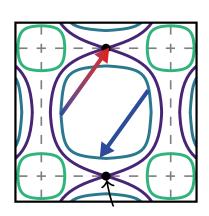
What can the Wiedemann-Franz law tell us about strange metals? Erez Berg

Evyatar Tulipman, Veronika Stangier, Joerg Schmalian, Connie Mousatov, Sean Hartnoll, Debanjan Chowdhury, Yochai Werman, Senthil Todadri

Thanks to: Clifford Hicks, Andy Mackenzie, Brad Ramshaw, Elina Zhakina, Steve Kivelson, Boris Spivak, Gaël Grissonnanche

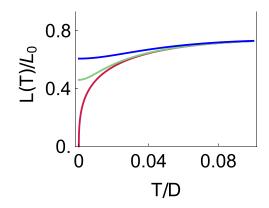
Outline

A (not so strange) quantum critical metal:
 Tuning to a Van Hove singularity



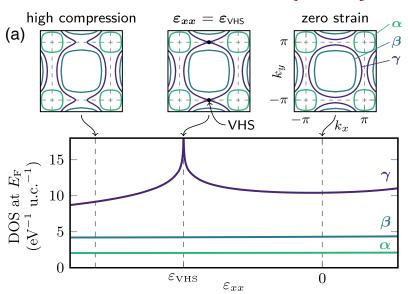
Weidemann-Franz and its breakdown

• What can we learn from WF about scattering in strange metals?

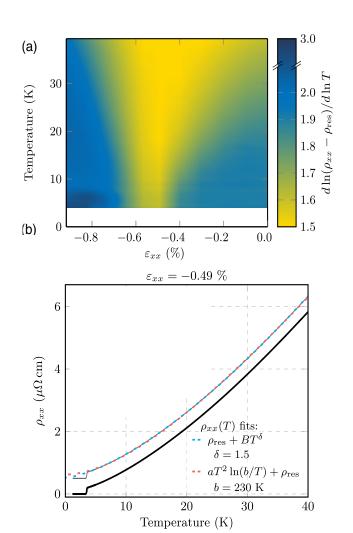


Turning through the Van Hove singularity in Sr₂RuO₄

Barber, Hicks et al. (2018)

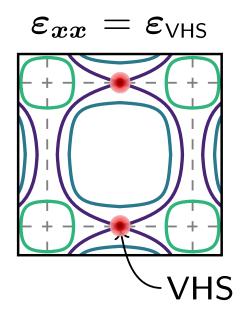


Resistivity at ε_{VHS} consistent with $\rho \sim T^2 \log(1/T)$



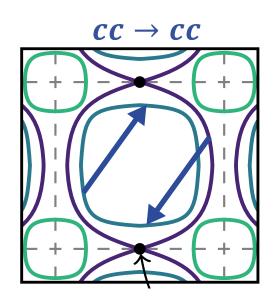
Turning through the Van Hove singularity in Sr₂RuO₄

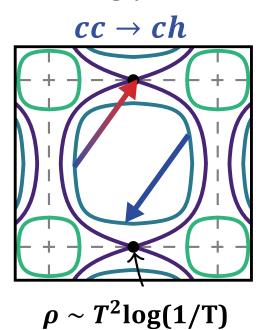
Why no "short circuiting"?

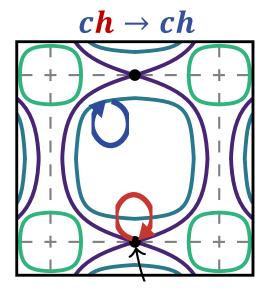


Scattering processes: "Cold" and "Hot" fermions

Scattering processes:







Stronger peak in DOS gives marginal FL with $\rho \propto T$, $c \propto -T \log T$: Explains $Sr_3Ru_2O_7$?

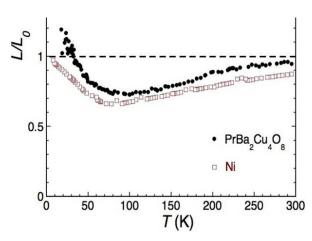
C. Mousatov, EB, S. Hartnoll, PNAS (2020)

Reminder:

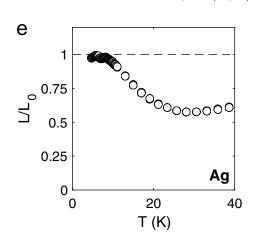
Wiedemann-Franz

G. Wiedemann and R. Franz (1853)

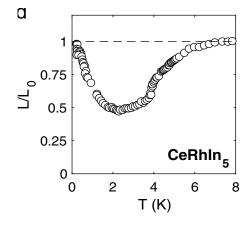
$$L = \frac{\kappa}{T\sigma} \qquad L_0 = \frac{\pi^2}{3} \left(\frac{k_B}{e}\right)^2$$



Bangura, Hussey et al. (13')



Jaoui, Behnia et al. (18')



Paglione, Canfield et al. (05')

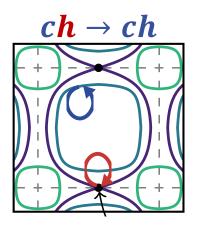
$$L
ightarrow L_0$$
 when the scattering is effectively *elastic*

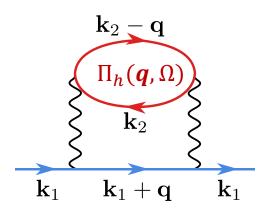
$$J_e = e \int_{\mathbf{k}} n_{\mathbf{k}} v_{\mathbf{k}}$$

$$J_Q = \int_{\mathbf{k}} (\varepsilon_{\mathbf{k}} - \mu) n_{\mathbf{k}} v_{\mathbf{k}}$$

Breakdown of

WF Law near Van Hove singularity





$$\operatorname{Im}\Pi_{h}(\boldsymbol{q},\Omega) = -\frac{m}{2\pi} \min \left[\frac{2m\omega}{|q_{x}^{2} - q_{y}^{2}|}, 1 \right]$$

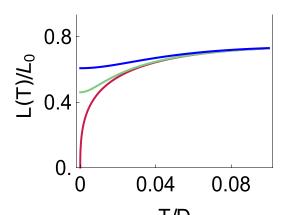
$$\Sigma''_{c}(\mathbf{k},\omega) \sim \max\left[T^{\frac{3}{2}},\omega^{\frac{3}{2}}\right]$$

Gopalan, Gunnarson, Andersen (92')

Clean 2D FL:
$$\frac{L}{L_0} \sim \frac{1}{\log(1/T)}$$
 Lyakhov,

Mishchenko (03')

Clean FL, el-ph:
$$\frac{L}{L_0} \sim T^2$$
 Lavasani, Bulmash, Das Sarma (19')



$$\frac{\kappa}{T} \sim \frac{1}{T^{3/2}} \quad \sigma \sim \frac{1}{T^2 \log(1/T)}$$

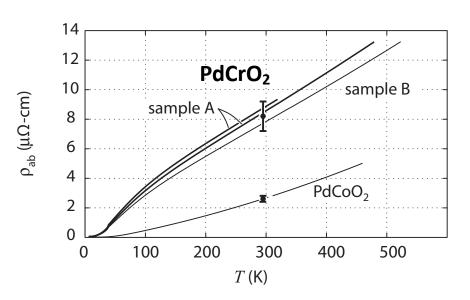
$$\frac{L}{L_0} \sim \sqrt{T} \log(1/T)$$

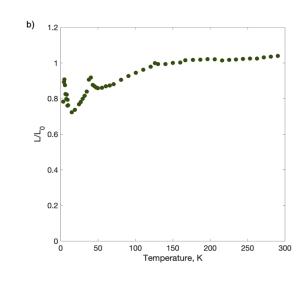
Analogous violations in hydrodynamic and quantum critical metals

Mahajan, Barkeshli, Hartnoll (13')

Veronika Stangier, EB, J. Schmalian, PRB (2022)

What does the Lorenz ratio tell us about strange metals?





Hicks, Yelland et al. (15')

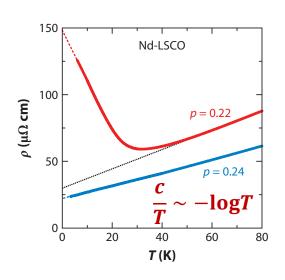
Zhakina, Mackenzie et al. (unpublished)

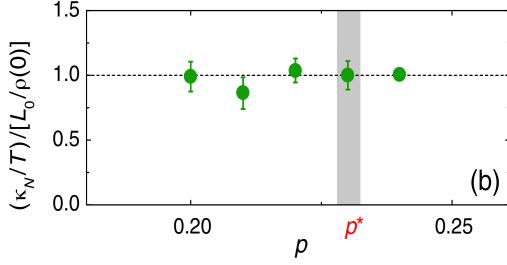
 $\rho \propto T$ from quasi-elastic scattering (probably phonons)

Difference between PdCrO₂ and PdCoO₂? Specific heat?

Why Planckian?

What does the Lorenz ratio tell us about strange metals?





Proust, Taillefer (18')

Michon, Taillefer et al. (18')

For $p \ge p^*$, WF obeyed also by σ_{xy}/κ_{xy} Grissonnanche, Taillefer et al. (19')

Strange/marginal Fermi liquid or conventional metal with strange scatterers?

See Kivelson talk

Lorenz ratio of a marginal Fermi liquid

Marginal Fermi liquid

$$\Sigma(k,\omega) \sim \lambda \left[\omega \log \left(\frac{\Lambda}{\omega} \right) + \frac{i\pi}{2} \max(T,\omega) \right]$$

$$\rho \propto T \qquad c \propto T \log \left(\frac{1}{T} \right)$$

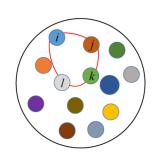
Varma, Littlewood, Abrahams, Schmitt-Rink, Ruckenstein (89')

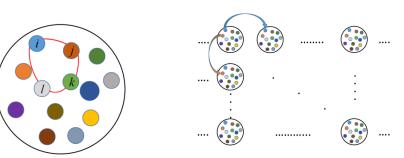
Planckian!
$$\frac{1}{\tau} \sim \frac{\Sigma''(k,\omega)}{d\Sigma'/d\omega} \sim \frac{T}{\log(\Lambda/T)}$$
 (λ independent)

Lorenz ratio?

Lorenz ratio of a marginal Fermi liquid

Model: lattice of Sachdev-Ye-Kitaev (SYK) dots





$$H_c = \sum\nolimits_{i=1,k}^N \varepsilon_k c_{ki}^\dagger \, c_{ki}^{} + \sum\nolimits_{ijkl=1,r}^N \frac{U_{ijkl}}{N^{3/2}} c_{ri}^\dagger \, c_{rj}^\dagger c_{rk}^{} \, c_{rl}^{} + \sum\nolimits_{ij=1,r}^N \frac{W_{ij,r}}{N^{1/2}} c_{ri}^\dagger \, c_{rj}^{}$$

$$U_{ijkl} = 0$$
, $\overline{U_{ijkl}^2} = U^2$ Translationally invariant in every realization

"Kondo lattice": Two bands c, f with bandwidths $W_f \ll W_c$

$$H = H_c + H_f + \sum_{i,i,k,l=1,r}^{N} \frac{V_{ijkl}}{N^{3/2}} c_{ri}^{\dagger} c_{rj} f_{rk}^{\dagger} f_{rl}$$

D. Chowdhury, Y. Werman, EB, T. Senthil, PRX (2018)

See also: A. Patel, J. McGreevy, D. Arovas, S. Sachdev, PRX (2018)

Lorenz ratio of a marginal Fermi liquid

Solvable in large N limit

D. Chowdhury, Y. Werman, EB, T. Senthil, PRX (2018)

See also: A. Patel, J. McGreevy, D. Arovas, S. Sachdev, PRX (2018)

Lorenz ratio of a marginal Fermi liquid

Evyatar Tulipman

Clean limit (w = 0):

$$\rho(T) = AT$$

$$\frac{L}{L_0} = 0.71306 \dots$$

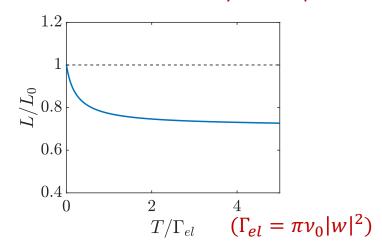
Patel, McGreevy, Arovas, Sachdev (18')

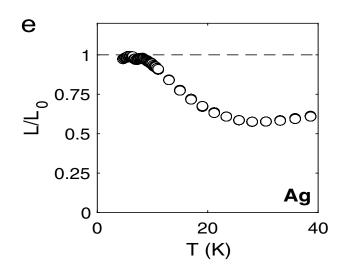
Disordered (w > 0):

$$\rho(T) = \rho_0 + AT$$

$$\frac{L}{L_0} = 1 - \alpha T + \cdots$$

Sharp signature of MFL!



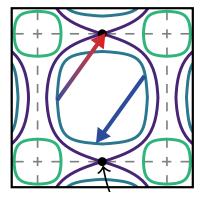


Summary

The Wiedemann-Franz law and its violation can serve as a probe for the nature of scattering

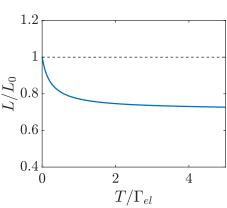
Clean metal near a VHS

$$\frac{L}{L_0} \sim \sqrt{T} \log(1/T)$$



Disordered marginal Fermi liquid

$$\frac{L}{L_0} = 1 - \alpha T + \cdots$$



Thank you!