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Theory — QSH and Topological Phase Transition
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HgTe 2DEG
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Quantum Hall Effect
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Topological Phase Transition

Fig. 3. Crossing field,
B¢, (red triangles), and
energy gap, £, (blue
open dots), as a func-
tion of QW width d
resulting from an eight-
band k-p calculation.
For well widths larger
than 6.3 nm, the QW is
inverted and a mid-gap
crossing of Landau levels
deriving from the HH1
conductance and £1 va-
lence band occurs at fi-
nite magnetic fields. The
experimentally observed
crossing points are in-
dicated by open red
squares. The inset shows

the energetic ordering of the QW subband structure as a function of QW width d. [See also (17)].
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Helical edge mode — Topologically protected
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Fig. 4. The longitudinal four-
terminal resistance, R4 3, of
various normal (d = 5.5 nm)
(I) and inverted (d = 7.3 nm)
(I1, 11, and IV) QW structures
as a function of the gate volt-
age measured for B=0T at
T = 30 mK. The device sizes
are (20.0 x 13.3) um?® for
devices | and 11, (1.0 x 1.0)
um? for device Ill, and (1.0 x
0.5) um? for device IV. The
inset shows Ry423(V/y) of two
samples from the same wafer,
having the same device size
(1) at 30 mK (green) and
1.8 K (black) on a linear scale.



Magneto-conductance — TR Breaking
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Fig. 5. Four-terminal mag-
netoconductance, G143, in
the QSH regime as a func-
tion of tilt angle between
the plane of the 2DEG and
applied magnetic field for a
d = 7.3-nm QW structure
with dimensions (L x Q) =
(20 x 13.3) um? measured
in a vector field cryostat at
1.4 K.
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