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Pseudomorphic inGaAs base ballistic hot-electron device
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We report the first successful incorporation of 2 pseudomorphic InGaAs base in a ballistic hot-
electron device. The device, with a 28-nm-thick En, ;s Ga, 45 As base, had a collector-base
breakdown voltage of 0.55 V and a maximum current transfer ratio of 0.89 at 4.2 K,
considerably higher than the 0.75 in a comparable GaAs-base device. Electron energy
spectroscopy measurements revealed that at least 309% of the injected electrons traversed the
InGaAs base ballistically, causing a strong modulation in the injected currents into the
guantized base. The T'-L valley separation in the strained In, ,; Gag 45 As was estimated to be

about 410 meV.

We have recently reported on the dc performance of
GaAs tunneling hot-electron transfer ampiifier (THETA)
devices and the direct evidence of ballistic electron transport
through thin n'"-GaAs layers."? In a typical THET A device
with a 30-nm-wide n”-GaAs base doped to ~1Xx 10"
cm 7*, about 30% of the injected current was observed to
traverse the base ballistically, while the maximum differen-
tia} current transfer ratic (a,,) was 0.75 at low tempera-
tures.? By reducing the coliector barrier height and thus in-
creasing the availabie window for ballistic transport an
o, = 0.9 was achieved.! However, the smali coliector bar-
rier height limited the maximum allowed collector-base vol-
tage without collector leakage to less than 0.3 V.

In this letter, we report the first successful incorporation
of a 28-nm-wide ¥ -In,Ga, _ ,As (y = 0.15) pseudomor-
phic layer as the base in the THETA device. This device is
expected to suffer less from transfer to the L valleys duetoa
larger ['-L valley separation. At the same time, the increased
conduction-band discontinuity between AlGzAs and
InGaAs enables us to reduce the AlAs mole fraction in the
coliector barrier for the same collector-base breakdown vol-
tage. This tends to improve the quality of the AlGaAs and
reduce the scattering of hot electrons in the collector barsier.
Indeed we have found in the novel device a collector-base
breakdown voitage of 0.55 V for an AlAs mole fraction of
0.15, and a maximum differential current transfer ratic
@ =0.89at 4.2 K.

The InGaAs psendomorphic structares were grown by
molecular beam epitaxy (MBE) on (100) »"-GaAs sub-
strates. Figure 1 describes the energy-band diagram of the
device under normal bias conditions in a common-base con-
figuration {(CBC). The tunnel injector on the left is formed
from a thin Al Ga,  Aslayer (10 nm, undoped, x = 0.28)
which s sandwiched between an 1+ -GaAs emitier and a 28-
nm-thick #*-In, Ga; _ , As (p = 0.15) base which is doped
to 1.1 10" cm™*. Another undoped Al Ga, _ As layer
(70 nm, x = 0.15) between the base and the n*-GaAs col-
lector layer forms the collector barrier, thus preventing the
equilibrivm electrons in the base from entering the collector.
The AlAs mole fraction in the collector barrier is graded
down to x == 0.07 over the last 10 nm on the base side to
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reduce the guantum mechanical reflections of the incoming
hot electrons.

The measured output characteristics, {-Veg, ina CBC
at 4.2 K are shown in Fig. 2(a). These characteristics are
very similar to those of a bipolar transistor. Due to the larger
conduction-band discontinuity, the collector-base break-
down voltage (Vg ) is about 0.55 V compared to
Voo =0.3 V in the GaAs device with similar AlAs mole
fraction in the collector barrier. The differential current
transfer ratio-injection voltage characteristics, df./
di, — Vg, of the same device are shown in Fig. 2(b). Note
that the device has o, ~0.89 (0.87 at 77 K) that is substun-
tially higher than a,, ~0.75 inn the GaAs devices with similar
base doping and thickness.” Note aiso the resonances evident
in the curves which are related to guantum mechanical inter-
ference of the ballistic electrons in the thin base and will be
discussed later. We attribute the higher o, to the larger T'-L
energy separation £, in the strained InGaAs base.

When the injection energy is high enough, some of the
ballistic electrons transfer to the L valleys in the base, result-
ing in a decrease in the current gain <. This was seen before
in the GaAs THETA devices.” In the pseudomorphic
InGaAs-base device, only a slight decrease in « is cbserved
at high injection energies {Fig. 2(b}]. The value for £, in
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FIG. 1. Schematic diagram of the conduction band of a THETA device
under forward bias operation.
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FIG. 2. Output current-veltage characteristics of the device at 4.2 K. The
parameter is the injection current f,;. (b} The differential current gain a vs
the injection voltage Ve at 4.2 K. ¥, is the threshold voltage for the L-
valley transfer.

the strained base can be estimated {rom the value of
Vo = V., where o starts decreasing. If this point is associat-
ed with the Fermi level in the emitter being one phonon
energy above the bottom of the £ band, then

By ~q¥y, + 865 — Eph ~ GV 5 s
where {5 is the Fermi energy in the base, £, the optical
phonon energy at the edge of the Brillouin zone, and Vg,
the voltage drop due to the parasitic base resistance. We
estimate a [-L valley separation of about 410 meV {com-
pared to 290 meV in GaAs’). This is somewhat bigger than
~270 meV predicted by the virtual crystal approximation.

Employing the “electron energy spectroscopy” tech-
nique, ! the application of V., causes the potential height of
the collector barrier above the Fermii ievel in the base, @, to
change, thus affecting the coilector current density /.. The
energy distribution associated with the perpendicular mo-
mentum {normal energy distribution ) can be approximated
by (Vgn)(dFe/dV ey ), where n = (1/g)(dP /dV g ) isa
proporticnality factor.’ Since the potential shape of the col-
lector barrier is complicated by barrier parameters that are
difficult to control (unintentional charges,* 8i segregation,’
and the shape of the composition grading}, the barrier
height as a function of ¥, was determined from the activa-
tion energy for thermionic emission. In the temperature
range 100K < 7 < 180K, the linearities of In(J . /T %) vs ( 1/
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FIG. 3. Barrier height as a function of biasing voltage for an AlGaAs collec-
tor barrier, obtained by thermionic emission analysis of temperature-depen-
dent current-voltage characteristics.

T} plots were good and the effective Richardson constant 4 *
was 0.8-1.2. The results in Fig. 3 show a linear dependence
of the collector barrier height, ®., on ¥y in the range
greater than 40 mV. Since 7 = 0.23 in the range of our spec-
troscopy measurements (ideally it should be 1¢ nm/7C
nm~Q0.14), G, = df,/dV 4 and the true hot-electron dis-
tribution are linearly scaled and are similar in shape. G-
curves for injection energies gV = 150~170 meV are plot-
ted in Fig. 4. A clear ballistic behavior is observed. The peak
positions in G track exacily the injection energy gV, and
are at g¥yp — & (the “ballistic condition™) where A ~25
meV (Ref. ) is the displacement of the normal energy dis-
tribution peak below the Fermi level in the emitier (Fig. 1).
The ballistic fraction of the electrons that cross the AlGaAs
analyzer peak is estimated at about 30% of the injected cur-
rent.

The ballistic transport maintains the phase coherence of
the electrons and thus interference effects in the base can
take place. This resulted in rescnances in the tunneling cur-
rents into the base as shown in Fig. 5. The tunneling conduc-
tance is expected to reach a peak whenever the peak of the
normal energy distribution, at ¥y — A, crosses the bottom

Gg x 108 (5)

dicidVeg

- 70 4] 245

Vs (MV)

FIG. 4. Differential oniput conductance G as a function of the collector-
base voltage. The parameter is the injection voltage ¥, . The valuc of G- is
proportiona! to the number of bailistic electrons.
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FIG. 5. Derivative of the measured injected current . with respect to base-
emitter injection voltage Vg, for Vs = 0 at 4.2 K. Each peak corresponds
to a crossing of a subband minimum in the base. The calculated peak posi-
tions are marked by the vertical bars for comparison.

of a quasi-2D3 electron band formed in the base. We have
estimated these conductance peak positions by solving the
Schridinger equation in the Ing,;Ga, 45 As base assuming
m* = 0.060m,, where m_ is the free-electron mass, and a
nonparabolicity parameter « = 0.72 ¢V~ obtained from
the virtual crystal approximation,” and noted them in Fig. 5.
Even though this is not a self-consistent solution for the Pois-
son and Schrédinger equations,” it still gives a very good
agreement with the experimental results. Note also that the
observed strong peaks in Fig. § are another indication of the
farge fraction of ballistic electrons.

In summary, we report on the first successful demon-
stration of a pseudomorphic n-type InGaAs base THETA
device. The maximum current transfer ratio was 0.8% at 4.2
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K (0.87 at 77 K)), and the minimum ballistic fraction was
about 30%, detected by an energy spectroscopy technique.
The relatively high gain was attributed mainly to the greater
["-L energy separation.
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