The good, the bad, and the strange: Experimental and theoretical status of linear in T resistivity

Erez Berg

Yochai Werman, Xiaoyu Wang, Evyatar Tulipman, Sean Hartnoll, Connie Mousatov, Andy Mackenzie, Clifford Hicks, Steve Kivelson, Debanjan Chowdhury, Senthil Todadri, Jörg Schmalian, Veronika Stangier

Semiclassical theory of transport in metals

$$k_F l \gg 1$$
 $l/a \gg 1$

Drude formula: $\rho = \frac{m}{m o^2 \tau} = \frac{3\pi}{2} \frac{h}{o^2 k} \frac{1}{k l}$

Limit of validity: Mott-Ioffe-Regel limit

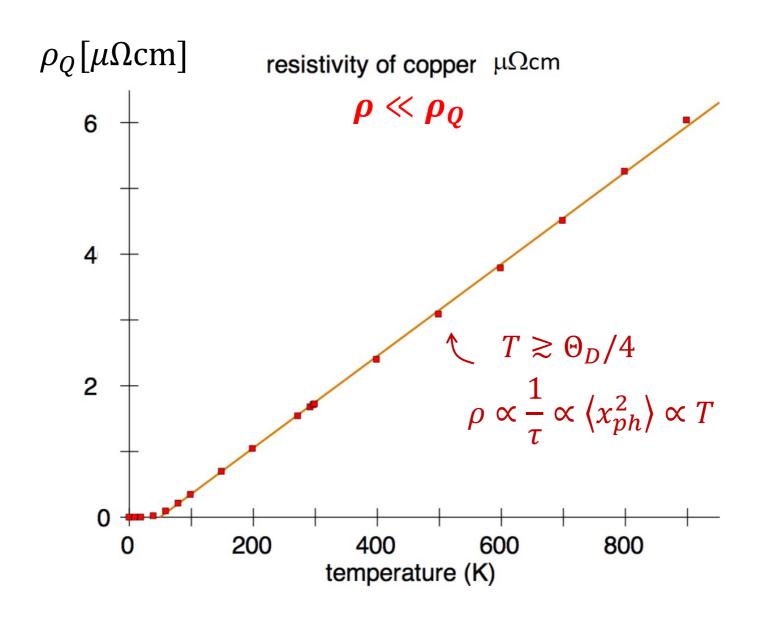
$$\rho \ll \frac{3\pi}{2} \frac{h}{e^2} \frac{1}{k_F} \equiv \left(\frac{3\pi}{2k_F a_B}\right) \rho_Q \qquad \text{"Quantum of Resistivity"} \\ \rho_Q = \frac{h}{e^2} a_B = 136.6 \mu \Omega \text{cm}$$

"Quantum of Resistivity"
$$\rho_Q = \frac{h}{e^2} a_B = 136.6 \mu \Omega \text{cm}$$

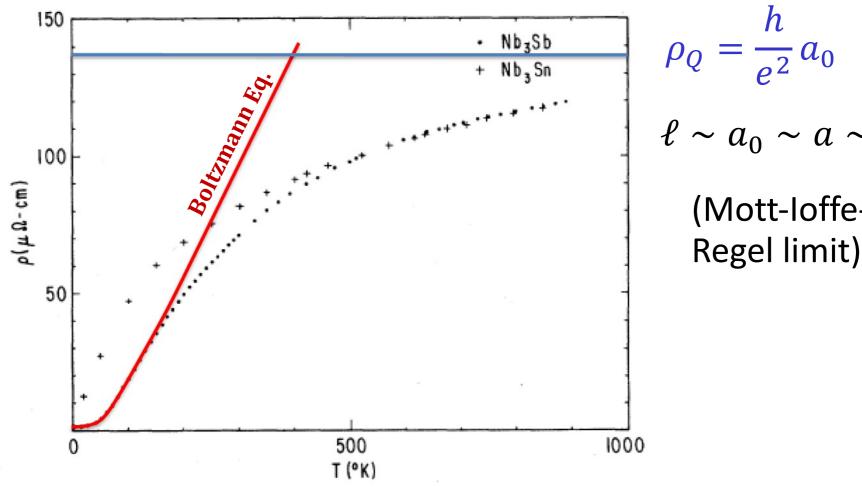
Outline

- Experimental survey: resistivity in good, bad, and strange metals
- Evidence for universal "Planckian" bound on relaxation time?
- Theoretical models
 - Bad metals and resistivity crossover from a large-N limit
 - Strange metal in Sr₃Ru₂O₇ and Planckian bound

Resistivity of a good metal



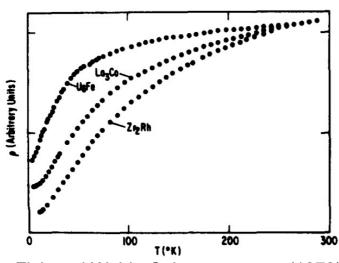
Resistivity saturation



$$\rho_Q = \frac{h}{e^2} a_0$$

$$\ell \sim a_0 \sim a \sim k_F^{-1}$$
 (Mott-loffe-

Resistivity saturation (2)



Fisk and Webb, Sol state comm. (1973)

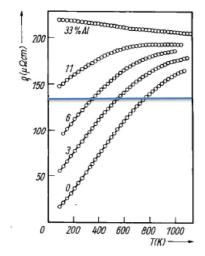
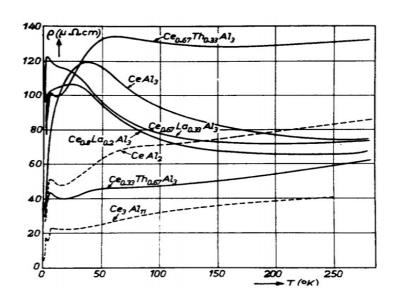
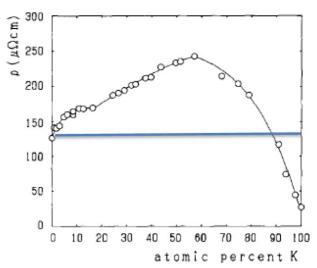


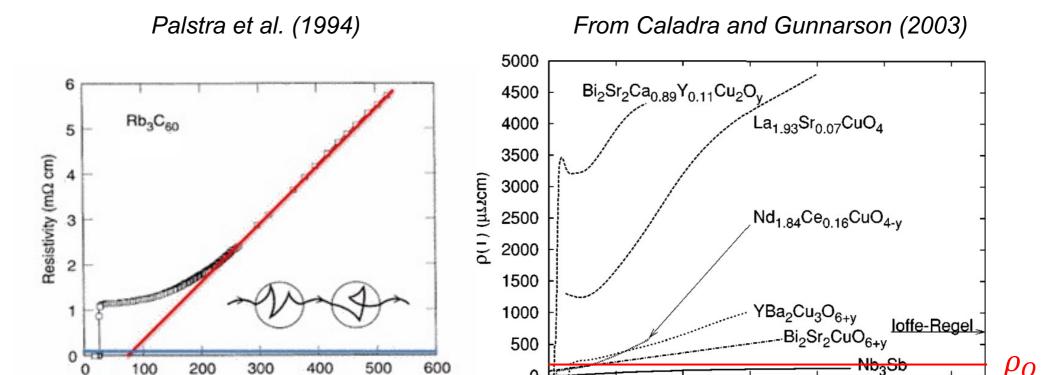
Fig. 3. Resistivity versus temperature for Ti and TiAl alloys containing 0, 3, 6, 11, and 33% Al





The concentration dependence of the electrical resistivity, ρ, of liquid K-Hg alloys at 573 K.

"Bad Metals"



Temperature (K)

Bad metals:
$$\rho(T) \gtrsim \rho_Q$$
, $\frac{d\rho(T)}{dT} > 0$

200

400

600

T(K)

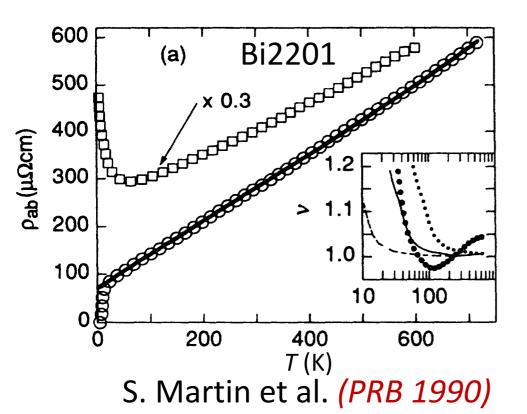
800

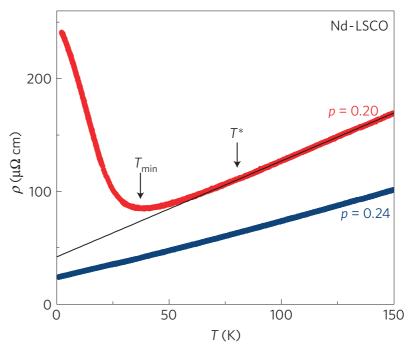
1200

1000

Emery and Kivelson, PRL (1995)

Strange metals: Linear resistivity as $T \rightarrow 0$?

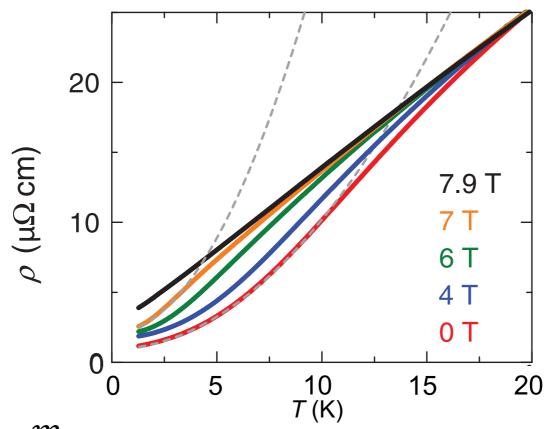




Daou et al. (Nature 2009)

$\rho \propto T$: What sets the slope?

Sr₃Ru₂O₇



$$\rho = \frac{m}{e^2 n \tau}$$
 (average $\frac{n}{m}$ from low T quantum oscillations)

$$rac{1}{ au}=rac{lpha k_B T}{\hbar}$$
 , $lphapprox 1.5$

Bruin, Mackenzie et al. (2013)

$\rho \propto T$: What sets the slope?

$$\frac{d\rho}{dT} \cdot \frac{e^2n}{k_F} = \frac{\alpha}{v_F}$$

$$\frac{1}{\tau} = \frac{\alpha k_B T}{\hbar}$$

$$\frac{1}{\tau} = \frac{\alpha k_B T}{\hbar}$$

$$\frac{1}{\tau} = \frac{\alpha k_B T}{\hbar}$$

$$\frac{1}{\tau} = \frac{\sigma k_B T}{\hbar}$$

- Cuprates (e/h doped): $\alpha = 0.7 1.4$ Legros, Taillefer, Proust et al. (2018); Grissonnanche, Ramshaw et al. (2020)
- PdCrO₂: $\alpha \approx 0.9$ Hicks, Mackenzie et el. (2015)
- Twisted bilayer graphene: $\alpha = 1 1.5$ Cao, Chowdhury, Jarillo-Herrero et al. (2020)

Bruin, Mackenzie et al. (2013)

"Planckian bound" on dissipation?

"Planckian Bound"
$$\frac{1}{\tau} \leq \frac{\alpha k_B T}{\hbar}$$
 with $\alpha = O(1)$ (Sachdev, Zaanen, Hartnoll,...)

Related proposed bounds:

$$\frac{\eta}{s} \ge \# \frac{\hbar}{k_B}$$
 (Kovtun, Son, Sarinets, 2004)
$$D_c \ge \# \frac{\hbar v_F^2}{k_B T}$$
 (Hartnoll, 2015)

- Proper definition of $\frac{1}{\tau}$?
- Electron-phonon systems at high $T: 1/\tau \propto \lambda T$. Where's the bound?
- Apparent violations, e.g. e-doped cuprates at high T

Recent critique: M. Sadovskii (Physics-Uspekhi, 2021)

Outline

- Experimental survey: resistivity in good, bad, and strange metals
- Evidence for universal "Planckian" bound on relaxation time?
- Theoretical models
 - Bad metals and resistivity crossover from a large-N limit
 - Strange metal in Sr₃Ru₂O₇ and Planckian bound

Large-N electron-phonon Model

N identical electron flavors c_a

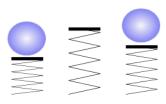
 N^2 identical optical (Einstein) phonon flavors X_{ab}

$$H = \sum_{\mathbf{k},a} \varepsilon_{\mathbf{k}} c_{\mathbf{k}a}^{\dagger} c_{\mathbf{k}a} + \sum_{j,a,b} \frac{P_{jab}^2}{2M} + \frac{M\omega_0^2}{2} X_{jab}^2 + H_{\text{int}}$$

Form of H_{int} :

$$\frac{\alpha}{\sqrt{N}} \sum_{i,a,b=1..N} X_{iab} c_{ia}^{\dagger} c_{ib}$$

Model 1: "Holstein"



$$\frac{\alpha}{\sqrt{N}} \sum_{i,j,a,b=1} X_{i,j;ab} c_{ia}^{\dagger} c_{jb}$$
Model 2: "SSH"

Energy scales

Assume $N \gg 1$: solve to leading order in 1/N

Nb₃Sn: 5 electronic bands, 12 phonon modes

A₃C₆₀: 3 electronic bands, 189 phonon modes

Dimensionless el-ph coupling:
$$\lambda = \frac{\alpha^2 \nu_0}{M \omega_0^2} > 1$$
 (ν_0 : DOS at E_F)

Temperature regimes:

FL Boltzmann "Semi-quantum" High
$$T$$
 (or SC) $1/\tau = 2\pi\lambda T$ regime? (classical) E_F/λ

Large N limit

The electron propagator is strongly renormalized:

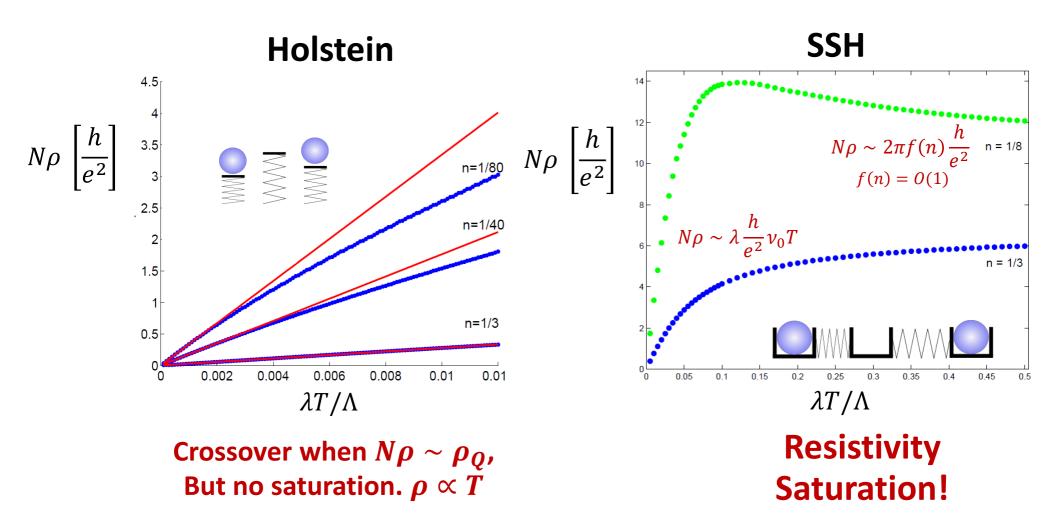
Phonon renormalization

is subleading:

$$\sum = \underbrace{\mathbf{x}^{n}}_{\mathbf{x}^{n}} + \underbrace{\mathbf{x}^{n}}_{\mathbf{$$

Strong scattering of electrons, weak feedback on lattice (no lattice instability and no small polarons at large λ)

Results (d = 2)



Y. Werman and EB, PRB (2016) Y. Werman, S. Kivelson and EB, npj Quantum Materials (2017)

Interpretation: Einstein relation

$$\sigma = \chi D$$

 $\lambda T \gg \Lambda$ (= low T bandwidth):

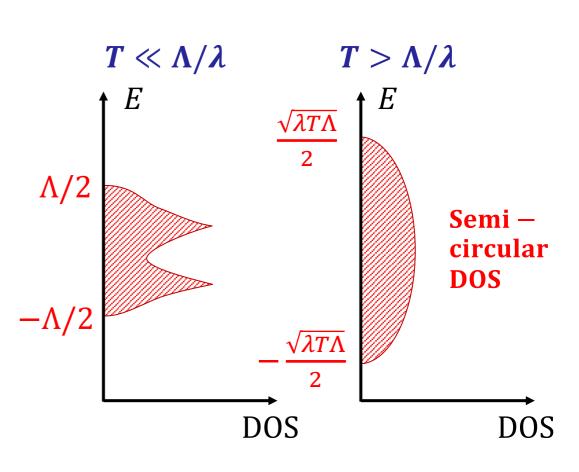
Compressibility: $\chi \sim N \sqrt{\frac{1}{\lambda T \Lambda}}$

Diffusion constant:

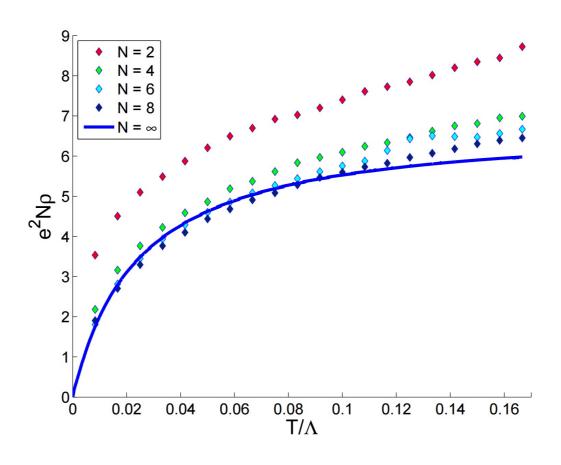
$$D \sim \Lambda^2 \sqrt{\frac{1}{\lambda T \Lambda}} \quad (Holstein)$$

$$D \sim \sqrt{\lambda T \Lambda} \qquad (SSH)$$

Phonon assisted hopping



Finite N: Monte Carlo calculation $(\omega_0 = 0)$



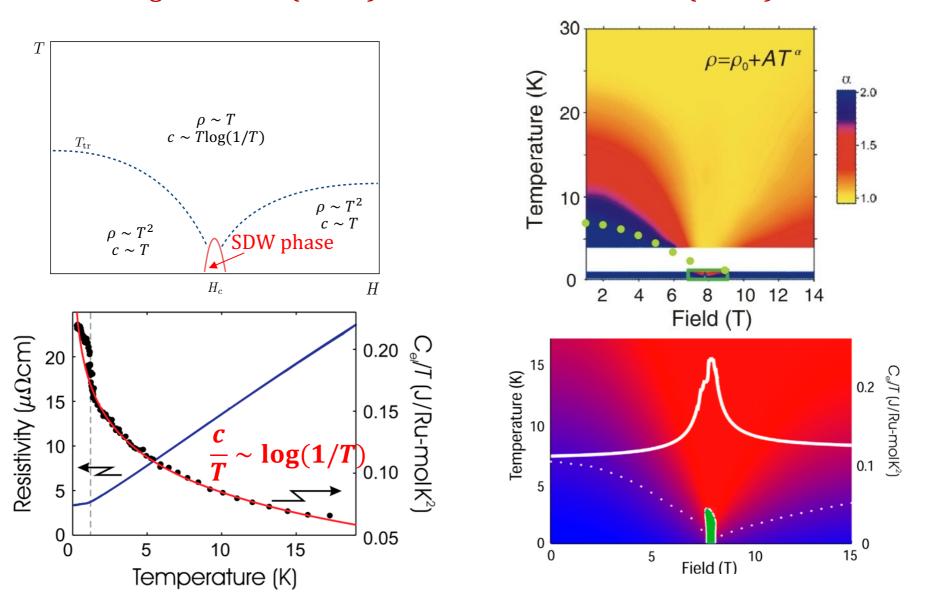
Outline

- Experimental survey: resistivity in good, bad, and strange metals
- Evidence for universal "Planckian" bound on relaxation time?
- Theoretical models
 - Bad metals and resistivity crossover from a large-N limit
 - Strange metal in Sr₃Ru₂O₇ and Planckian bound

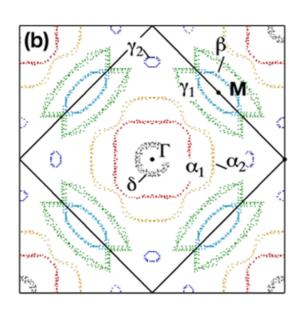
Anomalies in Sr₃Ru₂O₇

At first sight, "canonical" quantum critical behavior

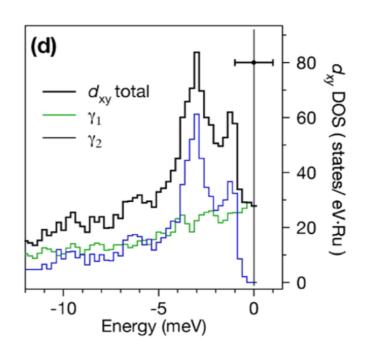
Grigera et al. (2001); Rost, Mackenzie et al. (2011)



Fermiology of Sr₃Ru₂O₇



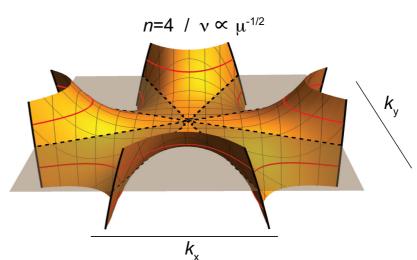
[Tamai et al PRL '08]



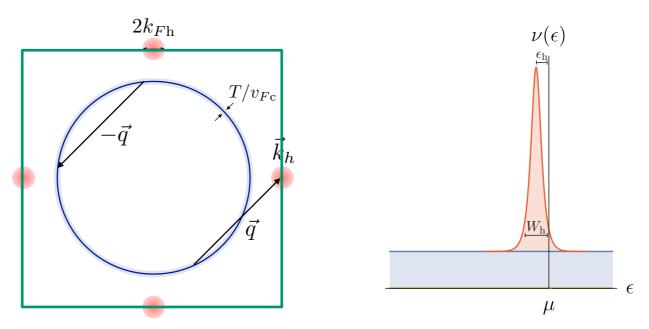
Close to multi-critical van Hove singularity!

$$\varepsilon(\mathbf{k}) = ak^2 + bk^4 \cos 4\varphi$$
$$a \approx 0$$

Efremov, Betouras et al. (2018)



"Cold" and "Hot" Fermions



Key scattering process: $cc \rightarrow ch$

For
$$T > max(W_h, \epsilon_h)$$
: $\Sigma'_c(\omega) \sim \left(\frac{k_{Fh}}{k_{Fc}}\right)^2 \omega \log(\frac{1}{\omega})$

Marginal Fermi liquid! Varma et al. (1989)

Scattering rate:
$$\frac{1}{\tau_c} \sim \left(\frac{k_{Fh}}{k_{Fc}}\right)^2 \frac{k_B T}{\hbar}$$

Mousatov, EB, Hartnoll, PNAS (2020)

Approach to the critical field

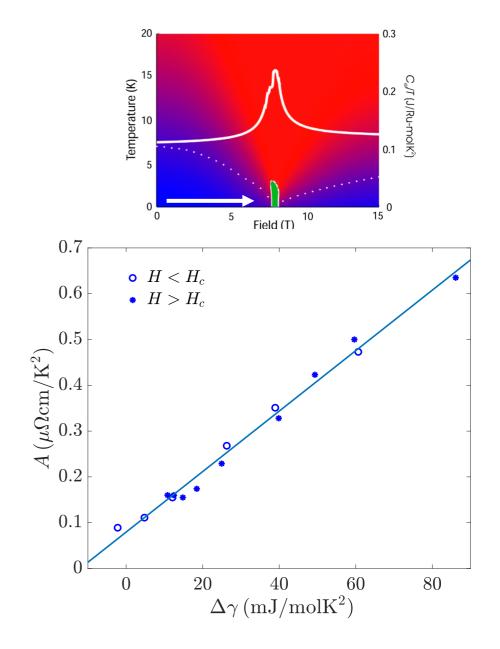
c/T and $A = \rho/T^2$ both increase as $H \to H_c$

$$\rho = \frac{m_{\star c} \Gamma_c}{n_c e^2} \sim \frac{m_{\star h}}{n_c e^2} \frac{(k_B T)^2}{\hbar E_{Fc}}$$

$$\Delta \gamma \sim k_B^2 m_{\star h}$$

$$\Rightarrow A \sim \Delta \gamma$$

Different from Kadowaki-Woods: $A \sim v^2$



Planckian limit?

Marginal Fermi liquid Varma et al. (1989)

Self-energy:
$$\Sigma = \Sigma' + i\Sigma''$$

$$\Sigma'(\omega, T) = -\lambda \omega \log \left(\frac{\Lambda}{\max(|\omega|, T)}\right)$$

$$\Sigma''(\omega, T) = \frac{\pi \lambda}{2} \max(|\omega|, T)$$

Quasi-particle lifetime: $G^{-1}(k,\omega) = \omega - \varepsilon_k - \Sigma(\omega)$

$$\frac{1}{\tau} = \frac{\Sigma''(0,T)}{1 - \partial \Sigma'(0,T)/\partial \omega} \sim \frac{\lambda T}{1 + \lambda \log\left(\frac{\Lambda}{T}\right)} < T$$

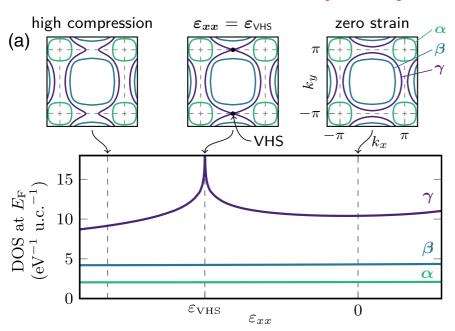
Independent of the coupling constant!

'Quantum critical' $\Sigma \sim \lambda \omega^a$, a < 1

Low $T: \frac{1}{\tau} \sim T$, independent of λ (assuming ω/T scaling)

Turning through the van Hove singularity in Sr₂RuO₄

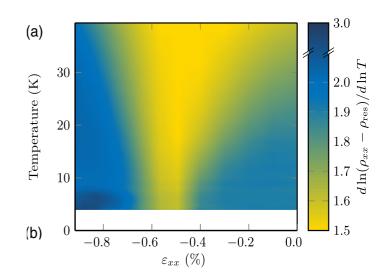
Barber, Hicks et al. (2018)

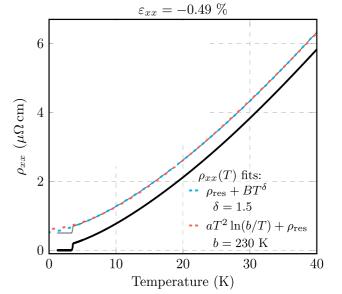


Resistivity consistent with $\rho \sim T^2 \log(1/T)$

Prediction:
$$\kappa \sim \frac{1}{\sqrt{T}} \ (L = \frac{\kappa \rho}{T} \sim \sqrt{T} \log(1/T))$$

Stangier, EB, Schmalian, in preparation





Summary

• Bad metals $ho >
ho_{MIR} = rac{h}{e^2 k_F}$, $rac{d
ho}{dT} > 0$

vs. Strange metals $\rho \sim T^x$ at low T, x < 2 (often x = 1)

- Lessons from solved models (large-N): Resistivity crossover at $\rho \sim \rho_{MIR}$, with or without saturation.
- Planckian bound $\frac{1}{\tau} \le \# \frac{k_B T}{\hbar}$: a useful notion, although much remains to be clarified.
 - Precise definition?
 - Counter-examples?

