New Physics in Moiré Flat Bands

Erez Berg

Ari Turner (Technion), Ady Stern (WIS), Johannes Hofmann (WIS), Eslam Khalaf (Harvard), Ashvin Vishwanath (Harvard), Jong Yeon Lee (KITP)

Creating flat bands

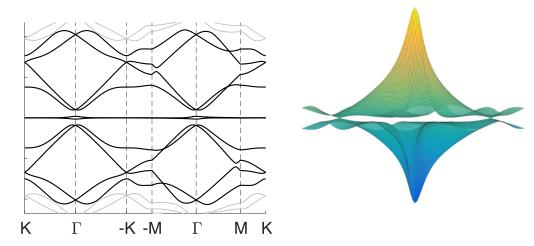
Moiré is different. -G. Baskaran

Electrons on a Lattice Magic angle graphene Landau levels Extended Localized topological -K -M M K Po, Zou, Senthil, Vishwanath (2019)

R. Bistritzer and A. MacDonald (2011); Y. Cao, P. Jarillo-Herrero et al. (2018);...

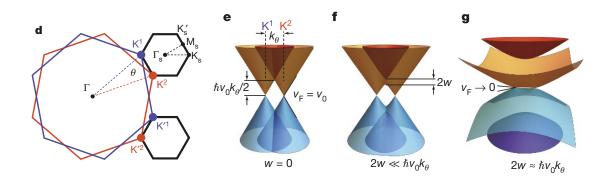
Twisted bilayer graphene at charge neutrality

What could happen?


Constraints on interaction-driven insulators by topology *Ari Turner, EB, Ady Stern,* arXiv:2104.09528

What does happen?

Sign-free QMC simulations of TBG at charge neutrality *Johannes Hofmann, Eslam Khalaf, Ashvin Vishwanath, EB, Jong-Yeon Lee, arXiv:2105.12112*


What's topological in MATBG?

• Dirac points protected by product of \mathcal{C}_{π}^{z} and \mathcal{T}

Po, Zou, Senthil, Vishwanath (2019); Calculation for Bistritzer-MacDonald model

 "Chirality" of the two Dirac points is the same!

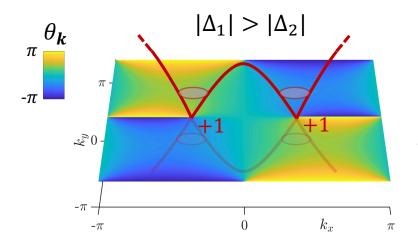
Cao, Jarillo-Herrero et al. (2018)

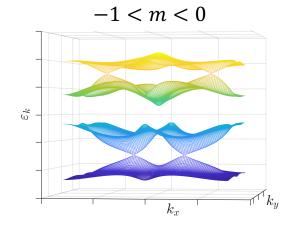
Fragile topology

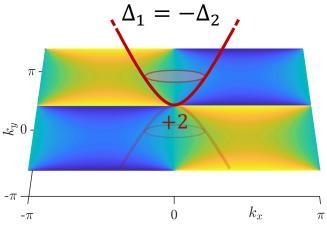
Po, Vishwanath, et al. (2017)

A toy 4-band model with $C_{\pi}^{z}T$ symmetry $C_{\pi}^{z}T = \sigma^{z}\tau^{x}K$

$$\mathcal{C}_{\pi}^{z}\mathcal{T} = \sigma^{z}\tau^{x}\mathcal{K}$$

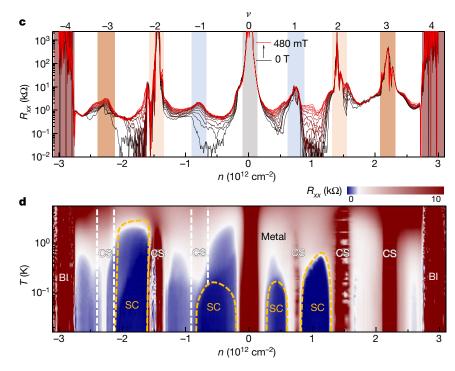

$$H_{\mathbf{k}} = \left(m + \sin^2\frac{k_x}{2} + \sin^2\frac{k_y}{2}\right)\sigma^z + \tau^z\sigma^x\sin k_x + \sigma^y\sin k_y + \Delta_1\tau^x + \Delta_2\sigma^z\tau^x$$


Smooth, real basis for lower bands:


$$|u_{1,2}(\mathbf{k})\rangle$$
, $\eta^z |u_{1,2}(\mathbf{k})\rangle = \pm |u_{1,2}(\mathbf{k})\rangle$

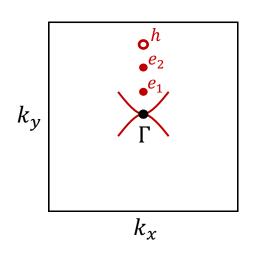
Projected Hamiltonian:

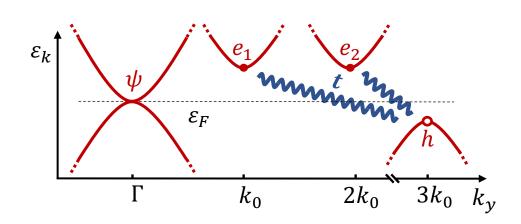
$$H_{\rm eff}(\mathbf{k}) = h_{\mathbf{k}}(\cos\theta_{\mathbf{k}}\eta^z + \sin\theta_{\mathbf{k}}\eta^x)$$


Gap at charge neutrality?

Without interactions: at charge neutrality, if the active bands are separated from the rest of the spectrum, the system is metallic unless a symmetry (e.g. $\mathcal{C}_{\pi}^{z}\mathcal{T}$) is broken.*

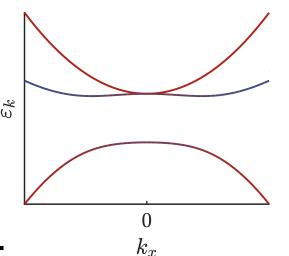
* Translation symmetry breaking can also open a gap: Kang, Vafek (2019)


Q. With strong interactions, are there other options?
Topological order?
"Featureless" insulator?


Gap at charge neutrality (theory): Xie, MacDonald (2020); Bultnik, Khalaf et al. (2020); Liao, Kang, Meng et al. (2021)

Gap at charge neutrality in MATBG Lu, Efetov et al. (2018)

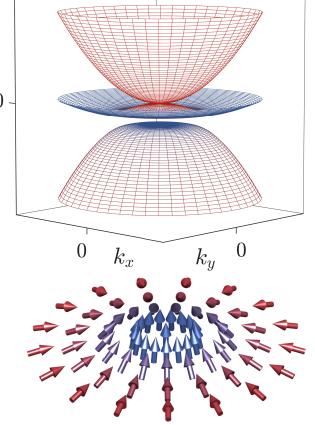
Gap opening by interactions


Turn on interaction:

$$H_{int,1} = -|V_1|(e_1^{\dagger}e_1 + e_2^{\dagger}e_2)h^{\dagger}h$$

 \Rightarrow "Trion" $t^{\dagger} = e_1^{\dagger} e_2^{\dagger} h^{\dagger}$ bound state near Γ

$$H_{int,2} = V_2 \left(h^{\dagger} e_1^{\dagger} e_2^{\dagger} \psi + h.c. \right) \sim t^{\dagger} \psi + h.c.$$


Gap opening by interactions

Near k = 0, 3×3 effective real Hamiltonian:

$$H_{\text{eff}} = \begin{pmatrix} k_y^2 - k_x^2 & -2k_x k_y & \alpha k_x \\ -2k_x k_y & k_x^2 - k_y^2 & \alpha k_y \\ \alpha k_x & \alpha k_y & \frac{k^2}{2m_t} - E_0 \end{pmatrix}$$
Wavefunction of lowest band:

Wavefunction of lowest band:

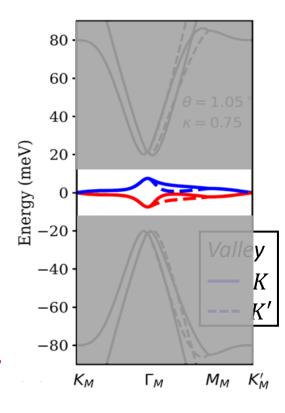
Note: not possible with a single Dirac point (π Berry phase)

Twisted bilayer graphene at charge neutrality

- What could happen?
 Constraints on interaction-driven insulators by topology
 Ari Turner, EB, Ady Stern, arXiv:2104.09528
- What does happen?
 Sign-free QMC simulations of TBG at charge neutrality
 Johannes S. Hofmann, Eslam Khalaf, Ashvin Vishwanath, EB,
 Jong-Yeon Lee, arXiv:2105.12112

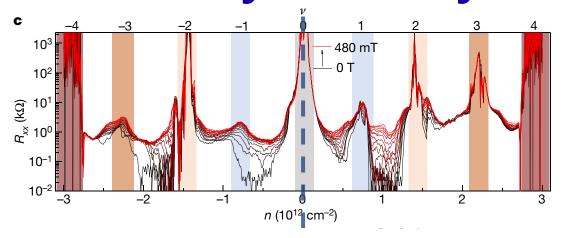
Eslam Khalaf (Harvard)

Jong Yeon Lee (KITP)

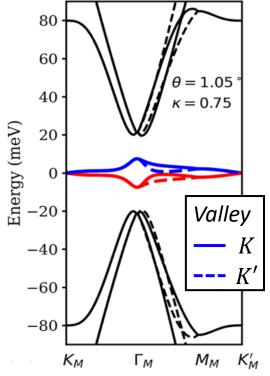

Many-body simulations of twisted bilayer graphene

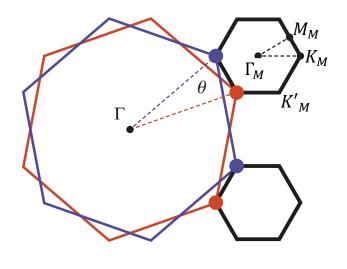
- No localized Wannier description of narrow bands: k-space description required
- 2 bands, 2 valleys, 2 spins = 8 degrees of freedom per unit cell
- Long-range Coulomb interactions

T = 0 simulations of TBLG:


ED: Repellin, Senthil et al. (2020); Xie, Regnault et al. (2021); Potasz, MacDonald et al (2021),...

DMRG: Kang, Vafek (2020); Soejima, Zaletel et al. (2020); Chatterjee, Zaletel (2020)




This work: sign-free momentum space quantum Monte Carlo simulations at $\nu = 0$, enabled by particle-hole symmetry

Particle-hole symmetry at $\nu = 0$?

Lu, Efetov et al. (2018)

Many-body Hamiltonian

"Standard model" of TBLG:

$$H = \hat{H}_{BM} + \hat{V}$$

$$\hat{H}_{BM} = \int d^2r \, c^{\dagger} \left(H_g + H_T \right) c \qquad \hat{V} = \frac{1}{2} \sum_{\mathbf{q}} V_{\mathbf{q}} \delta \rho_{\mathbf{q}} \delta \rho_{-\mathbf{q}}$$

$$c^{\dagger} = \left(c_{\boldsymbol{\sigma}, \boldsymbol{\mu}, \boldsymbol{s}, \boldsymbol{\tau}}^{\dagger} \right)$$

 σ : sublattice, μ : layer, s: spin, τ : valley

$$H_g = -ve^{-i\frac{\theta}{4}\mu} \sqrt{\tau^z} \left(\tau^z \sigma^x \frac{1}{i} \partial_x + \sigma^y \frac{1}{i} \partial_y\right) e^{i\frac{\theta}{4}\mu} \sqrt{\tau^z}$$

Inter-layer tunneling
$$H_T = \sum_{m=1}^3 \mu^+ \left[w_0 + w_1 \left(e^{\left(\frac{2\pi i m}{3} + i \boldsymbol{q}_m \cdot \boldsymbol{r} \right) \tau^z} \sigma^+ + h.c. \right) \right] + h.c.$$

Intra-sublattice Inter-sublattice

$$q_1$$
 q_3
 q_2
 q_3
 q_4

Many-body Hamiltonian

Approximate anti-unitary particle-hole symmetry ($\nu = 0$):

$$Cc^{\dagger}C^{-1} = \tau^x \sigma^x \mu^y c$$
$$CiC^{-1} = -i$$

 $\theta \approx 1.1^{\circ} \approx 0.02$

$$c^{\dagger} = \left(c^{\dagger}_{\sigma,\mu,s,\tau}\right)$$

 σ : sublattice, μ : layer, s: spin, τ : valley

$$H_g = -ve^{-i\frac{\theta}{4}\mu} \sqrt{z^z} \left(\tau^z \sigma^x \frac{1}{i} \partial_x + \sigma^y \frac{1}{i} \partial_y \right) e^{i\frac{\theta}{4}\mu} \sqrt{z^z}$$

$$H_T = \sum_{m=1}^{3} \mu^+ \left[w_0 + w_1 \left(e^{\left(\frac{2\pi i m}{3} + i \boldsymbol{q}_m \cdot \boldsymbol{r}\right) \tau^z} \sigma^+ + h.c. \right) \right] + h.c.$$

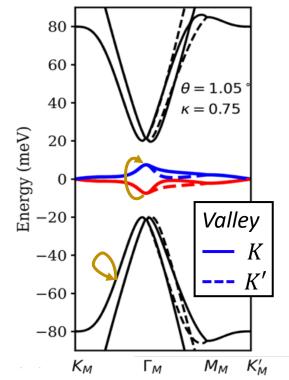
Intra-sublattice Inter-sublattice

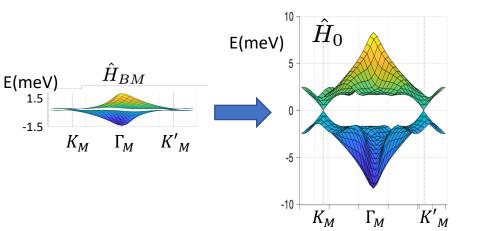
$$q_3$$
 q_2 q_3 q_2

$$|\mathbf{q}_m| = \frac{8\pi \sin\left(\theta/2\right)}{3\sqrt{3}a}$$

Projection to the narrow

bands


"Freeze" the remote bands, leave only active bands: n = +1, -1

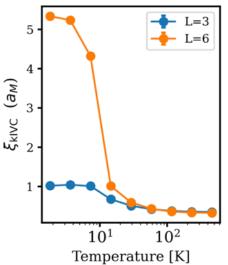

Interaction renormalization of single particle Hamiltonian:

$$\hat{H}_{BM} \to \hat{H}_0 = \hat{H}_{BM} - \left[\hat{V}\right]_{\Psi_0}$$

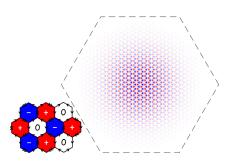
 $egin{bmatrix} \hat{V} \end{bmatrix}_{\Psi_0}$: Hatree-Fock decoupling of \hat{V} w.r.t. to ground state of decoupled layers

See:Bultnick, Zaletel et al. (2020); Liu, Vishwanath et al. (2021)

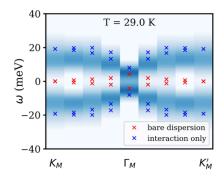
Results

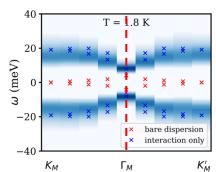

$$\kappa = \frac{w_0}{w_1} = 0.75, W \approx 8 \text{ meV}$$

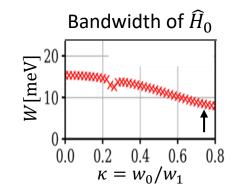
Ground state: Kramers Inter-Valley Coherent state (K-IVC)

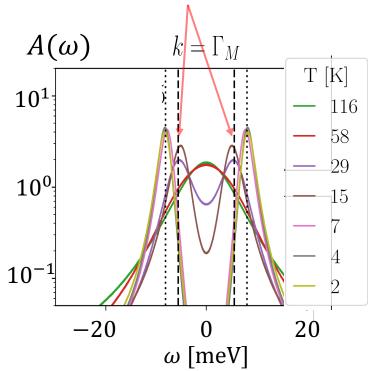

Order parameter: $\langle c^{\dagger} \tau^{x,y} \sigma^y c \rangle \neq 0$

$$\tilde{\mathcal{T}}=\tau^{y}\mathcal{K}$$

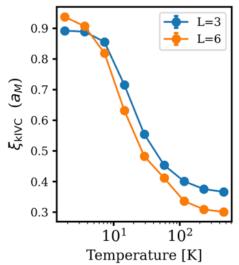

K-IVC correlation length



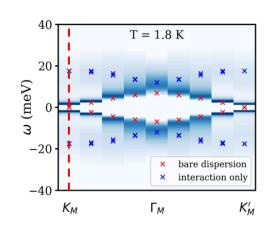

$$\xi_a^2/a_M^2 = \frac{3}{16\sin^2(\pi/L)} \left(\frac{S_a(\mathbf{q}=0)}{S_a(\mathbf{q}=\mathbf{q}_{nn})} - 1 \right)$$

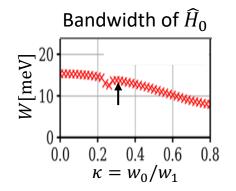

Bultnick, Khalaf, Liu, Chatterjee, Vishwanath, Zaletel (2020)

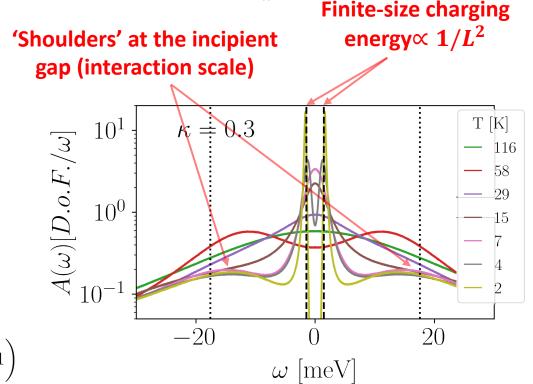
Gap-like feature onsets far above ordering


Results

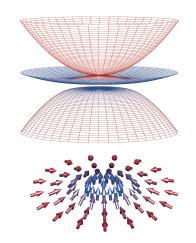
$$\kappa = \frac{w_0}{w_1} = 0.3$$
, $W \approx 14 \text{ meV}$

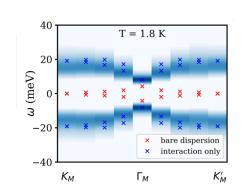

Ground state:
Correlated semi-metal


HF predicts K-IVC with a gap of ~ 17 meV


K-IVC correlation length

$$\xi_a^2/a_M^2 = \frac{3}{16\sin^2(\pi/L)} \left(\frac{S_a(\mathbf{q}=0)}{S_a(\mathbf{q}=\mathbf{q}_{nn})} - 1 \right)$$





Summary

Moiré superlattices are a fascinating new playground combining topology and correlated electron physics.

- Strongly correlated fragile topological bands: unusual gapping mechanism can lead to "featureless insulator".
- TBLG at charge neutrality: no sign problem in QMC due to approximate P-H symmetry.
- Competition between K-IVC and semi-metal, 'pseudo-gap' onsets above ordering temperature.

Thank you!