagnetic wave emission experiments have demonstrated the appearance
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of temporal oscillations, which were attributed to Bloch oscillations.?> The validity of

this interpretation is still under discussion.?8

1.3 Superlattices in the presence of a constant magnetic field

A magnetic field can be applied upon a superlattice either perpendicular or parallel to
the layers.2% In the first case, the field affects only the electron motion in the superlattice
plane. In the second configuration, the magnetic field tends to localize the carriers
motion in the same plane as that of the confining potential. We consider here the second
configuration, that we find more interesting in the context of superlattices. We shall use
the terms normal and parallel fields to denote fields that are applied normal or parallel to
the layers throughout this work.

The behavior of the system subjected to a parallel magnetic field is different at low and
high fields. We define the low field regime as that where the magnetic cyclotron energy,
., is smaller than the mini-band width. The underlying physics in that regime is
similar to that of a bulk solid.30 Bulk-like Landau levels are formed within the
conduction mini-band width. Semi-classically, the electron motion can be described as
performing cyclotron orbits, traversing several barriers during its motion.30 As the
magnetic field is increased the higher Landau levels cross the mini-band upper edge and
become dispersive.3! That is to say that the energies of the guiding centers are not
degenerate anymore and depend on their spatial location in the well. A guiding center
located in the barrier has a different energy than a one that is centered in the well. The
strong field limit is reached when the cyclotron energy exceeds the mini-band width.
Then, even the lowest lying Landau level develops a dispersion.3? In the semi-classical
analog, the electron trajectory is a circle, and it is scattered elastically from the walls
forming skipping, and even more complicated, orbits.

To understand this system quantitatively let us consider the Hamiltonian of a

superlattice conduction band electron in a magnetic field:

_ j_[ ot A(z-))' 7(2) (1.8)

where ¥/(z) is the superlattice potential and A(r) is a vector potential, which for a

magnetic field Bf parallel to the layers is taken to be Bz $ (Landau gauge). m" and p are
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the electron effective mass and momentum, respectively. Let us examine first the case
where V(z) describes a single quantum well. The zero field wave function, @, is

proportional then to:
O(F ) ~ e e o(z), (1.9)

and the first order correction to the zero field energy due to the applied magnetic field is:

202 ( otk z 2 2 , ,
E(i) _ e B (CI ¥ __<2)) : e’ B ((3'>——(Z>”) (110)

- s 2 P
2nre” \ eB 2m'e”

The first term in Eq. 1.10 describes a parabolic dispersion of the electron energy as a
function of its guiding center position z, = chk, /eB (Fig. 1.3(a)). Usinga tight binding
approach to describe the energy spectrum of an electron in a superlatice, this term gives
rise to a family of intersecting parabolas, one for each well. Tunneling mixes these
curves and results in their anti crossing, as shown in Fig. 1.3(b). As the coupling between
the wells is increased, the states around the intersection points repel each other more and
more to create flat bulk like Landau levels. The second term in Eq. 1.10 represents a
simple diamagnetic shift common to all states, with no spatial dispersion.

\VARAYARAVY
NN

“'-ﬂo—n-'"-'-—u‘——-'
T ammeers Gl p Pt I o DS, G SR

(@) (b)

Fig. 1.3: Energy levels in the strong magnetic field limit (Eq. 1.10): (a) in a single well, and (b) in a

superlattice.

Optical measurements of a superlattice subjected to a magnetic field in this
configuration were made using continuous wave spectroscopy. The measured spectra
provided information on the mini-band width, the carriers effective mass, and the

characteristic scattering times.??



1.4 Optical excitation in quantum wells and superlattices

A large portion of the research on superlattices is made by employing optical
techniques. Continuous wave techniques, such as photo-luminescence excitation, and
photo-current spectroscopy are widely used in the investigation and characterization of
superlattices. In recent years there is a growing use of time resolved optical techniques in

studying these structures.

The matrix element for the absorption of light exciting an electron from the heavy hole
valence band to the conduction band is!

<fPL.p\i> o~ l.<u;|p|ui>‘[ Wy, dr (1.11)

where A is the polarization vector, p is the electron momentum operator, u(r) is the

periodic part of the Bloch functions at the center of the Brillouin zone, and
y(r) =060 )x(2). (1.12)

here 6(r,) is the wave function in the plane of the layers and y(z) is the envelope
function in the growth direction. The absorption of light, therefore, is strongly affected
by the electron hole overlap integral <xc(z)|xh(z)>. In many of the cases under
consideration it is appropriate to assume that the heavy hole is completely localized and
its energy is discrete. The inter-band absorption properties of a superlattice are then a
measure of the conduction band eigenfunctions and eigenenergies.

In Fig. 1.4 the energy levels, wave functions and allowed transitions between the
heavy hole sub-band and the conduction band of a biased superlattice are plotted. Here
and throughout this thesis Stark ladder states are denoted by (iv)HH and (iv)m for
excitations from the heavy and light hole sub-bands, respectively. *v is the index of the
electron Stark level energy (Eq. 1.6) counted from the location of the photo excited hole.

In reality, the absorption spectrum of a biased superlattice is dominated by excitons,
each of which is related to a different Stark ladder state (see for example Fig. 5.2).1 We
denote these excitons by their electron Wannier Stark state.

14
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Fig. 1.4: Valence to conduction band optical excitations from a localized heavy hole into different

Stark ladder states. The excitations are denoted by the corresponding electron state.
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2. Research objectives

In this work we investigate the electron motion in superlattices subjected to external
fields. We consider electric and magnetic fields which affect the electron tunneling in the
superlattice, namely - an electric field normal to the layers and a magnetic field parallel to
them. The tool we use is optical spectroscopy, with a special emphasis on time resolved

measurements.

The theory of electrons dynamics in a superlattice subjected to normal electric fields
was intensively investigated during the last two decades. However, at the onset of our
work the published data was gathered mainly through indirect transport measwrements.
Our objective was to apply fast optical techniques to study electron transport in these

conditions.

Optical spectroscopy allows direct measurements of the electron energy spectrum and
dynamics without having to take into account the leads and the effect of current flow.
The extreme time resolution available by present day lasers enables performing direct
measurements of energy relaxation and scattering processes. Furthermore, minute energy
splitting which are hidden by inhomogeneous broadening can be extracted accurately
from the beating period they induce in the coherent optical signal. Finally, optical
spectroscopy provides us with energy selectivity, which enables us to control precisely

the states we excite or probe.
The work is organized as follows:

In chapter 3 we introduce the experimental techniques. These include differential
absorption, four wave mixing and photo-luminescence as methods for performing time
resolved measurements. Continuous wave photo-current and transmission spectroscopy
were used to obtain the complementary spectral information. We then briefly describe
the experimental set-up and sample preparation.

In chapter 4 we discuss the interplay between tunneling and a relaxation process in a
coupled quantum well system. Relying on the similarity between a coupling to a
relaxation channel (e.g. phonon assisted decay) and a coupling to a continuum of states
we perform a controlled time resolved experiment on a coupled quantum wells system
that one of its wells is coupled to a continuum of states. We show that the electron decay

process is affected by quantum interference in an unexpected way: when a coupled

16



quantum wells system is in contact with a relaxation channel, the electron decay rate

through this channel can be slowed down with increasing relaxation rate.

In chapter 5 we describe time of flight measurements of electrons motion across a
superlattice subjected to external electric field. We correlate the measured electrons
velocity and the observed spectrum at different applied fields. We show that this velocity
is non monotonic in the applied field and it becomes slower with increasing field when a
Stark ladder is optically observed. We attribute this negative differential velocity to the

destruction of the mini-band and to a formation of Stark localized states.

In chapter 6 we focus on the role of excitonic effects in superlattices. To enhance
these effects we design a narrow band superlattice in which the coupling between
adjacent wells is smaller than the excitonic Rydberg. In this system we find a unique

evolution of the Stark ladder spectrum where both the positive and negative index

transitions, (iv)HH, are above the zero index transition at low applied electric fields. In
the time domain we show field dependent oscillations in the four wave mixing signal and

identify them as excitonic quantum beats.

In chapter 7 we study the energy spectrum and dynamics of excitons in a narrow band
superlattice subjected to a parallel magnetic field. We show that these can be understood
by considering Fano interference between discrete excitonic states and continuum of
states in other wells. By changing the magnetic field we tune the energy of the exciton
state relative the continuum edge. This system provides a unique opportunity to study
Fano interference near this edge. We show that exciton dynamics and the observed
spectrum are substantially changed when the discrete level is crossing the continuum

edge.
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3. The experimental methods

We have used various optical spectroscopic methods to investigate the energy
spectrum and the dynamics of electrons in superlattices. One can distinguish between
two main groups of techniques: those which are based on very short pulse lasers and
those which use continuous-wave lasers. In the following we shall describe the main

methods used in our work.

3.1 Time resolved optical methods
3.1.1 Differential absorption

In the differential absorption (DA) technique two beams derived from the same laser
are impinging on a sample, at a small angle between them. These beams consist of a train
of light pulses that are synchronized, so that each pulse in one beam (termed the probe) is
delayed with respect to its matching pulse in the other (termed the pump) by the same
amount of time, t, (see Fig. 3.1). The pump is modulated by a low frequency chopper (at
a few hundreds Hz) and the resulting intensity modulation of the probe after passing
through the sample is time integrated by a slow detector using conventional lock-in
techniques. The signal is measured as a function of the delay time, 1,, between the

pulses.

FWM
detector

DA
detector

probe &
pulse : «

Fig. 3.1: A schematic description of DA and FWM experiments.
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The measured quantity is the change in the absorption due to the presence of the pump.
Various mechanisms can generate this absorption change. A commonly considered
mechanism is phase space filling by the photo-excited electron-hole pairs that causes
bleaching of the absorption. The decay of the signal is then a measure of the population
relaxation rate. Other processes, such as band gap renormalization and space charge
build-up can cause a shift or a broadening of the absorption line. The temporal
dependence of the DA signal in those cases can be complicated and will be discussed in

the context of specific experiments.
3.1.2 Four wave mixing.

The four wave mixing (FWM) set-up is similar to that of the DA measurement. Here,
the integrated intensity of the emitted signal following the coherent excitation by the two
beams is detected at a direction 2k, —k, or 2k, —k, where k, and k, are the wave
vectors of the impinging beams (Fig. 3.1). Here also, the signal is measured as a function

of 1, the time delay between the exciting pulses.

The signal that is measured in a FWM experiment results from the third order
polarization that is induced by the exciting beams. It is proportional therefore to 83822
(2k, —k, direction) or 828§2 (2k, — k, direction), where &, is the optical field
amplitude. Its decay is a measure of the phase relaxation rate of the coherent excitation.
The phase relaxation time is commonly denoted by 7, in the terminology of a two level
system. The measured decay rate is 2/7, and 4/7, for homogeneous and

inhomogeneous broadening, respectively.33
3.1.3 Time resolved photo-luminescence

We have also used time resolved photo-luminescence (PL) measurements, performed in
collaboration with the CNET laboratory at Lannion France . In this method the system is
excited by a pump pulse at an energy, which is larger than the gap. The resulting
luminescence is focused on a non-linear crystal together with the probe beam. The
intensity of the sum frequency light (probe + PL) is recorded as a function of the time
delay between the pump and the probe. Using this method we measure the recombination
rate of the photo-excited electron hole pairs.
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3.2 Continuous wave optical methods
3.2.1 Transmission spectroscopy

In the transmission spectroscopy method a single beam, emitied from a tunable laser,
is optically modulated and passed through a sample. The normalized intensity of this
beamn is measured as a function of the excitation energy. Using this method we can map

the spectral position of the energy levels in a given sample.
3.2.2 Photo-current spectroscopy

Here again, a single light beam from a tunable laser is modulated by an optical
chopper and absorbed in the sample. The measured quantity is the excitation induced
photo-current that is differentiated from the dark current by a lock-in technique. This
photo-current is measured as a function of the excitation energy and the resulting
spectrum is a replica of the absorption spectrum. Using this method we can extract
information about the spectral position and the relative absorption strength of the energy
levels in the measured sample. This method is convenient and efficient when practiced
upon biased superlattices. However, in superlattices close to a flat band condition the
process of radiative recombination becomes dominant, and reduces the amount of
collected photo-current. A comparison of the photo-current spectrum with the absorption
spectrum is then made complicated.

3.3 Temporal and spectral resolutions

We now review some of the considerations regarding time resolved methods and their
application to the investigation of electron dynamics in superlattices. As an illustrative
example we consider the Bloch oscillation phenomenon. The period of one Bloch
oscillation 7, is equal to (7/ A)-(&/d), where A is the mini-band width and (&/d) is
the localization length in units of the superlattice period, d (section 1.2). To avoid an
efficient emission of optical phonons A should be smaller than ~36 meV. Taking as a
limiting case (£ /d) =2, the fastest oscillations we can measure have a period t ~0.2
ps. T, can be made longer by reducing A, the mini-band width. However, we are
restricted by the optical dephasing of the states involved. The dephasing time in good
quality superlattices is at most 2 ps. The need to see three or more oscillations during this
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time, in order to identify them as such, restricts their period to be less than 1 ps. These
considerations set a range for the period of Bloch oscillations , which can be observed in
a coherent optical experiment, 0.2 —1 ps. They also define the time resolution necessary
to observe the oscillations, ~100 fs. Commercially available mode locked solid state

lasers are now able to provide this time resolution.

improving the temporal resolution is accompanied by an increase in the spectral band-
width of the light pulses emitted by the laser. For example, the Styril 8 dye laser emits
pulses having a one picosecond auto-correlation width, and ~2 meV spectral band-width,
while the corresponding values for our Ti:Sapphire laser are 100 fs and 25 meV,
respectively. It is not always advisable, then, to use the shortest pulses available, and the
spectral resolution that is needed for properly interpreting the time resolved data has to be

considered as well.

3.4 The experimental set-up

The experimental set-up for the time resolved measurements is plotted in Fig. 3.2 It
consists of a high power stabilized

laser, (Nd: Yag or Argon) (1) pumping a
passively mode locked tunable laser
(Dye or Ti:Sapphire) (2). This in turn
emits short light pulses at a repetition
rate of 76 MHz. The tuning range of
the pulsed laser is between 720 and 850
nanometers depending on the laser in
use. The pulsed beam is split to a
pump and a probe (3). The probe beam

is passed through a retro-reflector (4)

mounted on a linear stepper motor and

the pump is passed through an optical

chopper (5). The two beams are then

entering an array of optical devices (6)

utilized for controlling their relative

polarization and the width of their

Fig. 3.2: i d imental set-up. .
ig. 3.2: A time resolved experimental set-up cross-sections. They are focused (7) on

The details are found in the text.



the sample via the optical aperture of a 7 Tesla magneto-optical cryostat (8). A slow
detector (9) attached to an electronic analysis unit (10) measures either the intensity of the
probe beam (in DA experiments) or the time integrated intensity of the diffracted signal
(in FWM experiments). Electronic units are also attached to the sample enable its biasing
as well as photo-current measurements. An imaging system (do not appear in the

scheme) is used to overlap the two beams on the sample.

3.5 Samples growth and processing

Investigation of biased superlattices requires the ability to apply an external electric
field while preventing the flow of currents. This can be done by positioning the
investigated superlattice in the intrinsic region of ejther a p-i-n junction or a Schottky
diode (metal-i-n). In some of the optical measurements the sample has to transmit light

as well. In this section we describe the process of sample preparation.

electrical contact

L Il glass slide

A
v
p
o
# %

electrical contact

Fig. 3.3: A schematic draw of a single processed diode.

The epitaxial layers are etched to form mesas of 200 x 200um?® electrically isolated
from each other. Electrical contacts are then attached to the top and bottom of each mesa.
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In the case of a p-i-n diode the top contact is ohmic and cover only a small part of the
mesa, while in Schottky diodes we used a semi-transparent Cr layer, deposited on the
whole area of the diode, as the metal gate. The sample is then glued to a thin glass slide
and the substrate is removed using a selective wet etch.3* The contacts are bonded to a
ceramic 24 pin header with a via-hole suitable for mounting in the optical cryostat. A

schematic view of a fully processed sample is given in Fig. 3.3.
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4. Electron decay from coupled quantum wells to a continuum

4.1 The coupled quantum wells system

The electron motion in a superlattice conduction band is dominated by two main
processes: coherent tunneling between adjacent wells and incoherent scattering. Our
focus in this section is the interplay between these two types of processes. In Fig. 4.1 we
sketch a biased superlattice, where tunneling and incoherent scattering processes are
marked by arrows. The latter include transitions to a higher energy mini-band, by
tunneling or thermionic excitation, and various phonon assisted relaxation channels. One
can, however, design a simpler structure, that will capture the essence of the problem,
where tunneling is coupled to a single scattering channel. A possible system is the
coupled quantum wells (CQWs) that is marked by dashed lines in Fig. 4.1.

[

Fig. 4.1: Electron processes in superiattices: (T) tunneling, (TE) thermionic emission, and (R) phonon

assisted relaxation.

A CQWs system on which many studies were performed is the asymmetric CQWs
(Fig. 4.2). It consists of a wide and a narrow well. Alignment of the energy levels, hence
the achievement of a resonance condition, is obtained by the application of an external

electric field. As the levels are aligned, photo-excited electrons can tunnel resonantly
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from the narrow to the wide well, where they relax to the lower energy level by phonon
emission. Time resolved PL and DA measurements were used to investigate the
dependence of the tunneling times on the level alignment.33-37 A sharp increase in the
electron escape rate from the narrow well was found when a resonance condition was
achieved. Coherent motion of an electron wave-packet was also observed in similar
systerns. Oscillations in the FWM signal and sub millimeter wave emission are the
manifestations of this motion.38:39

Fig. 4.2: An asymmetric CQWSs system at resonance. In resonant tunneling measurements the
electron is optically excited in the narrow well (hv) and relaxes to the lowest lying energy level in the

wide well (R).

While all these experiments concentrated on the resonant nature of the tunneling, the
effect of electron relaxation on the tunneling process was not studied carefully. A
theoretical analysis of the electron decay process in CQWSs structures has revealed that it
is affected by quantum interference phenomena in an unexpected way.4V It was shown
that when coupled quantum states in CQWs are in contact with a relaxation channel (e.g.
decay by phonons to a lower energy level), the electron decay rate through this channel is
sometimes slowed down with increasing relaxation rate. Similar considerations have led
to interpreting the excessively long decay time of holes in CQWs as resulting from
inelastic relaxation, which suppress the decay rate.#! In this chapter we describe a



thorough experimental study of the dependence of the decay rates in CQWs on the

strength of a relaxation channel.

4.2 Theoretical analysis of COWs

Let us start with a theoretical description of a CQWs system that is sketched in Fig
4.2. Following Ref. [40] the electron wave function in the CQWs is given by the solution

of an effective Schrodinger equation of the form:

G e elll)

where l(pn(t)l: is the probability to find the system in the n-th well with an energy £,. 4,

and I", are the level shift and width due to coupling to phonons, respectively, and & is the
energy splitting due to tunneling between the levels of the different wells.

The two eigenvalues of the matrix are:

Z& ir 1 ] 2 2 e
gmmEl+5—?°i§\[Aw+a-—(ro/z) AT, (4.2)
where A=A +g, e=E,—FE,. Let us assume for the moment that A=0. We can
distinct two regimes: a weak relaxation regime, where I'y /2 <8, and a strong relaxation

one, where I';/2 2 8. It can easily be seen that when I, /2 < (weak relaxation) we get

two non-degenerate levels, with an energy splitting which is equal to \/8 ? e (F{} / 2)2 . In
the opposite case, of I,/228 (strong relaxation), we get two degenerate energy levels
and the energy splitting disappears. Thus, the transition from the weak to the strong
relaxation regime, is marked by a collapse in the splitting of the energy levels

Further insight into the behavior of the system is obtained by inspecting the imaginary
part of the eigenvalues, which represents the decay time. In the weak relaxation regime
we get approximately the same value, Iy /2, for both energy levels. In the strong
relaxation regime, however, the imaginary part of the eigenvalues has two different
solutions: T,/2 and &2/2T,, representing a fast and a slow decay, respectively. Thus,
increasing T, in the weak relaxation regime results in a faster decay of the CQWs system.
In the strong relaxation regime, however, the overall time evolution of the system is a two
exponential decay. Increasing T, will cause the fast exponent (I'y/2) to be even faster,
and the slow one &%/2T, to be slower. It should be noticed that T, the average decay



time, defined as the first moment of the decay rate, T= —f; d/dt[{(p,(z’)ll + (pz(t)lz}dt is

equal to:40

e (n,2))
Foloy (4.3)
T, rs

and is increasing with increasing I, in the strong relaxation regime.

Including a finite A would introduce some modifications to that picture, and there will
be an energy splitting also in the strong relaxation regime. A quantitative discussion on

the role of A is given in section 4.5.

4.3 Experimental considerations - a controlled relaxation channel

It is rather difficult if not impossible to experimentally vary the coupling to phonons,
and study the dependence of the decay process on Iy, the relaxation rate. An alternative
system, which exhibits a similar behavior, is the symmetric CQWs, where one of the
wells is coupled via a thin barrier to a continuum of states (Fig. 4.3). It was shown in
Ref. [40] that the asymmetric
CQWs, where the decay is
through phonon emission, (Fig.
4.2) and the symmetric CQWs
which decays by tunneling (Fig.
4.3) are described by the same

effective Schrodinger equation
(Bq. 4.1), with T, being the

relaxation rate due to coupling

Fig, 4.3: A CQWs system coupled asymmetrically to

a continuum of states. either to phonons or to the

continuum states. This similarity
is not surprising since the
essence of the inelastic scattering
process is the high density of final states of the electron phonon system, which makes the
process irreversible at low temperatures??. The advantage of the symmetric CQWs
system in serving as a model for studying the coupling between quantum tunneling and
relaxation is obviously the ability to change the relaxation parameters in a controlled
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manner. The coupling strength between the two symmetric wells and between the CQWs
and the continuum are governed by the widths and heights of the separating potential
barriers. These parameters are controlled to a high degree of accuracy during the growth

procedure.

To study the dependence of the decay rate on Iy, we have grown three different
samples with the same structure except for the width of L,. The exact structure of the
three samples we used is found in Appendix. A. The significant part of each sample

consists of 10 repetitions of the structure that appears in Fig. 4.3: two 80-A GaAs
quantum wells with a 50-A Al,,Ga,zAs barrier between them (designated by L,), are

coupled to a continuum (800-A wide GaAs layer) through a thin Al,,Ga,,As outer
barrier of thickness L, at one side. The values of L, in the three samples are 50, 20, and

10 A . Hereafter the samples will be labeled by the width of their outer barrier, L,.

Two complementary experimental techniques were used in this work, time resolved
PL and DA. Setting the detection energy to the emission line of the CQWs, the time
resolved PL directly measures the recombination rate of electron-hole pairs in the wells.
Since the electrons tunneling rate is faster than that of the holes, the decay of the PL
signal is proportional to the electrons tunneling rate. The interpretation of the time
resolved PL results is therefore straightforward and unambiguous. The DA signal is
sensitive to changes in the electron and hole populations (which affect the bleaching of
the absorption line) and to a build-up of local electric fields by space charge (which shifts
the line). In that sense, when used in conjunction with the time resolved PL, DA provides

a deeper insight into the dynamics of charge carriers in the system.

4.4 Experimental results.

The parameters of the three samples were chosen such that in the 50-A sample, where

L, = L,, the condition T'y/2 << & is satisfied, and we are in the weak relaxation regime.
The 20-A sample is chosen to be at the transition between the weak to strong relaxation,

where [')/2 = 5. In the 10-A sample, where L, < L,/2, we are in the regime of strong
relaxation, where [, /2>> 8.



Fig. 4.4(a) displays a spectral DA measurement of the 50-A sample. In this
measuremnent the probe pulse is kept at a constant time delay of 4.2 ps with respect to the
pump puise and the laser energy is scanned. Two spectral features, 4 meV apart, are
observed: a high energy peak, centered at 1.570 eV, and a lower one, centered at 1.566
eV. A similar line splitting is seen at the continuous wave PL of this sample (Fig. 4.4(b)).
This line splitting is not observed in the DA and continuous wave PL measurements of
the other two samples. It is associated with the splitting of the electronic levels in CQWs
in the weak relaxation regime. Its absence in the other two samples confirms the

predicted collapse of the splitting in the strong relaxation regime (section 4.2).
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Fig. 4.4: (a) DA spectrum of the 50—)& sample at a constant delay time of 4.2 ps. Arrows mark
two well resolved peaks that decay with time constants of 36 ps (at 1.570 eV) and 7 ps (at 1.566 eV).
(b) Continuous wave PL spectrum of the same sample. The shoulder at the high energy side of the

CQWSs luminescence is an evidence for the existence of a split energy level.

A PL spectrum of the 50-A sample taken at a constant delay is shown in Fig. 4.5(a).
Two peaks are observed: a large one at 1.520 €V and a small one at 1.570 eV. The first is

associated with electron hole recombination in the 800-A well (continuum), exhibiting a
decay time of the order of 1 nanosecond. The higher energy peak is associated with the
CQWs energy levels, and decays much faster. The same behavior is observed in all three
samples. Fig. 4.5(b) shows the temporal evolution of the 1.570 eV luminescence line in
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the three samples. It is seen that the decay time is very short, and depends on the
thickness of L,. The measured decay time decreases from 14 ps in the 50-A sample to 3

ps in the 20-A sample and then increases to 5 ps in the 10-A sample. These resuits show
very clearly that the decay rate varies non-monotonically with the coupling strength, and

demonstrate the anomalous decay behavior of the system.
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Fig. 4.5: (a) PL spectrum of the 50-1& sample at a delay time of 10 ps. (b) Decay behavior of the
CQWs PL in the three samples.

Let us turn now to describe the results of the DA measurements. In general, we can
distinguish between contributions of electrons and holes to the DA signal. The electrons
escape gives rise to a fast decaying signal (a few picoseconds decay time), while the holes
escape is much slower and results in two contributions. One is a persistent signal, due to
holes which didn't escape from the inner well during the time between two consecutive
pulses. The DA experiments are performed at low power to minimize this effect. A
second contribution of the holes is a slowly decaying signal (a few tens of picoseconds),
coming from holes tunneling out from outer well. These different contributions are
observed in Fig. 4.6(a). While the electrons relaxation results in a fast decay of the
signal, the offset and the slow decay due to the holes are clearly seen. In the following
we concentrate on the fast component and describe its decay in the three samples.
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In the 50-A sample each of the two spectral features observed in Fig. 4.4 decay at a
different rate. The decay times of the low and high energy components are 7 and 36 ps,

respectively.

DA Signat (arb. units)

DA Signal (arb. units)

N I A S S R VR ) 654 68 10 12
Time Delay {ps) Time Delay (ps)

(a) (b)

Fig. 4.6: Time resolved DA signals: (a) 20-43& sample and (b) 10-43; sample.

Turning to the 20-A sample, the decay time of the fast (electron) component is 3 ps

(Fig. 4.6(a)), and is constant throughout the excitonic line.

Fig. 4.6(b) gives the results of a temporal measurement for the 10-A sample. A decay
time of 7 ps is measured throughout the excitonic line. As found in the PL measurement -

the observed decay time is longer than that of the 20-A sample. It should be noted that
the holes that are created in the outer well escape out immediately, and are not apparent in
the DA signal.

We find therefore that the decay rates observed in the DA measurements are

approximately the same as found in the PL experiment and the trend is preserved.

4.5 Discussion - the role of A

We have shown that decay rate of CQWs to a continuum of states depends in a non-
trivial way on the coupling strength between the two. In the weak relaxation limit the
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decay rate increases with increasing the coupling strength. However, in the strong
relaxation limit it decreases with increasing the coupling strength. We note that our

temporal resolution does not enable us to resolve the fast component of the two

exponential decay, which is calculated to be 40 fs in the 10-A sample. We therefore

measure the time evolution of the slower component only. Since the decay rate of this
component scales like 1/T,, it is clear that in the 10-A sample the measured time for the

depletion of the system is expected to be longer then in the 20-A sample. Indeed decay
times of 7 ps and 3 ps were measured for the 10-A and 20-A samples, respectively.

It was assumed throughout this chapter that the energy levels mismatch, A, can be

neglected. In the following we wish to examine the validity of this assumption in view of

the experimental results. In the 50-A sample we have observed a different decay time for
each spectral component (Fig. 4.4). The only parameter which can explain these different

decay times (7 and 36 ps) is A. The calculated energy shift, A, for the 50-A sample is
0.06 meV, much smaller than Iy = 0.2 meV and 8 = 3 meV. Such a small misalignment
can not explain the observed large difference in the decay rate of the two spectral
components. To fit the observed temporal behavior of the electrons in this sample to the
theory one has to assume that A =-2.3 meV. Well width fluctuations can be ruled out as
the reason for this misalignment since this mechanism would have given an equal
probability for positive and negative A. A possible explanation is that in steady state the
holes density is larger in the outer well due to Coulomb attraction to the electrons in the
continuum. This results in lowering the electron energy level in the outer well and
consequently in a slower decay time of the higher energy component. It should be
emphasized, however, that the shortest measured decay time (7 ps) is shorter than the one
that should have been measured in an ideal case, with a zero energy mismatch, and is,

therefore, a low limit for it.

The behavior of the 20-A sample critically depends on the exact values of the barrier

height and thickness. For the 20-A barrier the corresponding parameters are A , = —~0.85
meV, T, = 4.4 meV and 8 =3 meV. Inserting these parameters into Eq. 4.2 we obtain a
splitting of 2.3 meV between the electron levels and sub-picosecond decay of both levels.
However, a slight decrease in the value of the barrier thickness (by one monolayer) would
change the behavior into a two exponential decay, with a slow component of a few
picoseconds, and a very fast sub-picosecond one. The absence of the splitting in this
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sample and the observed decay of 3 ps could therefore be explained if we take the barrier

thickness to be slightly less than 20 A..

The calculated energy shift for the 10-A sample, A,=-3.5 meV, is rather large.
Inserting it into Eq. 4.2, with the corresponding parameters, [, =40 meV and 6 =3
meV, we get 2 energy levels, 2.9 meV apart. However, the width of these levels is ~20
meV and ~0.1 meV, such that only the narrower one is observed. The decay time of the
slow component is not very sensitive to the value of A, and the calculated decay time of

6.5 ps agrees well with our measurements.

Neglecting A is, therefore, a reasonable approximation in all the samples. Yet, The
comparison of the experiment with the calculations while taking A into account, gives a
deeper insight into the behavior of charge carriers in this system. Here, we exploit the
advantages of the DA method that can monitor extrinsic processes such as holes tunneling

and energy mismatch between the two symmetric wells.



5. Electron transport in the Stark ladder regime

5.1 Electron transport in a biased superlattice

We now turn to measure the electron motion in a superlattice subjected to external
electric field. Three energy scales characterize this motion: A, the mini-band width,
E/TSCM’

electric field. In good quality superlattices, having A > 10 meV, the relation /1., <A

the level width, and eFd, the energy drop per period in the presence of an

is usually fulfilled. The relative size of eFd with respect to A and #/ 1, defines three
regimes. The low field regime, where eFd <h/7t,, the high field regime, where
eFd ~ A, and an intermediate regime, where 71/ 1, <eFd <A. The underlying physics
of the electron transport in the low field regime is similar to that which prevails in bulk
crystals, where the mobility is limited by impurity scattering. This 1s not the case at the
high field regime. It was suggested by Tsu and Dohler that the transport in this regime
can be modeled by phonon assisted hoping from one site to another.!3 The intermediate
regime is the one which attracts most of the attention. In this range of applied fields the
electron energy spectrum is characterized by discrete levels known as the Stark ladder. It
was predicted by Esaki and Tsu that negative differential conductivity is to be observed in

this regime. 12

Several experimental works were devoted to the investigation of these transport
regimes. It was demonstrated using time resolved PL that in the low field regime
transport is made via extended Bloch states.#3 The experimental situation in the other
regimes is more vague. Many experimental works, ranging from simple two probe
transport measurements!4 to sophisticated application of microwaves, were made.** The
experimental objective common to all these transport measurements is to determine the
dependence of the average electrons velocity across the superlattice in the applied fields.

Despite the intensive experimental work, the results are still ambiguous.!?

Our goal was to address this problem using time resolved DA measurements and
transmission spectroscopy. These are direct probes since the electron motion is time
resolved and its energy spectrum can be monitored simultaneously by continuous wave
spectroscopy. We start with an investigation of a Stark ladder formation using
conventional continuous wave techniques as well as a novel differential method. We then
present results of a time tesolved DA measurements of the electron arrival rate to the
electrodes and interpret these results in view of the evolution of the Stark ladder
spectrum. We develop a mathematical model for the electron motion that fully



reconstructs our results. We then discuss them in the context of existing models of
electron transport in superlattices.

5.2 The DA signal: ovigin and temporal evolution

The sample we studied is composed of 100 undoped 30 A GaAs wells separated by 30

A Al ,Ga,,As barriers, in a p-i-n diode. The dominant contribution to the DA signal in
the presence of an electric field results from space charge buildup in the doped regions,
and is not a consequence of phase space filling. This behavior was studied by Livescu e/
al 45 and was implemented to measure resonantly enhanced electron tunneling rates in
coupled quantum wells,%6 and carriers sweep out rate from a single well.47 The outline of
the process is the following: a short laser pulse (pump) excites electron-hole pairs in the
superlattice, in the intrinsic region of the diode. Carriers with opposite charges are swept
in opposite directions in the electric field, and accumulate in the doped regions (Fig. 5.1).
This accumulation of charges reduces locally the effective voltage between the electrodes,
which in turn alters the absorption coefficient of the superlattice due to both quantum
confined Stark effect*8 and Wannier Stark localization. The time dependent absorption
change is the quantity measured by the probe pulse. The rate at which the magnitude of
the differential absorption signal grows is, therefore, related to the accumulation rate of
carriers in the doped regions. A fast voltage diffusion mechanism induced by a
rearrangement of the charges in the electrodes reduces the local screening of the
accurmulated carriers at a rate which depends only on external parameters. The reduction
of the local screening potential V.(¢t) is proportional to

V() —= 5.1)
[+,

where t_ = S,RC characterizes the voltage diffusion process and depends on the cross
section of the light beam, S, the resistance per square, R, and the capacitance per unit
area, C, of the diode.
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Fig. 5.1: The creation of space charge in a reverse biased superlattice:  photo-excited holes (+) and
electrons (-) are swept toward the p and n regions, respectively, creating a local screening potential at the

cross section of the light beam.

5.3 Experiments
5.3.1 Stark ladder formation

The evolution of the energy spectrum at 7K, from band structure to complete
localization, was monitored by measuring
both transmission and photo-current, at
different applied fields (Fig. 5.2). At a
zero field, (i.e. external applied voltage

which cancels the diode built in voltage) a

(hq)HH( b mini-band absorption characteristic is
(-2 observed, consisting of heavy and light
hole excitonic peaks at wavelengths of

Bhoto-current (arb. umits)
S o

1.688 meV and 1.701 meV, respectively.

I ! At a field of 5x10° V/em these excitons

HH,;, . are field ionized and the peaks disappear.

18 e s At higher fields, above 4 x 10" V/cm, clear
Excitation energy {eV)

Stark ladder peaks, whose spectral
position depends linearly on the applied

Fig. 5.2: Photo-current spectra at applied fields electric field, are observed. The actual

of (bottom) 0 V/em, (middle low) 17 x 10* V/em,
(middle up) 5x10* V/em, and (top) 8.7 x10*
Viem.

field experienced by the superlattice is



extracted from the energy difference between the Stark ladder peaks. This extracted field
is somewhat smaller than the one which is calculated taking into account the width of the
nominally undoped regions as the intrinsic region. An additional electrically neutral
region is formed, due to a freeze-out of holes in the p layer, increasing the actual width of
the intrinsic region. From the blue shift of the absorption edge, which is equal to half the
sum of the conduction and valence mini-band widths, we estimate the conduction mini-

band width to be ~70 meV.

To achieve a better sensitivity to changes in the transmission spectrum as the Stark
ladder evolves we applied spectral DA measurements. In this measurements the probe
pulse is delayed by a constant value of 12 ps with respect to the pump pulse, and the DA
signal is measured as a function of the excitation energy. As explained earlier, the pump
pulses induce small changes, Vs(t), in the applied voltage (Eq. 5.1). Therefore the probe
measures a signal that is proportional to the derivative with respect to F', the applied
field, of the absorption spectrum. Results at applied field of 8.7 x 10" V/cm are shown in
Fig. 5.3, together with photo-current measurements taken at the same conditions. The
two spectra correspond with each other according to the above interpretation.

DA signal (arb. units)
(stiun "qe) JUALINS-0J0UY

164 166 168 170 172 1.74
Excitation energy

Fig. 5.3: DA spectrum at an applied field of 8.7 x 10* V/em (solid line). Photo-current spectrum at

the same applied field is given as a reference (dashed line).



This method of measurement exhibits a high spectral sensitivity due to its differential
nature. We can follow the evolution of the Stark ladder over a much larger field range,
than in the linear measurements: as low as 2.3 x 10" V/em, and as high as 1.1x10° V/cm.
The fan diagram in Fig. 5.4 summarizes the results of the spectral DA and the photo-
current measurements. The DA peaks that corresponds to the (-1).. and (—Q)HH

transitions are slightly shifted relative to the peaks that correspond to the same transitions

HH

in the linear measurements. This is because the differential signals result from a shift of
the ladder stages. It can be noted that the light hole (—I)LH transition, which is masked by

the heavy hole transitions at the linear measurements, clearly appears.
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Kig. 5.4: A fan chart of superlattice transitions vs. applied field: crosses mark transitions measured by

photo-current spectroscopy and solid circles - measured by spectral DA.

5.3.2 Time resolved measurements

We now turn to the time resolved DA measurements. A typical signal is shown in Fig.
5.5, where a rather fast rise followed by a relatively slow decay is observed. It should be
emphasized, that the rise time is well within our temporal resolution and does not
represent the pulse width. A summary of the rise times, which are related to the arrival
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rate of electrons to the electrodes, at different applied fields and illumination powers
appears in Fig. 5.6. At a field of 4x10* V/em this rise time is approximately 10 ps. At
higher fields the rise times become longer, up to 17 ps. At this field range discrete peaks
appear in the optical spectra (transmission and photo-current), indicating that quantization
of the energy spectrum occurs. At applied fields which are higher than 7~ 8 x 10 V/iem

the rise times are shortened to a value of about 8 ps.
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— m Fig. 5.5: Time resolved differential
3: 0. ¥ absorption signal measured at a field of 7.8x10°
; V/cm and its corresponding model fit (Eq. 5.2).
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Fig. 5.6: Rise times of the temporal DA signals vs. applied field at illumination power densities of

(solid circles) 0.7 W/cm and (squares) 5.9 W/cm. The lines are guides for the eyes.



The lowest illumination power at which we could get a reasonable signal to noise ratio
was about 0.7 W/cm? , roughly equivalent to excitation density of 10" pairs per cm® .
We observed the same qualitative behavior as we increased the excitation densities over
an order of magnitude, although the numerical values of the measured times are slightly
intensity dependent. This is because at high excitation densities the charge accumulated
in the doped regions at the beginning of the drift process can be large enough to reduce
the effective field seen by electrons, which are still trapped in the wells of the
superlattice. Since the holes are strongly localized already at very low fields, their
contribution to the signal at very fast time scales can be neglected. We did not observe
any effect of holes accumulation within the superiattice wells, which indicates that most
of them escaped from the superlattice during the time between two consecutive pump

pulses.

5.4 The electrons traversal times - quantitative models

Figure 5.6 clearly demonstrates that the escape time of the electrons from the
superlattice is a non-monotonic function of the applied electric field. We interpret this
behavior as a manifestation of the Wannier Stark localization. At low electric fields the
mini-band breaks-up into discrete resonances (Wannier Stark ladder). As a consequence,
the electrons mobility across the superlattice decreases with the electric field, and the
measured escape time of the electrons increases. In that sense the electric field at which a
differentiation of the Stark ladder peaks is optically possible marks the transition in the
character of the electrons transport across the supetlattice, from band transport to Stark
Jocalization. Above a certain field the Stark ladder states are close to a complete
localization, and from that point on the dominant transport mechanism is tunneling into
the higher band (continuum states above the barriers in our superlattice} and drift towards
the electrodes. The tunneling probability increases with the electric field due to the

decrease of the effective barriers height, and therefore the escape time decreases.

This interpretation of the field dependence of the rise times implies that the electrons
dynamics at low and high electric fields is completely different. To give a more
quantitative insight into the experimental data we have constructed a simple naive model,
which describes the electrons motion in these two different regimes of applied field. In
the high field regime barriers lowering, due to the increase of the applied field, is the

reason for the faster escape times of the electrons. In this regime the electrons wave
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function is localized in a very limited number of wells and their population in the wells

decreases exponentially by tunneling, with a time constant t . As the electrons exit the

wells they drift at a constant velocity towards the n doped region, where they generate a
screening voltage Vs(z‘) (Eq. 5.1). To fit the experimental data to this model we used the
following expression for the magnitude of the absorption differential signal, which

convolves the three processes mentioned above:

(¢=0)
min{‘:,,,‘rd} 1 exp -

ra(ty)~ [ arfar Cun
¢ ¢ I+

(5.2)

Ty =1

T

<

1, is the time delay between the pump and the probe pulses,t,,, is the tunneling time to
the next mini-band, and t_ is the time it takes for an electron to drift across the whole
superlattice. An example of fitted data is given in Fig. 5.5.

In principle, the drift velocity should have depended on the electric field via the
mobility. The fitting procedure, however, yields a constant value of about 7-8 ps for 7,
at all the relevant fields (above 7x10"). This implies that the drift is made at about
saturation velocity. <, is found to be indeed sample dependent and constant over the

c

whole range of applied fields. The tunpeling time t,, was found to decrease as a

tun

function of the electric field from values of about 8 ps at a field of 6.8x10* V/cm to 3 ps
at a field of 10° V/em.

In the low field regime the voltage diffusion is modeled by the same 1, dependence.
However, the motion of electrons in the mini-band towards the doped region is diffusive.
It is therefore assumed that the electrons move at a velocity, which is related to the
electric field via the mobility, and is the mean value of a distribution which spreads
linearly in time. The absorption change is modeled by the function

£t
( ) min{r,,,td} 14 exp 4Dt
Aalz,) ~ dr' lar . . (5.3)
’ ‘c[ 'c[ 4 et
T

which keeps the notations already used in Eq. 5.2. t, in this case is related to the drift
velocity within the band, and D is a diffusion like coefficient which determines the rate at
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which a Gaussian distribution spreads in time. This model yields mobility values which
decrease from 300 cm® / V-sec at a field of 3.5x 10" V/em down to 100 cm® /V-sec ata
field of 6.7 x 10" V/cm, marking the destruction of the band.

5.5 Summary and Discussion

To evaluate our results and to compare them with related works let us re-examine Fig.
5.6. To have some feeling for the data we added the localization length £ = A/ eF on the
top x axis. The onset of localization, where the rise times start to increase with field,
occurs at a field, in which the Stark ladder states are resolved in the optical spectra (~
4x10%). In order to resolve this states the energy separation between the peaks should be
larger than their width, i.e. eFd > h/ 1, . This is the same as the Esaki-Tsu criterion for
the onset of negative differential conductivity.l2 In this sense our results qualitatively
confirm their predictions. It should be noticed that the Esaki-Tsu model requires the
existence of a band. This assumption is clearly incorrect when the localization length, &,
is smaller than 3 wells. Yet we can see that negative differential conductivity (i.e.
increase of rise times) persists up to & ~ 1.5 wells. At higher fields the tunneling to the
next band become the dominant process. As a consequence there is no possibility of
observing the predictions of the Tsu-Dohler model.

A year after the publication of our results, a similar work performed by Palmier et al.%?
was published. They applied a time resolved photo-current technique on a set of
superlattices having different mini-band width. Their results were identical to ours

showing a decrease in the electron velocity as the applied field is increased.



6. The excitonic interaction

The low energy side of the optical spectra of superlattices is usually marked by a sharp
peak, originating from an exciton.® The Coulomb interaction between an electron and a
hole in an exciton clearly complicates the simple one electron description of a superlattice
that was presented in the previous chapter. The importance of the excitonic interaction 1s
determined by the ratio between the exciton binding energy, E,, and the inter-well
coupling, 8/2. In broad band superlattices, where §/2>> E,, as was the case in the
previous chapter, it is justified to treat the excitonic interaction as a small perturbation.
This assumption is not valid in narrow band superlattices, having A <20 meV (8/2<5
meV).

In this chapter we study the effect of the excitonic interaction on the energy spectrum
and electron dynarnics in a narrow band superlattice subjected to a normal electric field.
We first present transmission and photo-current measurements exhibiting a unique
evolution of the energy spectrum in the applied field. We then show results of degenerate
FWM measurements and demonstrate that the oscillatory nature of the measured signals

originates from excitonic quantum beats.

The superlattice we studied is composed of undoped 40 periods of 93 A Gaas wells

and 22 A Aly,sGa,;sAs barriers. The high and thin barriers, which separate the wells
from each other, give rise to a narrow mini-band. A Kronig-Penney calculation yields a
value of 8 meV for A, the mini-band width.

6.1 Continuous wave measurements
6.1.1 A modified Stark ladder

Figure 6.1(a) describes the photo-current spectrum at a nearly flat band condition.

Three spectral features are clearly observed: two narrow and high peaks at 1.556 and
1.574 eV, labeled (0)HH and (O)LH, respectively, and a broad feature centered at 1.563 eV,

labeled (V)HH. Upon the application of an electric field (Fig. 6.1(b)) the spectrum
changes dramatically. While the (O)HH and (O)LH peaks broaden but remain at the same
energy, the central feature splits into four peaks, which move away from each other with
increasing field. The peaks at 1.556 and 1.574 eV are clearly the heavy and light hole
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exciton transitions, respectively. This identification is based on their spectral position,
relative strength and insensitivity to small applied fields. Each of these excitons is made
of an electron and a hole, whose wave functions are localized in the same well. We shall
show in the following that the (iv)mi peaks are associated with indirect excitons, each of
which is formed of a heavy hole and an electron whose wave functions are localized in
different wells. We also observe a set of similar transitions associated with the light hole.
Their behavior is a replica of that of the heavy hole transitions and will not be discussed

here.
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Fig. 6.2 summarizes the position of the (iv)HH peaks as a function of electric field in a

fan chart. As can be seen, the general behavior resembles that of a Stark ladder in wide-
band superlattices. Transitions labeled by a positive sign shift to high energies with
increasing field, while those labeled by a negative sign shift to low energies.
Furthermore, higher index transitions shift faster than lower index ones, and the (0)mq
transition remains nearly stationary. The striking difference, however, is that at low
fields (F <3 kV/cm) the (iv)HH peaks appear at energies higher than that of the (O)HH
transition. At higher fields the red shifting transitions, (~—v)m{, anti-cross the (O)HH
transition: first the (=2)..., at an applied field of 3 kV/cm, and then the (—1)im at 5

HE?
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kV/cm. This anti-crossings are manifested in the photo-current spectra as an exchange of

oscillator strength between two transitions (Fig. 6.3). This behavior is in contrast to the
evolution of the spectrum of wide mini-band superlattices, where the (——V)HH transitions
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Fig. 6.2: A fan chart of superlattice transition energies vs. applied field.

are below the (0)
chapter).

. One already at low fields (see for example Fig. 5.2 in the previous
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Photo-current (arb. units)

185 1.6
Excitation energy (eV)

Fig. 6.3: Photo-current spectra at applied fields of (bottom) 1.6 kV/cm, {middle) 4.8 kV/cm, and (top)

7.9 kV/em. In this field range the (—1)yy anti-crosses the {0)yy transition while exchanging oscillator

strength.

6.1.2 A local tight binding model for the narrow band superlattice.

The evolution of the energy spectrum can be understood using a simple tight binding 5
wells model (Fig. 6.4). The major effect of the Coulomb interaction between the photo-
excited electrons and holes is to deform the band structure locaily. One can account for
this interaction by taking the well depth to be space dependent, symmetric around the
hole location. Thus, the energy level of an electron whose wave function is localized at
the same well as the hole (the central well in the figure) would be lowered by the binding
energy of a quasi-two dimensional exciton, ~8 meV. Similarly, the energy of an electron
in an adjacent well will be renormalized by a lesser amount, the binding energy of an

indirect exciton.
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(a) (b)

Fig. 6.4: Illustrations of the tight binding five wells model: (a) at a flat band condition and (b) at an

applied field that corresponds to ~2 kV/cm.

Using this model we can modify Eq. 1.6 and write €, the energy of an electron whose

wave function is centered in the v-th well in the presence of an electric field, as
e, =E —E,") +veFd v=0,%1,%2,... (6.1)

where E, is the confinement energy in a well, EB(”}

is the excitonic binding energy
between a hole positioned in the 0-th well and an electron centered in the v-th one, F is
the applied field and d is the superlattice period. It should be noticed that EE(") is nearly
independent of the field because the electron wave function is already localized at zero

applied field and changes only a little as it is increased.

Although this tight binding model is rather simple it provides a clear physical insight
into the observed optical spectra. At a flat band conditions the energy levels are
symmetric with respect to the central well. The effect of tunneling is to split the
degenerate energy levels €., into a symmetric and an anti-symmetric levels which are
very close in energy. The broad spectral feature (v)HH in Fig. 6.1(a) is associated with
transitions to these levels. Upon application of an electric field this symmetry is broken,
and the energy levels £_, shift to low energies while the €, shift to high energies. At

certain fields, when the applied field compensates for the binding energy differences
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between neighboring sites, we get degeneracy of energy levels. These are responsible for

the observed anti-crossings.

6.2 Time resolved measurements

6.2.1 Four wave mixing

DFWM signal (arb. units)
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Fig. 6.5: Time resolved FWM signal (on logarithmic scale) at an applied field of 9.7 kV/cm and

excitation energy of 1.551 ¢V.

Figure 6.5 shows a typical FWM signal (on logarithmic scale) measured on a biased
superlattice. Three oscillations are clearly seen having a period of 0.5 ps. These
oscillations are damped with a dephasing time of 0.35 ps. Examining the oscillation
frequencies at various fields we find a clear dependence on the applied field. This is
demonstrated in Fig. 6.6, where we show the oscillation frequency, %, as a function of
applied field, at an excitation energy of 1.559 eV. Two regimes are clearly observed.
The first is below 2 kV/cm and is characterized by high frequency oscillations, between
6.5 to 9 meV. The second regime is above 3.5 kV/cm and the frequencies are lower,

48



between 4.5 to 7.5 meV. In both regimes the oscillation frequency increases
monotonically with field. In the intermediate field range the oscillations are less
pronounced and their pattern is complicated, consisting of non regular low amplitude
oscillations.
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Fig. 6.6: FWM oscillation frequencies vs. the applied field at an excitation energy of 1.559 eV.

6.2.2 Exciton quantum beats

In view of the fact that we see oscillations, whose frequency depends linearly on the
applied field, one might draw a conclusion that these are Bloch oscillations. However,
our tight binding model suggests that these oscillations have a local nature, and are
quantum beats between the various Stark ladder transitions.

To examine this interpretation we study the dependence of the oscillation frequency on
the excitation energy. Figure 6.7(a) describes two FWM signals measured at different
excitation energies and the same applied field of 3.2 kV/em. It can clearly be seen that
the oscillation period varies with the excitation energy. At high excitation energy (1.562
eV, lower curve) the period is 0.9 ps while at low energy (1.551 eV, upper curve) the
period is longer, 1.3 ps. Fig. 6.7(b) describes the energy levels (within the 5 wells model)
and illustrates the origin of the different oscillation periods. At this applied field the
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(-2),,, transition has already crossed the (0). one while the (1) ,, transition is above it

1H
(see also Fig. 6.2). By tuning the lasertoa h]iligher energy it covers only the (O)HH and the
(—~1)HUH transitions, and we excite a superposition of the two. Thus, the quantum beats are
associated with electron states in adjacent wells. Shifting the excitation energy to the red
the laser spectrum no longer overlaps with the (—1)HH transition but rather with the
(—2)%. In that case the quantum beats involve electron wave functions which are

centered two wells away from each other.
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Fig. 6.7: (a) Time resolved FWM signals at excitation energies of (top) 1.551 eV and (bottom) 1.5362

eV. (b) The corresponding five wells model for the photo-excited energy levels.

Similarly, the two oscillation regimes of Fig. 6.6 can be associated with quantum

beats. We can trace the {ransitions involved using the fan chart of Fig. 6.2. In the low
field regime the transitions involved are the (O)HH and the (+1)un' As can be seen in Fig.

6.1(b), the (+1),,,
shifts away from the (0)HH transition with increasing field at a rate which agrees with the

is the transition with the highest oscillator strength. Furthermore, it

measured frequency. Similar considerations lead us to associate the high field
oscillations with quantum beats between the (”‘1)% and the (O)m{' The transition from
(‘H)mq to (”l)zm oscillations can be very well explained within the simple model
presented above. A straightforward tight binding calculation at low fields shows that the

wave function of an electron associated with the («i«l)m transition has the largest overlap
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with the hole. Therefore, this transition has the largest oscillator strength and dominates

the observed oscillations. At high fields, the (-1}, gains oscillator strength due to the

HH &
anti-crossing with (0)HH .

We wish to remark here that the behavior at a nearly flat band (F <1kV/cm) is
different and the FWM signal is not oscillatory. This behavior will be discussed in more
detail in the next chapter.

6.3 Summary and discussion

No experimental research was performed on narrow band superlattices prior to this

work. In Ref [51] there is a theoretical analysis of an extremely narrow band

superlattices ( 100 A barriers) and indeed the energy dependence of the different Stark

ladder states is similar to our experimental results.

Parallel to this work, field dependent oscillations were observed ina F WM experiment
in a GaAs/AlGaAs superlattice and were attributed to the phenomenon of Bloch
oscillations.2’ Later, sub-millimeter wave emission from a superlattice under the same
condition was attributed to the same phenomenon.?6 Our work puts a question mark on
this conclusion and suggests that FWM field dependent oscillatory signals originate from
excitonic quantum beats. Following the submission of this work to publication some of
the authors of Ref. [25] published a theoretical work that postdicted our linear results.
Furthermore, they claimed that there is a difference in the physical origin, hence in the
frequency, of the two oscillatory signals (of Refs. [25] and [26]). They suggest that the
FWM signal is, indeed, of excitonic origin and claimed that the electromagnetic wave
emission is a true mark of Bloch oscillations.28 To date, no experimental evidence has
supported these results.
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7. Fano interference in a parallel magnetic field

A magnetic field is frequently used in the investigation and characterization of
superlattices (see section 1.3). Following the theme of this work we are interested 1n
paralle] magnetic fields where the cyclotron motion of the electron interfere with
tunneling across the supetlattice barriers. In this chapter we wish to study the energy
spectrum and dynamics of excitons in the strong magnetic field limit. As explained in the
introduction this limit is reached when the cyclotron energy, fio, is larger than the mini-
band width. For narrow band superlattices it can be achieved using available magnets.

We show that the optical spectrum can be correctly understood only if interference
effects between direct and indirect excitons and their continua are considered. The
interaction between a continuum of states and a discrete resonance is known to give rise
to a unique absorption spectrum2. When such a system is excited from a common
ground state, interference of the transition amplitudes of the resonance and the continuum
occurs. This results in an asymmetrical peak in the absorption line-shape with a
vanishing absorption on one of its sides. This phenomenon was studied by Fano and is
found in atomic systems,33 Bulk semiconductors3%35 and low dimensional structures®6, It
was recently shown that Fano interference could have a profound effect not only in the
spectral domain but also in the dynamics of the system.>7

In this chapter we focus on the interference between the (il)m{ excitonic transitions,

from a hole state in a certain well to electron states in adjacent wells and the continuum of

the (O)HH
field we are able to tune the energy of the (il)Hﬂ indirect exciton relative to the edge of

exciton, hereafter designated by (0)::: . By varying the strength of the magnetic

(0):. We then drastically vary the coupling between the discrete (+1),,,, transition and

this two dimensional continuum of states. This provides a unique opportunity fo
investigate Fano interference near the band edge. We find that both the decay pattern of
the FWM signal and the linear transmission spectra change as the (il)m{ resonance

i -
behavior and the absorption peak of the (iI)HH transition, starts to shift rapidly to higher

crosses the continuum edge, (0) The FWM signal abruptly develops an oscillatory

energies.

This chapter is organized as follow: in section 7.1 we review excitonic transitions in
superlattices subjected to strong magnetic fields and the phenomenon of Fano

interference.  in section 7.2 we describe transmission and FWM experiments.
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Interpretation of the results and a quantitative model of Fano interference for our system

is given in section 7.3.

7.1 Introductory review
7.1.1 Exciton in a superlattice subjected to a parallel magnetic field.

The dispersion curves of an electron in a superlattice subjected to a parallel magnetic
field were discussed in the introduction (section 1.3) and can be drawn as in Fig. 7.1(b).
To include the Coulomb interaction between the electron and hole we first turn off the
magnetic field. Following arguments in the previous chapter (section 6.2.2), the excitonic

states in the absence of magnetic field can be drawn as in Fig. 7.1(a).
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Fig. 7.1: The eleciron energy levels in a narrow band superlattice (a) in the presence of a hole and (b)

in the presence of a strong magnetic field. (O)HH and (il)““ designate the electron levels that are involved

in the direct and indirect excitons, respectively.

To understand the energy spectrum of excitons in a strong magnetic field let us first
turn off the Coulomb interaction. It can be easily shown that to a first order in
perturbation theory the magnetic field changes the electron wave function (Eq. 1.9) only
in the normal direction (z direction), while maintaining its plane wave nature in the
layers. It follows, that the description of exciton creation from 2D continuum states in
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quantum wells! can be applied directly to superlattices in the strong magnetic field limit.
Excitons are formed, then, by electrons whose guiding centers are at the extrema of the
dispersion curve marked by arrows in Fig. 7.1(b). The electrons related to the lower

extremum are located in the central well and are responsible for the creation of the direct
intra-well (O)HH exciton. The electrons at the higher extremum reside primarily at the left

and right wells and form the indirect exciton (il)HH.

The energy of the (il) extremum is determined by the intersection point of two

HH
parabolas centered in the right and left wells (Fig. 7.1(b)). It is clear from Eq. 1.10 that

increasing the magnetic field will cause this intersection point to shift to higher energies.
Since the diamagnetic shift is the same for all states, the magnetic field shifts the indirect
exciton energy upward relative to the continuum edge (the bottom of the central
parabola). Consequently, at some critical field the (tl)HH energy crosses the edge of the

( 0)&}:;:;1. We define by Q the difference in energy between the (tl)HH and the edge of the

o
Q= E[(£D)y]— E[edge of (0);—? (7.1

It follows that at zero magnetic field Q <0, and at the critical field, where the (i-l)m{
crosses the (O)E;’: edge, Q=0. From Fig, 7.1(a) it can be seen that =0 occurs at a
magnetic field which shifts the (il)HH by its binding energy.

7.1.2 Fano interference

The excitation into a superposition of a discrete state ((il)HH in our system) and a
continuum of states ((O):::;) was studied by Fano:52 In his analysis he represents the

matrix element for optical excitation from a common ground state, i), into the

superposition state, I‘P(E )), as:

V(@ (E)| D))

L_plag s
E-E

/s
Tl

(w(E) D))= (@ sin® —(@°:(£)| Dl )cos®

! - @li)sin@ +
¥y

(7.2)
where © = —arctan V|’ [[£ ~ Eo, - f(E)] and f(E)=P[dE'We[ (E-E"). D is the

excitation operator, ¥ is the energy dependent coupling term between the discrete ®°exe
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state and a continuum ©%(E) state, £, is the energy of the discrete level, £ is the
excitation energy, and P stands for the principal value of the integral. ((Dcexci.@|i> and
(@%(E)‘D]i) are the excitation matrix elements into uncoupled discrete and continuum
states, respectively. Note that sin® and cos®@ are even and odd functions of
E-E_ —-f (E), respectively. Consequently the first two terms in Eq. 7.2 have an
opposite phase relative to the third term around the sharp resonance at £ =E__+ f(E).
This is manifested as an asymmetrical line shape in the absorption spectrum that

characterizes a Fano resonance.

7.2 Experiments
7.2.1 Transmission spectroscopy

The sample we used is the same as in the previous chapter. The exact growth
parameters appears in appendix A. In Fig. 7.2 we present three transmission spectra
measured at 1, 3, and 6 Tesla. The two strong peaks at 1.556 and 1.574 eV are the heavy
and light hole exciton transitions, respectively. The third smaller peak at the intermediate

value of 1.563 eV at 1 Tesla is the indirect exciton transitions. The main contribution to
this feature is from the (il)ﬁﬁ transition.

1 Tesla

Fig. 7.2: Transmission spectra at

3 Tesla magnetic fields of 1,3, and 6 Tesla

applied paraliel to the layers.

6 Tesla |

Transmission {arb. units)

1.55 .56 157
Energy (eV)
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Tt can be seen that while the positions of the direct heavy and light hole excitons shift
only slightly between 1 and 6 Tesla (less than 1 meV), The (ii)m_[ peak exhibits a much
larger shift (~3 meV). The open circles in Fig. 7.3 describe the energy of the indirect
exciton (relative to the direct one) as a function of the magnetic field. We observe a
profound change around 3 Tesla: while at low fields the relative position of the indirect
exciton remains constant, it shifts quadratically above 3 Tesla. The solid line in Fig. 7.3
describes the calculated energy difference between the indirect and direct excitons based
on Eq. 1.10. It can be seen that there is a very good agreement with the measured data
points above 3 Tesla. The curvature of the line is determined by fundamental constants
and the only adjustable parameter is the energy difference at B=0, which is taken as 5.5
meV. Clearly this line fails to describe the field dependence below three Tesla.

10|

Energy (meV)
O ~N 0 ©

01 2 3 45 6
Magnetic field (Tesla)

Fig. 7.3: The energy difference between (0)HH and (il)“" vs. applied magnetic field: solid line -

calculated, open circles - measured. The solid dots are the measured FWM frequencies.
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7.2.2 FWM experiment

Fig. 7.4 shows FWM signals measured at different applied magnetic fields with the
excitation energy centered at 1.559 eV, covering both the direct and indirect transitions.
A qualitative difference between the low and high field signals is clearly observed.
Below 3 Tesla the overall decay is exponential, exhibiting a dip near zero time delay. An
abrupt change in this behavior occurs at B >3 Tesla: fast oscillations appear in the decay
pattern. The frequency of these oscillations increases quadratically with magnetic field,
as shown in Fig. 7.3 (solid dots). It can be seen that this frequency matches the energy
difference between indirect and direct excitons (open circles). One can, therefore,

conclude that the fast oscillations are quantum beats between the indirect and direct

excitons.
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Fig. 7.4: FWM signals vs. time delay at different applied magnetic fields.

The laser is centered at 1.559 eV.
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7.3 Interpretation

We now wish to discuss the experimental results. We start with the linear
transmission data and show that it can be understood in terms of the interaction between a
resonance and a continuum. This interaction causes each continuum state to be repelled
from the resonance by an amount which depends on their relative energy separation.
Consequently, there is a "pile-up" of continuum states and a sharp absorption peak is
formed. At Q <0, as the resonance is far below the continuum edge, the interaction is
weak and effectively involves only the lowest continuum states. The resulting "pile-up”
is not pronounced and the energy of the absorption peak is not very sensitive to small
changes in the energy of the discrete level. When Q becomes positive the interaction is
enhanced and involves more continuum states. The absorption resonance becomes
sharper and more sensitive to changes in the energy of the discrete state. This mechanism

explains qualitatively the trends observed in the absorption line-shapes (Fig. 7.2): blue
shift and narrowing of the (+1)HH peak. It also explain the different shift rates of the

(tl)m{ exciton below and above 3T (Fig. 7.3).

7.3.1 Fano interaction between a two dimensional continuum and an exciton

To make the above interpretation more quantitative let us now turn to examine the
Fano interaction in the case of our superlattice. We consider a 1S indirect exciton whose
electron is coupled by tunneling to a two dimensional continuum of states. The electron
part of the indirect exciton wave function is written as D =@ ®ec(z )exp( k.t ) and the
2D continuum state is approximated as ®%.=¢ c(a)exp(ﬂer —ik, y). The matrix

element for tunneling between these two states has, therefore, the form
<<p e 2 M ¢’ )<exp( k- ')iexp(—ikxx —ik, y)> (7.3)

where ¢ is the tunneling operator. The left bracket in Eq. 7.3 can be approximated as a
constant 58 and estimated to be ¥ ~4 meV in our structure. The important quantity in
Eq. 7.2 is the coupling term, V3, that characterizes the physical interaction between the
discrete state and the continuum. Taking into account the 2D density of states and energy

conservation, we find:
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. 2R,
R (7.4)

(B2 +R2)

where R = hzk! !2 /2m" is the indirect exciton Rydberg. Note that the use of plane waves
rather than the radial wave functions to describe the continuum states leads to an over
estimation of the coupling strength just above the continuum threshold at E=0.

Therefore this approximation gives an upper limit for the value of I,
7.3.2 Comparison with experiments

We now insert ¥y into the Fano formula (Eq. 7.2) and calculate the absorption line-
shape. Fig. 7.5 describes the evolution of the calculated absorption spectrum as we vary
€. One can see the formation of a narrow resonance, which shifts to higher energies with
increasing Q, forming a shallow dip on its low energy side. Note that this shift is not
linear in Q. It is nearly insensitive to changes in Q) for Q <0 and it follows the energy of
the discrete level more accurately at 2> 0.

A=7

Transition probability (arb.units)

0 2 4 6 8 10
Energy (meV}

Fig. 7.5: Calculated Fano interference line-shapes at 3 different values of ©2. Insets: energy position of

the discrete level (arrow) relative to the continuum edge.
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The above model implies that the absorption peak is not the bare (il)m1 but is rather a
cont

i - At low fields it has predominantly a continuum

mixture of this resonance and the (0)

nature and at high magnetic fields this peak contains a larger excitonic contribution.

This mixed nature of the indirect exciton peak is consistent with the different decay
patterns of the FWM signal below and above 3 Tesla. We note that in the FWM
peak. Since FWM

is a coherent process the resulting signal will contain a contribution due to interference
between the two transition amplitudes. The character of the (il)!m, being continuum or

experiment we excite simultaneously the (0).... exciton and the (+1)

HH 31H

exciton like, determines the type of this interference: either between a resonance ((O)Hﬁ)

and a continuum or between two resonances.

To examine the FWM data in view of this interpretation, we consider first the low field
signal. It was shown by Feldmann e al. that when an excitonic resonance and 1ts
continuum are co-excited in a FWM experiment, the resulting decay pattern is
exponential with a dip just after zero time delay.”? This pattern is similar to the one

observed in our experiment below 3 Tesla. We can therefore conclude that in this field
range the (il)mI has a continuwm nature. As we increase the magnetic field the signal

changes into quantum beats between two resonances. This implies that the (tl)HH peak

contains a larger excifonic contribution. It should be noticed that the first minimum in the
oscillatory signal is deeper than the others. This is due to the fact that the contribution of
the continuum states to the absorption peak is not negligible.

7.4 summary

A pre-requisite for observing a Fano resonance is to achieve a degeneracy between a
discrete level and a continuum of states. Coupled wells systems and superlattices seem to
be natural candidates for exhibiting this phenomenon. To date, however, there is no
report on the observation of Fano interference in these structures. The main obstacle is
that these systems are complex and the interference is masked by other processes (i.e.
relaxation processes, changes in the tunneling parameters etc. ). The application of a
parallel magpetic field on a narrow band superlattice enables us to tune the discrete level
while keeping all other parameters from being modified too severely. We could,

therefore, identify and investigate the Fano interference in a simplified system.

It should be pointed out that time resolved spectroscopy has proven to be a powerful

tool in the investigation of interference phenomena. Although the Fano interference is
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manifested in the linear spectral, the abrupt appearance of oscillations in the FWM decay
pattern is more striking. The reason for this abruptness is not clear and a better theory is

needed.
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8. Summary

In this research we have implemented time resolved and continuous wave optical
spectroscopy to study dynamics of carriers in superlattices. We have used external
magnetic and electric fields, together with the ability to design and grow our superlatiice

samples, to perform a controlled study of specific processes in these structures.

We introduced some modifications to the simple 1D picture that is commonly applied
in the investigation superlattices. Firstly, considering the 3D Coulomb interaction, we
showed that the excitonic interaction substantially deform the ordered Stark ladder
spectrum and the FWM response of narrow band superlattices. Secondly, investigating
the coupling of discrete levels to a 2D continuum, we identified and investigated the Fano
interference demonstrating during this research the high sensitivity of the non-linear
FWM method. The coupling of CQWs system to a 3D continuum was studied as well,
leading to the observation of a nonmonotonic dependence of the relaxation rate in the

coupling strength.

The ability of optics to perform spectral measurements simultaneously with time
resolved measurements, enabled us to contribute to the relatively well studied subject of
transport across a superlattice. We could relate the formation of a Wannier Stark discrete
spectrum with the transport properties of electrons and obtain a good understanding of the

underlying physical processes.
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Appendix A

Here are the details of the MBE grown samples used in our experiments:

composition | Almole | width(A) |dopants dopants

fraction concentration
GaAs 1000 p 1x10"
AlGaAs 03 3000 p 7 %10
AlGaAs 0.3 5000 p 2 % 10"
AlGaAs 0.3 500

periodic structure, 100 periods of:

AlGaAs 0.3 30

GaAs ' 30
end of periodic structure

AlGaAs 0.3 500

AlGaAs |03 13000 n 25 10"

Table 1: Structure of the superlattice used in the experiments described in chapter 3.

68



composition | Almole | width (A) | dopants dopants growth time
fraction concentration | (seconds)
GaAs 2000 Si Ix 10" 625
As 0 60
periodic structure, 60 periods of:
AlAs 1 20 Si Ix 108 24.69
As 0 St 3% 108 1
GaAs 60 Si Ix 10 17.65
As 0 Si 3% 101 1
end of periodic structure
periodic structure, 10 periods of:
GaAlAs 0.192 200 47.51
GaAs 80 23.5
GaAlAs 0.192 200 11.88
GaAs 80 23.5
AlGaAs 0.192 L,
GaAs 700 205
end of periodic structure
GaAs 800 Si 3% 108 250

Table 2: Structures of the three CQWSs samples (chapter 4). IQ has values of 104& , 20 xgx and 50:&.
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composition | Almole | width (A) dopants dopants growth time
fraction concentration | (seconds)
GaAs 1000 Si 2.5x 10" 460
periodic structure, 13 periods of:
AlGaAs 0.35 200 Si 2.5% 10" 90
GaAs 6 1 3
As 0 13
end of periodic structure
GaAs 500 Si 2.5%10" 230
As 0 231
GaAs 900 830
AlGaAs 0.45 22 10
periodic structure, 40 periods of:
GaAs 93 91
AlGaAs 0.45 22 10
end of periodic structure
GaAs 700 l l 646

Table 3: Structure of the narrow band superiattice used in the experiments described in chapter 6 and 7.
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