
Heat Conductance of the Quantum Hall Bulk   

Ron Aharon Melcer1,2, Avigail Gil2, Vladimir Umansky1,2, Moty Heiblum1,2, Yuval Oreg2,  

Ady Stern2, and Erez Berg2 

1 Braun Center for SubMicron Research, Department of Condensed Matter Physics,  

  Weizmann Institute of Science, Rehovot, Israel, 76100 

2 Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel, 76100 

 

The Quantum Hall Effect (QHE) is the prototypical realization of a topological state of matter. 

It emerges from a subtle interplay between topology, interactions, and disorder. The disorder 

enables the formation of localized states in the bulk that stabilize the quantum Hall states with 

respect to the magnetic field and carrier density. Still, the details of the localized states and 

their contribution to transport remain beyond the reach of most experimental techniques. 

Here, we describe an extensive study of the bulk's heat conductance. Using a novel 'multi-

terminal' device, we separate the longitudinal thermal conductance (due to bulk's 

contribution) 𝜿𝐱𝐱𝑻 from the two-terminal value 𝜿𝟐𝐓𝑻, by eliminating the contribution of the 

edge modes. We find that when the field is tuned away from the conductance plateau center, 

the electronic states of the bulk conduct heat efficiently while the bulk remains electrically 

insulating. For fragile fractional states, such as the non-Abelian 𝝂 = 𝟓/𝟐, we observe a finite 

𝜿𝐱𝐱𝑻 throughout the plateau. We identify the localized states as the cause of the finite 𝜿𝐱𝐱𝑻 

and propose a theoretical model which qualitatively explains our findings. 

 

The magneto-conductance trace is the best-known signature of the quantum Hall effect (QHE). At integer 

(IQHE) or simple fractional (FQHE) values of the Landau-Levels (LL) fillings 𝜈, the electrical conductance 

differs from the classical predictions. The transverse conductance exhibits plateaux (as a function of 

magnetic field or carrier density) with quantized values, 𝐺xy = 𝜈𝐺0 (𝐺0 =
𝑒2

ℎ
), while the longitudinal 

conductance vanishes, 𝐺xx~0. This observation implies that the bulk is insulating and current can only 

flow next to the sample's edge 1, 2. Due to disorder, the localized states in the bulk get filled or emptied 

once the magnetic field is tuned away from the plateau's center. These localized states are a crucial 

ingredient for stabilizing the QHE states and a classical Hall conductance (i.e., without quantized plateaux 



in 𝐺xy) is expected to re-emerge in perfectly clean samples 3. The contribution of the localized states to 

the electrical transport is negligible. Moreover, a deviation of the electrical conductance from its 

temperature-activated behavior, 𝐺xx ∝  exp (−
Δ

𝑇
), with Δ the energy gap and 𝑇 the temperature, is hard 

to analyze quantitatively due to its smallness in the limit of 𝑇 → 0  4, 5, 6. 

The thermal Hall conductance is a second transport coefficient that is of great importance for 

studying the QHE. Similar to 𝐺xy, the thermal Hall conductance is also quantized for QHE states7, 8, 𝜅𝑥𝑦𝑇 =

𝜈𝑄  𝜅0𝑇, where 𝜅0 =
𝜋2𝑘𝑏

2

3ℎ
 is the thermal conductance quantum (𝑇 - temperature, 𝑘𝑏 - Boltzman constant, 

ℎ - Planck’s constant coefficient), and 𝜈𝑄 depends on the nature of the topological order. It is quantized 

to an integer for all Abelian states (integer and most fractional filling fractions) and a fraction for a non-

Abelian state9. The value of 𝜈𝑄 is a distinct property of the topological order of the bulk, which can provide 

crucial insight into the underlying ground state. The study of thermal transport in the QHE has accelerated 

in recent years, with experimental results manifesting the quantization of the two-terminal thermal 

conductance coefficient, 𝜅2T𝑇 10, 11, 12, 13. These studies shed new light on the nature of fractional QHE 

states, especially of the exotic 𝜈 = 5/2 state 11, 14. However, the 𝜅2T𝑇  is sensitive to the inter-mode 

thermal equilibration and a possible contribution of the bulk 15, 16, 17. 

Following the fact that 𝐺xx vanishes on the QHE plateaux, the contribution of the longitudinal 

thermal conductance, 𝜅xx𝑇, was thus far neglected (despite some evidence of heat flow through the 

bulk18, 19, 20). The justification for such simplification arose due to the Wiedemann-Franz (WF) conjecture, 

which agreed experimentally in metallic systems with a fixed ratio 𝜅xx 𝐺xx⁄ = 𝜅0/𝐺0 = 𝐿0,  known as the 

‘Lorenz number’. Substantial violations of 𝐿0 appeared in the limit 𝑇 → 0 in systems where a single 

electron picture is no longer valid, and the electronic transport is affected by interactions 21, 22, 23. 

Recently we developed a novel technique that enables measuring local power 24, thus allowing a 

direct determination of the transverse thermal Hall conductance, 𝜅xy𝑇. Here we employed this technique 

to determine also the heat flow through the bulk, using the term ‘longitudinal thermal conductance’ or 

𝜅xx𝑇. We found finite 𝜅xx at QHE conductance plateaux (where 𝐺xx,  𝑅xx~0), and propose a dominant 

heat transport mechanism. 

The employed configuration, shown in Fig. 1, consists of a 'temperature source' (S) and a 'power 

meter' (PM) located downstream (see also Ref.24 and Methods). A floating metallic source is heated by 

forcing two opposite-sign currents, 𝐼 and – 𝐼, emanating from 𝑆1 and 𝑆2, leading to a zero source potential. 

The power is evacuated from the source via the outgoing gapless edge modes and possibly the bulk. Here, 

the edge modes flow to grounded contacts and do not reach the PM (see Fig. 1). This isolates the bulk's 



contribution, as any excess power detected by the PM is strictly due to the bulk. The temperatures of S 

and PM are determined by measuring the emanating Johnson-Nyquist (JN) noise reaching the amplifiers' 

contacts, 𝐴S and 𝐴PM, respectively. The PM's elevated temperature is converted to the absorbed power 

using a separate calibration measurement (see Methods). 

The longitudinal thermal conductance coefficient is extracted from the dissipated power in the 

PM and the temperature of the source, 

 𝑃 = 𝑁□

𝜅𝑥𝑥(𝑇)

2
(𝑇𝑆

2 − 𝑇0
2), (1) 

where 𝑇S and 𝑇0 are the source and the base temperatures (respectively), 𝑇 their mean and 𝑁□ a 

geometric pre-factor (the effective number of squares, here being of the order of 1). The bulk's electrical 

conductance, 𝐺xx, is measured by applying a voltage to the source contact and measuring the current 

drained through the PM contact (see Methods).  In the rest of the manuscript, we simplify the expressions 

by absorbing the geometric pre-factor into the definition of 𝜅xx and 𝐺xx (namely, taking 𝑁□ = 1). We 

emphasize that the reported values of 𝜅xx are not universal (as they depend on the dimensions of the 

device), while the ratio 𝜅xx/𝐺xx is a general property of the bulk and thus independent of its geometry. 

We start with filling factor  𝜈 = 2. The power arriving at the PM is plotted as a function of the 

source's temperature at three different locations on the conductance plateau (Fig. 2a): (i) Center, 𝜈 = 2 

(𝐵 = 6.4𝑇) - the first Landau level (both spins) is fully occupied; (ii) 𝜈~2.05 (𝐵 = 6.1𝑇) - localized states 

in the upper spinful LL2 are partly occupied; and (iii) 𝜈~1.95 (𝐵 = 6.7𝑇), localized quasi-holes in the 

spinful LL1 are partly occupied. We find a vanishingly small bulk heat conductance in the plateau's center, 

guaranteeing no 'parallel' mechanism that efficiently carries heat from S to PM (such as phonons or mobile 

carriers in the doping layer 25). However, we observed a finite heat conductance when the field is tuned 

away from the plateau's center. 

The thermal 𝜅𝑥𝑥𝑇 and electrical 𝐺𝑥𝑥 conductances are plotted as a function of the magnetic field 

along the 𝜈 = 2 plateau (Fig. 2b). We observe a narrow region of the magnetic field where 𝜅𝑥𝑥 vanishes 

(near the center of the plateau). Towards the edge of the conductance plateau 𝜅𝑥𝑥 increases rapidly, 

violating the WF relation by as much as two orders of magnitude, 𝜅xx 𝐺xx⁄ ≈ 200𝐿0 for 𝐵 = 5.9𝑇. 

The plotted temperature dependence of the transmitted power at three different fillings (Fig. 3a) 

suggests a temperature independent 𝜅𝑥𝑥 in the range of 15–60mK. In addition, extending the temperature 

range of the source, 𝑇S = 20– 100𝑚𝐾 (thus creating large thermal gradients across the device) was also 

found to be consistent with temperature independent 𝜅xx (Fig. 3b). This implies that the thermal 

conductance, 𝜅xx𝑇 ∝ 𝑇, in a similar fashion to metal at low temperatures 26. 



We now discuss a simple physical picture that may explain the origin of the bulk thermal 

conductance in the QHE and its temperature dependence. In the presence of potential disorder, tuning 

the band filling away from the center of the conductance plateau adds localized quasi-particles (or quasi-

holes). For a relatively smooth disorder potential (relative to the magnetic length), the added quasi-

particles form incompressible "puddles" with fillings different from that of the bulk (see Fig. 4a). In the 

𝜈 = 2 bulk filling, added quasi-holes may form puddles with filling 𝜈 = 1, with boundaries supporting 

gapless chiral edge modes. While particle tunneling between these puddles decays exponentially with the 

distance between the puddles, Coulomb interaction decays in a power law fashion. We assume that the 

puddles are large enough so that the level-spacing of excitations within a typical puddle is smaller than 

the temperature (we elaborate on this condition below). We find that the bulk is electrically insulating but 

thermally conducting under these conditions. This unique property could only be realized due to the 

topological nature of the QHE. 

We make several simplifying assumptions to derive the thermal current's temperature 

dependence. First, we assume that the thermal conductance between the puddles is small enough to 

define a local temperature in each puddle. Second, the interaction region between two neighboring 

puddles is a segment of characteristic length 𝐿𝑖𝑛𝑡 (around the point where they are closest), with 

interaction of a density-density form (illustrated in Fig. 4b). More details of the model, including the 

explicit form of the Hamiltonian and the derivation of the thermal conductance, are given in 

Supplementary Information (SI). 

The low-energy excitations along the edge of each puddle are linearly dispersing chiral charge 

density waves (plasmons) that behave as free bosons. Under the assumptions above, the transmission 

coefficient 𝒯(𝜔), defined as the probability of an incident excitation with frequency 𝜔 transmitted from 

one puddle to the next, given by27 (see also SI), 

 𝒯(𝜔) =

𝑢2

�̃�2 sin2 𝜔𝐿𝑖𝑛𝑡
�̃�

1 +
𝑢2

�̃�2 sin2 𝜔𝐿𝑖𝑛𝑡
�̃�

.  (2) 

Here 𝑢 is the strength of the inter-edge interaction, and �̃� = √𝑣2 − 𝑢2 is the renormalized speed of 

excitations in the segment where the edges interact; and 𝑣 is the speed of excitations along the puddle’s 

edge away from the interaction region (for simplicity, 𝑣 is taken to be the same in the two puddles). Notice 

that 𝑢 is measured in velocity units and must satisfy 𝑢 < 𝑣 (see SI). From this expression, the heat current 

flowing from the ‘hot puddle’ to the ‘colder puddle’ is, 



 𝐽𝑄(𝑇𝐿, 𝑇𝑅) = 𝑣 ∫
𝑑𝑘

2𝜋

∞

0

ℏ𝜔𝑘 [𝑛𝐵 (
ℏ𝜔𝑘

𝑘𝑏𝑇𝐿
) − 𝑛𝐵 (

ℏ𝜔𝑘

𝑘𝑏𝑇𝑅
)] 𝒯(𝜔𝑘) ,   (3) 

where 𝑇𝐿, 𝑇𝑅 are the temperatures of the two puddles, 𝜔𝑘 = 𝑣𝑘 and 𝑛𝐵(𝑥) is the Bose function. In the 

limit 𝑘𝑏𝑇 ≫ ℏ𝑣/𝐿𝑖𝑛𝑡, the thermal current simplifies to, 

 𝐽𝑄(𝑇𝐿, 𝑇𝑅) = �̃�(𝑇𝐿
2 − 𝑇𝑅

2),  (4) 

where, for 𝑢 ≪  𝑣, �̃� =
𝜅0

4

𝑢2

�̃�2. In the opposite limit, 𝑘𝑏𝑇 ≪  ℏ𝑣/𝐿𝑖𝑛𝑡, we find 𝐽𝑄 ∝ 𝑇4 28, 29. Taking 𝐿𝑖𝑛𝑡 ∼

1𝜇m and 𝑣 ∼ 104m/s, we obtain a characteristic temperature scale 𝑇⋆ =
ℏ𝑣

𝑘𝑏𝐿𝑖𝑛𝑡
∼ 75mK, of the order of 

the temperature in our experiments. Figure 4c depicts the thermal conductance between two puddles 

evaluated from Eq. 3. We find that the thermal conductance is approximately temperature independent 

for 𝑇 ≳ 0.1𝑇⋆. 

The model reproduces the temperature dependence of the thermal current observed 

experimentally. Despite its simplicity, the essential ingredients leading to our main conclusion (Eq. 4) are 

robust. Heat is transferred through the scattering of plasmon excitations by inter-edge interactions with 

a transmission coefficient, 𝒯(𝜔). When averaged over an energy window of the order of the temperature, 

it is nearly temperature-independent since the oscillations of 𝒯(𝜔) are averaged out, at a sufficiently high 

temperature. For 𝑣 of the same order of magnitude as 𝑢, we obtain �̃� ∼ 𝜅0. The actual value of 𝜅xx, 

probed in the experiment, is non-quantized and depends on the device geometry as well as the 

microscopic realization of the disorder which will fix �̃�. 

The second Landau level hosts several more fragile fractional states 30, 31, 32, and among them we 

studied the 𝜈 = 7/3 and the 𝜈 = 5/2 states. The 𝜈 = 7/3 state is believed to be a Laughlin fractional 

state on top of a full spinless first Landau level33. The 𝜈 = 5/2 is the only (well-developed) even-

denominator state 34. Its underlying order in the bulk has been the center of intensive experimental and 

theoretical study in the past two decades35. The most decisive identification comes from thermal 

transport experiments 11, 14, which support a topological order known as Particle-Hole Pfaffian (PH-Pf)36. 

The PH-Pf ground state is inconsistent with current numerical simulations supporting a different non-

Abelian order 37, 38. 

Our device exhibits Hall resistance plateaus at 𝜈 = 7/3 and 𝜈 = 5/2 (Fig. 5a), with a vanishingly 

small bulk conductance at the center of the conductance plateau (as low as 𝐺xx~5 × 10−3𝐺0). On the 

other hand, the bulk’s thermal conductance coefficient, 𝜅𝑥𝑥, remains finite throughout the plateau; never 

below 𝜅xx = 0.3𝜅0 (a two-orders-of-magnitude violation of the WF relation, see Figs. 5b & 5c). We 

attribute this observation to the small energy gap of these states, leading to excited quasi-particles (and 



quasi-holes), even at the plateau’s center. In longer devices (hundreds of microns in length) fabricated on 

similar-quality GaAs, the expected values of the two-terminal thermal conductance were measured (for 

example. 𝜅2T = 3𝜅0 for 𝜈 = 7/3) 11, 14. This implies that the quantized heat flowed next to the sample’s 

edge with a negligible bulk contribution. The mechanism which governs the dependence of 𝜅2T on the 

device geometry is still not understood and requires further research in dedicated devices. 

Very little is known about the properties of the localized states in the electrically insulating 2D 

bulk of topologically non-trivial materials. Studying the heat flow through the bulk 20 of QHE states, we 

find a substantial heat conductance in the integer and fractional QHE states (in particular away from the 

center of the conductance plateaux) and attribute it to interacting circulating currents around 

incompressible, disorder-induced, puddles. Deviating further from the center of the conductance plateau 

increases the heat flow, which we associate with the increased number and size of the puddles. Moreover, 

we find that the longitudinal thermal conductance coefficient 𝜅xx (through the bulk) is temperature 

independent in the measured temperature range (15-100mK). Bulk thermal conductance is an essential 

ingredient in thermal conductance studies. A deeper understanding is required to determine its effect on 

topological thermal Hall conductance (𝜅xy). 

  



Methods 

Sample preparation 

The mesa is etch-defined, formed by optical lithography and wet-etching (using the solution 

H2O: H2O2: H2PO4 - 50:1:1). The narrow etched lines were separately patterned using e-beam 

lithography and etched by reactive-ion-etching (RIE) using BCl3/Ar gases. The Ohmic contacts and the 

gates were patterned using the standard e-beam-liftoff technique. The ohmic contacts consist of (from 

GaAs surface upwards) Ni(7nm), Au(250nm), Ge(125nm), Ni (82nm), Au (10nm), alloyed at 440°C for 80 

seconds. After preparing the contacts, the sample was covered with 25nm of HfO2 deposited at 200°C 

using ALD. The gates consist of 5nm Ti and 15nm Au. 

The device has three different gate patterns: (i) Thin gates (appear in gray in Fig. 1) that enable 

local depletion of the carriers. Once activated, they can force the edge modes to flow from S to PM. These 

gates were grounded throughout the measurements, guaranteeing that the edge modes flow to the 

ground. (ii) Global gates that cover the regions to the left of S and the right of the PM (yellow color in Fig. 

1). These gates are used to induce a 𝜈 = 2 filling factor in these regions. Note that the measured transport 

only occurs in the un-gated region between S and PM. The gated regions support Sources' DC currents 

and Johnson-Nyquist noise. The integer filling offers simplifications to the process of calibration of 

amplification gain and 𝑇0 (see Supplementary information). (iii) Grounded gates that cover S and PM 

contacts (the leads grounding these gates appear in gray in Fig. 1). The 'ohmic contact-oxide-gate' forms 

a capacitor (𝑐~0.5pF). The enhanced capacitance ensures that the contacts behave as ideal metallic 

reservoirs39. 

The HfO2 is etched from the bonding pads using RIE (BCl3/Ar gases). 

Probing 𝜿𝐱𝐱 and 𝑮𝐱𝐱 

The longitudinal electrical conductivity, 𝜎𝑥𝑥, and thermal conductivity, 𝑘xx𝑇, are  specific transport 

properties of the bulk. These properties are usually measured indirectly, using probes placed along the 

sample's edge (for example, in a Hall-bar geometry). Such methodology allows measuring the global 

electrical (𝐺xx), and thermal (𝜅xx𝑇) conductances. For 2D materials, the specific and the global coefficients 

are equal, up to a device-specific geometric factor known as the number of squares, 𝑁□ . Namely, 

 
𝜎xx = 𝐺xx 𝑁□,⁄  

𝑘xx = 𝜅xx 𝑁□⁄ . 
(M1) 

Thus the conductance is usually reported per square. Here we adopted a different approach 

(described in detail in the main text and the sections below), which is conceptually more suitable for 

measuring the longitudinal thermal conductance in QHE states. The main problem of measuring the 

temperature drop along an edge segment (for example, in a Hall-bar geometry) is that it can be sensitive 

to the thermal conductivity of the bulk (which we want to probe) as well as properties of the edge modes 

themselves, mostly thermal equilibration (when counter-propagating modes are present)15, 40, 41, and 

dissipation of heat from the edge to the environment41, 42. We overcame these complications by grounding 

the edge modes and measuring the heat flow through the bulk directly.  



A possible drawback of our technique is that we are unable to determine the geometric factor 

precisely, 𝑁□ (which is of order one). Thus, the values of 𝜅xx reported in the main text are equal to the 

longitudinal conductivity up to a multiplying pre-factor (of order unity). Crucially, we measured the 

longitudinal electrical conductance using the same contacts as for the thermal conductance (S and PM). 

Using the same geometry guarantees that the observed WF ratio of the thermal and electrical 

conductances is purely a bulk property. Moreover, it allows us to rule out the possibility that the observed 

violations of the WF relation are simply an artifact caused by a 'dirty' region or some density 

inhomogeneity. 

Electrical conductance measurements 

We use a low-frequency signal (11−17Hz) with a lock-in technique for conductance measurements. We 

source current 𝐼S from 𝑆1 to the source contact, which causes the voltage of the source to be, 

 𝑉 =
𝐼S

𝐺S→G
, (M2) 

with 𝐺S→G the overall conductance from the source to the ground. To measure the longitudinal 

conductance, we need to measure the current that flows through the bulk, 𝐺xx = 𝐼/𝑉. We probe the 

source-to-PM current, 𝐼, via the measurement of the PM voltage (in a contact located in one of the regions 

to the right of the PM),  

 𝐼 = 𝑉PM 𝐺PM→G, (M3) 

with 𝐺PM→G the conductance from the PM to the ground. This allows us to extract the longitudinal 

conductance, 

 𝐺xx =
𝐼

𝑉
=

𝑉PM

𝐼S
𝐺S→G𝐺PM→G. (M4) 

Relying on the fact that 𝐺xy ≫ 𝐺xx, we consider only the contribution of the edge modes to the electrical 

conductance 𝐺S→G and 𝐺PM→G. For example, when all the regions are at 𝜈 = 2, the conductance from 

either the PM or the Source to ground is simply the number of mesas connected to the contact time the 

quantized conductance, 

 𝐺S→G = 𝐺PM→G = 3 ×
2𝑒2

ℎ
  , (M5) 

leading to the conductance according to, 

 𝐺xx = 36 (
𝑒2

ℎ
)

2
𝑉𝑃𝑀

𝐼𝑆
. (M6) 

Thermal conductance measurements 

Probing the longitudinal thermal conductance requires measuring the power impinging upon the PM as a 

function of the source's temperature. We accomplish this measurement in two steps: (i) We heat the 

Source contact using two opposite polarity DC currents and measure the temperature of the PM, 𝑇PM, as 

a function of the temperature of the source 𝑇S. (ii) We calibrate the PM by measuring its temperature 



𝑇PM against a known heating power 𝑃cal. We accomplish this by dissipating a known power using opposite 

sign currents 𝐼cal and −𝐼cal sourced from contacts 𝑆1
cal and 𝑆2

cal (in Fig. 1) respectively. This causes the 

direct dissipation of power 𝑃cal = 𝐼cal
2 /𝐺xy on the PM (here, the source contact remains cold). The 

measurement of 𝑇PM against 𝑃cal manifests the power-meter calibration. 

 Combining the primary measurement with the calibration enables us to determine the impinging 

power on the PM as a function of 𝑇𝑆 (see SI for further discussion). We acquire 𝜅xx by linear fitting the 

power against 𝑇S
2, according to Eq. 1. 

Once we established that 𝜅xx is temperature independent, we were able to improve the efficiency 

of our measurement by measuring the power only for a single source temperature 𝑇S (instead of scanning 

and fitting, which requires significantly longer averaging time). This method was applied for the 

measurement of 𝜈 = 5/2 (Fig. 5c) with 𝑇S = 40mK (we performed a full scan only in the center of the 

plateau); for 𝜈 = 3, with 𝑇S = 50mK; and for 𝜈 = 4/3 (see SI). 
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Figures 

 

Figure 1 – The measured device. A false-colored SEM image of the device's heart - was used to measure 

the longitudinal thermal conductance. The mesa is divided into several regions by narrowly etched areas 

(purple). Transport is carried in the central region between the source contact (S, colored red) and the 

power-meter contact (PM, colored dark blue). In the experiment, we heat the source contact by sourcing 

currents 𝐼, −𝐼 from 𝑆1 and 𝑆2, respectively. The edge modes (solid lines) that leave S flow to the ground, 

allowing heat transfer from S to the PM only via the bulk (narrow dashed red lines). The energy currents 

from S increase the PM temperature. Both temperatures, 𝑇PM and 𝑇S, are probed simultaneously by 

measuring the Johnson-Nyquist noise in 𝐴PM and 𝐴S, respectively. The temperature of the PM is 

converted to the impinging power using a calibration measurement (see Methods). The regions to the left 

of S and the right of the PM (used for noise measurement and control) are fully covered with top gates 

that tune the regions to 𝜈 = 2 (faint yellow). The integer filling eases the calibration of temperature and 

power (see SI). 

 

 



 

 

Figure 2 – Longitudinal thermal conductance in filling factor 𝝂 = 𝟐 at 𝑻𝟎 = 𝟏𝟓𝐦𝐊. (a) Impinging power 

at the power meter (PM) as a function of the source (S) temperature at three values of the magnetic field 

on the 𝜈 = 2 plateau: Blue – center; purple – particle side; green – hole side (see inset). Away from the 

center, finite heat flows from S to PM (through the bulk of the sample). By linear fitting the PM power as 

a function of temperature squared (straight colored lines), 𝜅xx is extracted (Eq. 1). (b) Longitudinal 

electrical and thermal conductance on the 𝜈 = 2  plateau. The longitudinal conductance, 𝐺xx, vanishes 

throughout the plateau (green). The thermal conductance 𝜅𝑥𝑥, extracted from the linear fits in (a), is finite 

away from the plateau's center. 

  



 

Figure 3 – Temperature dependence of 𝜿𝒙𝒙. (a) The longitudinal thermal conductance measured as a 

function of base temperature, 𝑇0 extracted by linear fitting the impinging power at the PM as a function 

of source temperature squared (see SI). 𝜅xx appears to be temperature independent for a few magnetic 

field values on the plateau (see Fig. 2b). (b) Power impinging on the power-meter (PM) as a function of 

the source (S) temperature for a large temperature range, 19 − 100mK. The fitted line to the data 

remains linear up to 𝑇𝑆 = 80mK. 

  



 

 

Figure 4 – Illustration of the model used for the thermal current. (a) Density puddles at filling factor 𝜈′ 

inside a bulk state at filling factor 𝜈, formed in the presence of smooth disorder when the magnetic field 

is away from the center of the 𝜈 plateau. Chiral edge modes circulate at the boundaries of the puddles. 

(b) Diagram of the puddle-puddle interaction: The distance between two neighboring puddles is large 

enough to suppress inter-puddle electron tunneling but small enough to allow significant Coulomb 

interactions. The interactions are of constant strength 𝑢 and take place in a finite region with a 

characteristic length of 𝐿𝑖𝑛𝑡 (where the edges are the closest). The velocity of the excitations away from 

the interacting region, 𝑣, is assumed to be constant and equal in the interacting puddles. (c) Thermal 

conductance between two interacting puddles. The right puddle is at temperature 𝑇, and the left is at 

temperature 𝑇 + 𝑑𝑡 (with 𝑑𝑡 ≪  𝑇). The thermal conductance coefficient between the puddles is 

calculated as �̃� = 𝐽𝑄/2𝑘𝑏𝑇𝑑𝑡, with 𝐽𝑄 according to Eq. 3. For 𝑇~0.1𝑇⋆ (𝑇⋆ = ℏ 𝑣𝑘𝑏𝐿𝑖𝑛⁄ ≈ 75mK), �̃� 

saturates and becomes temperature independent, in agreement with the experimental observations. 

Here we take 𝑢/𝑣 = 0.1. 

  



    

Figure 5 – Thermal conductance of the bulk at fillings 𝝂 = 𝟕/𝟑 and 𝝂 = 5/2. (a) The transverse Hall 

resistance as a function of the magnetic field manifests plateaus at fractional filling factors in the range 

between 𝜈 = 2 and 𝜈 = 3. (b, c) 𝐺xx (green) and 𝜅xx (red) as a function of the magnetic field along the 

𝜈 = 5/2  (b) and 𝜈 = 7/3 (c) plateaus. Close to the center of each plateau, 𝐺xx is vanishingly small, yet, 

𝜅xx remains finite. 
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Microscopic model for the heat transport 

To calculate the heat current between two thermalized puddles in the bulk, we need to find the energy 

transfer rate of excitations from one chiral edge state to the other. This requires calculating the 

transmission amplitude of excitations due to inter-edge interactions, which was derived in Ref. 30. For 

completeness, we provide the derivation here.  

The bosonized Hamiltonian that describes the system of two quantum hall edge states (R and L, see Fig. 

4b) interacting through density-density interactions is given by:  

 𝐻 = ∫ 𝑑𝑥
𝑣

4𝜋
[(𝜕𝑥𝜙𝑅)2 + (𝜕𝑥𝜙𝐿)2] +

𝑢(𝑥)

2𝜋
𝜕𝑥𝜙𝑅𝜕𝑥𝜙𝐿. (S1) 

For simplicity, we treat the case of integer quantum Hall states, although a similar treatment applies for 

many fractional states as well. In the integer case, the fields 𝜙𝑅, 𝜙𝐿 satisfy the commutation relations: 

 
[𝜙𝑅(𝑥), 𝜕𝑥𝜙𝑅(𝑥′)] = 2𝜋𝑖𝛿(𝑥 − 𝑥′), 

[𝜙𝐿(𝑥), 𝜕𝑥𝜙𝐿(𝑥′)] = −2𝜋𝑖𝛿(𝑥 − 𝑥′). 
(S2) 

In our model, the inter-edge interaction potential 𝑢(𝑥) is taken to be a constant over a finite region of 

length 𝐿𝑖𝑛𝑡 where the puddles are closest to each other, and zero away from this region: 

 𝑢(𝑥) = {
𝑢,      0 < 𝑥 < 𝐿𝑖𝑛𝑡

0,           otherwise.
 (S3) 

The equation of motion is given by: 

 𝜕𝑡𝜙𝑛(𝑥, 𝑡) = 𝑖[𝐻, 𝜙𝑛] = ±[𝑣𝜕𝑥𝜙𝑛 + 𝑢(𝑥)𝜕𝑥𝜙�̅�], (S4) 
Where 𝑛 = 𝑅 or 𝐿, 𝑛 is the chirality opposite to 𝑛, and ± refers to 𝑅 or 𝐿. Far away from the interaction 

region, the velocity of the edge modes is given by 𝑣, whereas in the interacting region, the renormalized 

velocity is given by �̃� = √𝑣2 − 𝑢2.  

By imposing matching boundary conditions for plane wave excitations incoming from one of the edge 

modes, we find the reflection amplitude, defined as the amplitude of an excitation exiting the 

interacting region in the same edge state: 



 𝑟(𝜔) =
(1 +

 �̃� − 𝑣
 �̃� + 𝑣

) 𝑒
𝑖(

𝜔
 �̃�

−
𝜔
𝑣

)𝐿𝑖𝑛𝑡

1 +
 �̃� − 𝑣
 �̃� + 𝑣

𝑒2𝑖
𝜔
 �̃�

𝐿𝑖𝑛𝑡

. (S5) 

Squaring the reflection amplitude to obtain the transmission coefficient of excitations from one edge 

state to the other: 

 𝒯(𝜔) = 1 − |𝑟(𝜔)|2 =

𝑢2

 �̃�2 sin2 (
𝜔
 �̃�

𝐿𝑖𝑛𝑡)

1 +
𝑢2

 �̃�2 sin2 (
𝜔
 �̃�

𝐿𝑖𝑛𝑡)
 (S6) 

Assuming that the incoming excitations are thermalized, the thermal current is given by Eq. 3. 

  



Methodology 

In this section, we wish to describe in detail the method we employed in order to measure the 

longitudinal thermal conductance in the quantum Hall Effect (QHE) regime. In order to exemplify our 

technique, we will accompany this section with a step-by-step analysis of the raw data.  

Noise measurement 

In the experiment, we heat up the source (S) by sourcing opposite sign currents 𝐼, −𝐼 from contacts 𝑆1 

and 𝑆2 respectively. This causes the dissipation of power 𝑃S =
𝐼2

𝐺xy
, while keeping the source potential 

zero. The dissipated power on the source causes its temperature 𝑇S to increase. All the edge modes 

leaving the source flow to the ground, but in the presence of non-zero longitudinal thermal 

conductance, heat can propagate through the bulk and cause an increase to the power-meter’s 

temperature, 𝑇PM. We simultaneously measure the temperature of the source and the power-meter 

(PM). This is accomplished by the measurement of the excess current noise in amplifiers’ contacts 

located downstream to the source and the PM (contacts 𝐴S, and 𝐴PM respectively in Fig. 1 of the main 

text). The raw noise data for 𝜈 = 2.05 (𝐵 = 6.1𝑇) is plotted in Fig. S1a. The excess current fluctuations 

are proportional to the temperature of the contact from which the edge emanates (due to the 

conservation of current). The low-frequency power spectral density of the noise arriving to 𝐴S is given 

by1   

 𝑆𝐼 =  2𝑘𝑏𝐺⋆(𝑇S − 𝑇0). (S7) 
Here, 𝑘𝑏 is the Boltzmann constant, 𝑇0 is the base temperature and 𝐺⋆ is the effective conductance for 

noise measurement, 

 𝐺⋆ =
𝐺S→A𝐺S→G

𝐺S→A + 𝐺S→G
, (S8) 

With 𝐺S→A (𝐺S→G) is the conductance from the source to the amplifier (ground). In the measurement of 

all the states (𝜈 = 2, 𝜈 = 7/3 and 𝜈 = 5/2) the region connecting the source to 𝐴S (as well as the region 

connecting the PM to 𝐴PM) was tuned to 𝜈 = 2 using a top gate. Thus, we had 𝐺⋆ =
4

3

𝑒2

ℎ
,

26

19

𝑒2

ℎ
, and 

18

13

𝑒2

ℎ
, 

for 𝜈 = 2, 𝜈 = 7/3, and 𝜈 = 5/2 respectievely. Eq. S7 (and the equivalent formula for the PM) is used to 

extract 𝑇S and 𝑇PM from the measured noise (Fig. S1b).  

Power-meter calibration 

The second step of the measurement is to convert the temperature of the PM to impinging power. This 

is accomplished by a separate calibration measurement. Here, the source contact is not heated. Instead, 

we dissipate power directly on the PM contact, by sourcing two opposite currents, 𝐼cal, and −𝐼cal from 

𝑆1
cal and 𝑆2

cal (in Fig. 1 of the main text), respectively (Fig. S1c). This allows measuring 𝑇PM against a 

known power, 

 𝑃cal =
𝐼cal

2

𝐺xy
, (S9) 

 (Fig. S1d). Finally, we use the power calibration to convert 𝑇PM to impinging power, which could be 

plotted as a function of the heater temperature (Fig. S1e), and allows the extraction of 𝜅xx. 

 



Additional QHE states 

In addition to the data presented in the main text, we measured the longitudinal thermal conductance 

of other integer and fractional QHE states. For all the measured states, we were able to detect finite 

conductance of heat through the bulk. Here, in order to efficiently measure 𝜅xx for many values of 

magnetic field, we did not scan the source temperature. Instead, we relied on 𝜅xx being temperature 

independent and measured for a constant 𝑇S = 50mK. Extracting the longitudinal thermal conductance 

according to,  

 𝜅xx = 2
𝑃

𝑇S
2 − 𝑇0

2. (S10) 

We ensure the applicability of this efficient method by the fact that the value of 𝜅xx agrees between the 

two methods (when measured for the same magnetic field).  

Integer QHE 𝝂 = 𝟑  

The behavior of this integer state resembles 𝜈 = 2 (Fig. S2a). At the center of the plateau 𝜅xx vanishes, 

and it increases as the magnetic field is tuned away from the center. Here, unlike 𝜈 = 2, the value of 𝜅xx 

appears to increase symmetrically in the ‘particle’ and the ‘hole’ sides of the plateau.   

Fractional QHE 𝝂 = 𝟒/𝟑 

The 𝜈 = 4/3 is a robust fractional state in the first Landau level (LL). The spin-up LL is completely full and 

the spin-down LL is one third full, forming a Laughlin state. Here, similar to the integer fillings, we 

observe vanishing 𝜅xx near the center of the plateau. 𝜅xx increases as the field is tuned away (Fig. S2b). 

Interestingly, for this fractional state, the region where 𝜅xx~0 is shifted slightly from the center of the 

𝐺xx~0 region (towards the particle side of the plateau).  

Fractional QHE 𝝂 = 𝟖/𝟑 

The 𝜈 = 8/3 is a fragile state in the second LL. The order is believed to be identical to the Particle-Hole 

conjugated 𝜈 = 2/3 (on top of a full LL). For this state, we didn’t make a thorough study of 𝜅xx along the 

plateau. We did measure 𝜅xx in the center, finding again a finite value 𝜅xx = 0.41 ± 0.03 (see Fig. S3c), 

similar to the 𝜈 = 5/2 state.   

Further study of 𝝂 = 𝟐 

We carefully studied the 𝜈 = 2 state, concentrating on the magnetic fields where 𝜅xx becomes finite 

(Fig. S2c). Very interesting is the difference in slope 𝜕𝜅xx/𝜕𝐵, which is significantly larger on the particle 

side (compared to the hole side). This could be attributed to the microscopic realization of the disorder, 

as the puddles that form when the second LL is slightly filled (when 𝜈 > 2) are geometrically different 

from the hole puddles that form when the first LL is not completely full (𝜈 < 2).  

Raw data 

All the power measurements, which were fitted to extract 𝜅xx are presented in Fig. S3. 

 

 



Noise acquisition and calibration 

The noise arriving to the amplifier contacts (𝐴S and 𝐴PM) is separately amplified by homemade cryo-

amplifiers located on the 4.2K plate of the dilution refrigerator. The amplifier’s input is connected (in 

parallel) to the sample resistance, the line capacitance, and a superconducting coil, forming an RLC 

circuit. In our system the central frequency of the circuit was 632kHz (695kHz) and the bandwidth was 

42kHz (44kHz) for 𝐴S (𝐴PM). The amplified noise is further amplified by a room temperature amplifier, 

and is measured with an SRS-865A lock-in amplifier.   

The gain of the cryo-amplifiers was calibrated using equilibrium Johnson-Nyquist (JN) noise2, 3. The total 

measured voltage noise could be written as, 

 𝑆𝑉 = 𝐴2(𝑆base + 𝑆JN), (S11) 
with  𝑆base being the base electronic noise of the amplifier circuit, 𝐴 the gain, and 𝑆JN the JN noise, 

 𝑆JN = 4𝑘𝑏𝑇𝑅. (S12) 
 With 𝑅 = 𝐺xy

−1 and 𝑇0 the base electronic temperature. For high enough temperatures (above 30mK), 

the electronic temperature is well coupled to the cryostat’s temperature 𝑇C = 𝑇0. Thus, measuring the 

equilibrium noise against 𝑇C allows the calibration of the amplification gain, 𝐴 and the base noise, 𝑆base 

(Fig. 4). When the cryostat is cooled to the lowest temperatures (below 20mK), the electronic 

temperature can be larger than that of the cryostat. Here we the calibration of 𝑆base to deduce the 

temperature, 

 𝑇0 =
𝑆𝑉 − 𝑆base 𝐴2⁄

4𝑘𝑏𝑅
. (S13) 

  



  Figures 

Fig. S1 – Methodology of power measurement. Measurement and analysis steps required to measure 

the heat flow, and extract 𝜅xx. As an example, we present 𝜈 = 2 data, measured at 𝐵 = 6.1T, and base 

temperature of 𝑇0 = 15mK. (a) Raw noise data. The excess noise measured at 𝐴S and 𝐴PM as a function 

of the sourced current 𝐼 sourced from 𝑆1 (while current – 𝐼 is simultaneously sourced from 𝑆2). (b) 

Power-meter’s temperature as a function of the source’s temperature extracted from (a) using Eq. S7. 

The heating of the source from 𝑇0 = 15mk to a temperature of  𝑇S~40mK causes the slight increase of 

the PM’s temperature to 𝑇PM~17mK, due to the finite 𝜅xx. (c) Power-meter calibration; raw data. Noise 

measured at 𝐴PM as a function of the direct heating of the PM, by current 𝐼cal sourced from 𝑆1
cal (while 



current – 𝐼cal is simultaneously sourced from 𝑆2
cal). (d)  Dissipated power (derived from Eq. S9) as a 

function of 𝑇PM. (e) By combining the main measurement (b) with the calibration (d), we can plot the 

power arriving to the PM as a function of the source temperature, and produce the plot presented in 

the main text Fig. 2a. A linear fit to the power vs. 𝑇S
2 gives 𝜅xx. 

 

Fig. S2 – Thermal conductance through the bulk of other QHE states. Longitudinal electrical 

conductance (green with scale to the left) and longitudinal thermal conductance (red markers with scale 

on the right) plotted as a function of magnetic field on the plateaus of (a) 𝜈 = 3, (b) 𝜈 = 4/3  and (c) 

𝜈 = 2. The circular markers corresponds to the fitting results of 𝑃 vs. 𝑇S
2 (raw data presented in Fig. S3), 

and the triangular markers correspond to 𝜅xx measured for a single source temperature of 𝑇S = 50mK, 

and extracted according to Eq. S10. 

 

  



Fig.3 – Raw data used to extract 𝜿𝐱𝐱. The colored markers represent the power arriving to the PM as a 

function of the source temperature squared. The data is linearly fitted (colored straight lines) in order to 

extract 𝜅xx (according to Eq. 1 of the main text). Showing the measured data for the results appearing in 

the main text and the supplementary information: (a) 𝜈 = 2, (b) 𝜈 = 7/3, (c), 𝜈 = 5/2 and 𝜈 = 8/3, (d) 

𝜈 = 3 and (e) 𝜈 = 4/3.  

  



 

Fig. S4 – Amplifier calibration. Equilibrium noise as a function of the cryostat temperature (markers). 

The noise is linear in temperature, in agreement with the Johnson-Nyquist formula (Eq. S12). This allows 

us to calibrate the gain according to Eq. S13 (straight lines).   
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