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ABSTRACT 

The even denominator fractional quantum Hall (FQH) states =5/2 and =7/2, have been 

long predicted to host non-abelian quasiparticles (QPs). The presence of energy-carrying 

neutral modes cripples customary conductance measurements and thus motivates thermal 

transport measurements, which already proved to be sensitive to all energy-carrying modes. 

Each state has a different capacity to carry quanta of heat - as expressed by the so-called: 

'central charge' - identifying the state's topological order. While the 'two-terminal' thermal 

conductance measurements identified the topological orders of abelian and non-abelian QH 

states, they are prone to partial thermal equilibration among counter-propagating modes. 

Here, we report a 'four-terminal’ thermal Hall conductance measurement, which separately 

measures the heat carried by the downstream and upstream chiral modes. This 

measurement is insensitive to thermal equilibration among modes. We verify that the =5/2 

and =7/2 states are non-abelian, supporting a single upstream Majorana mode, thus 

obeying the Particle-Hole Pfaffian topological order. While current numerical works predict 

a different central charge, this contribution should motivate further theoretical work. 

 

 

 

 

 

 

#These authors contributed equally 

*Corresponding author: moty.heiblum@weizmann.ac.il 

mailto:moty.heiblum@weizmann.ac.il


 

2 

The search for quantum states that host non-abelian quasiparticles (QPs), localized or 

propagating, intensified in the past few years, stemming from their unique characteristics and 

potential to serve as robust qubits in a noisy environment. Among several proposed 

implementations, the even-denominator fractional states, the =5/2 and =7/2, of the 

Quantum Hall effect (QHE), are the leading candidates [1][12] with numerical calculations 

predicting an anti-Pfaffian (A-Pf) topological order [3][4]. This order supports a fractional 

downstream '½ charged mode' and an upstream three Majorana modes (in addition to the 

downstream integer modes) [2],[7]. 

In the experimental realm, the =5/2 state has been studied extensively. Earlier tunneling 

measurements pointed at various possible states, such as the A-Pf order [18],[19] or different 

abelian and non-abelian orders [10][10],[20]. However, more recent heat transport and shot 

noise measurements pointed to the particle-hole Pfaffian (PH-Pf) order [21-23]. The published 

works include measurements: (i) Two-terminal thermal conductance coefficient k2t of all the 

edge modes (two integers and the fractions) [19]; (ii) Two-terminal thermal conductance 

coefficient k2t of the isolated fractional mode (charged + Majorana) [22]; (iii) Shot noise 

measurements of the chirality of the isolated fractional mode (charged + Majorana)[23]. The 

PH-Pf order differs from the A-Pf by supporting a single upstream Majorana mode with central 

charge, c=-1/2 [21][22]. The less explored =7/2 state is also expected to be a non-abelian 

state [16][17]; however, its topological order is still not established. 

The ‘two-terminal’ measurement [24],[25] is based on a known dissipated power in a small 

floating ohmic contact (Source), with its equilibrium temperature related to the net power J2t 

that leaves the contact, 

J2t=0.5 k2t (TH
2-T0

2),     (1)  

with TH Source temperature and T0 Base (Ground) temperature. For a single ballistic chiral 

abelian mode, the thermal conductance kT=k0T=π2kB
2T/3h, with T temperature, k0 heat 

quantum, and kB and h are Boltzmann and Planck constants, respectively [26],[27]. When the 

downstream edge modes with thermal conductance kd fully thermally equilibrate with the 

upstream edges modes with thermal conductance ku, then k2t=kd-ku. However, when the edge 

modes do not interact, then k2t=kd+ku. Consequently, partial thermal equilibration leads to a 
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value between the two extremes of k2t. For example, in the =5/2 state, if a single Majorana 

mode (carrying heat, k0T/2 [5],[28],[29]) does not thermally equilibrate, the measured thermal 

conductance would increase by k0T. Such a lack of equilibration could have led to an apparent 

PH-Pf order (k2t=2.5k0 [30]-[36]), while the actual order was A-Pf (k2t=1.5k0). 

To avoid the ambiguity arising from partial equilibration, we employ a configuration that 

enables the direct determination of the topological thermal Hall conductance, namely, 

measuring separately the downstream and upstream heat flows: Jdown∼kdT and Jup∼kuT, with 

kxyT=kdT-kuT, thus obtaining the thermal Hall conductance (the topological order) [37],[38]. 

Here, we apply this method to study the two even denominator states, =5/2 and =7/2. 

The devices under test (shown in a false color SEM image in Fig. 1(a)) were fabricated in a 

2DEG confined in a GaAs-AlGaAs heterostructure, with short-period superlattice (SPSL) type 

doping [39],[40]. The 2DEG mobility ∼ 9.1×106cm2/V-S and density 2.9×1011cm−2, measured 

at 4.2K in the dark. The QHE response around the two states of interest, measured in a Hall 

bar, is shown in Fig. 1(b) (see also Supplementary information (SI-1)). 

The tested devices (Fig. 1(a)) consist of two identical floating ohmic contacts, denoted by 

L (left) and R (right), each with an area of ∼49µm2. Both contacts are covered with ∼25nm 

thick dielectric HfO2 followed by a grounded electrode, thus suppressing a possible charging 

energy [41],[42]. The 2DEG under each floating contact is grooved, thus ‘forcing’ any incident 

current to enter the contacts [37],[38]. Contacts L and R are separated by 10µm (or 30µm) of 

the intermediate 2DEG bulk. A side gate (SG, at the lower part of the bulk), when 'pinched,' 

guides the edge modes from L to R. When the SG is not biased, the chiral modes flow to the 

ground. A partial biasing of the SG directs chosen edge modes to the ground. The contacts L 

& R are also attached to two separate long mesa arms (∼120µm long each), with two current 

sourcing contacts, amplifier contact, and ‘cold grounds’ (Fig. 1(a)). The amplifier contacts 

collect the Johnson-Nyquist (J-N) noise to determine the contact’s temperature (see SI-2) [37]. 

Each of the floating contacts is heated with a known power supplied by equal and opposite 

DC currents (+I and −I) emanating from contacts S1 and S2 (for contact L) or S3 and S4 (for 

contact R). Each floating contact’s potential remains zero (eliminating possible emanating shot 

noise and assuring that the outgoing edge modes carry only the J-N noise), while the 
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dissipating power is Pd=I2R, with R=h/e2 the quantum Hall resistance. During measurement, 

the heated floating contact (by DC currents) acts as the temperature source (S) (Fig. SI-2). The 

second floating contact is heated by the arrival of the edge modes that leave S, thus acting as 

a power meter (PM). The increased PM temperature is 'translated' to the arrival power from 

S (Fig. SI-3) [37][38]. In the ‘downstream configuration,’ the floating contact L plays the role 

of the Source while the floating contact R plays the PM role. In the ‘upstream configuration,’ 

the functions of L and R are interchanged (SI-2). 

We now briefly review the method of obtaining the topological thermal Hall conductance. 

The arriving downstream heat flow to the PM, Jdown, and the evacuated heat Jout=Je+Jγ (Je – via 

edge modes, and Jγ via phonons) leads to net dissipated power in the PM with an equilibrium 

temperature TPM. The measured TPM is ‘converted’ to the arriving power, Jdown, via a separate 

heating process by a known power (as described above and in SI-2). The same procedure is 

applied when the upstream heat flow, Jup, is measured by interchanging the heated and the 

measuring contacts. 

The topological thermal conductance coefficient kxy is found via two measurements, 

Jdown and  Jup, both at the same temperature scale, using, 

Jdown- Jup=
kxy

2
(TH

2 -T0
2)  , (2) 

where TH (T0) is defined above [37]. It is important to stress that thermal equilibration between 

modes, or lack of it, as well as the contributions of the bulk or due to edge-reconstruction, are 

eliminated by the subtraction process of Jdown-Jup [37][38]. However, the energy loss of the 

propagating modes cannot be recovered (moreover, the losses are not necessarily equal in 

the down and up directions). Hence, the L-R separation is kept short to minimize heat loss. 

We first test the configuration at the well-understood filling =2, performing the 

measurements at the conductance plateau's center (B=6T) on a device with an L-R separation 

of 10µm. Figure 2(a) shows the measurement configuration with a fully pinched SG gate 

(VSG=−2V), with two downstream edge modes leaving contact L (Source) and reaching contact 

R (PM). A less negative gate voltage, VSG=−0.85V (0V), allows only the outer (also the inner) 

edge modes to reach the ground (Fig. 2(b), see also SI-3 and Fig. SI-4b). Figure 2(c) shows the 
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dependence of the (calibrated) incoming power Jdown (to R) as a function of TL
2-T0

2 (T0∼11mK), 

where TL is the temperature of contact L. The red, blue, and black dots correspond to 

downstream two modes plus the bulk, one mode plus the bulk, and only the bulk, respectively. 

With Eq. (1), we find kd=2.07k0±0.03k0 for two propagating edge modes and kd=1k0±0.01k0 for 

a single edge mode. The heat flow through the bulk and the upstream heat flow are both 

negligibly small; hence, kxy(=2)2k0, as expected (Fig. 2(e)). 

To verify the impact of bulk conductance on kxy, we tuned the filling away from the 

center of =2 plateau (at 5.6T). Figure 2(d) shows Jdown versus TL
2-T0

2 (T0∼9mK) Here, we find 

kd=2.54k0±0.02k0 for two edge modes (red circles) and kd=1.45k0±0.01k0 for a single mode 

(blue circles), both with added contribution of the bulk. The upstream heat flow led to 

ku=0.43k0±0.02k0 (two modes, green circles) and ku=0.49k0±0.01k0 (one mode, black circles). 

Consequently, we find kxy=2.11K0±0.03K0 and kxy=0.96k0±0.02k0 for two and one modes, 

respectively (Fig. 2(d)). Figure 2(e) summarizes kxy determined at the plateau center (red) and 

away from it (blue) as a function of downstream edge mode number N (Fig. SI-4b). This 'four 

terminal' method accurately provides the topological thermal conductance, even in the 

presence of finite heat flow through the bulk. 

Having established the ‘four terminal’ method's effectiveness, we now focus on the even 

denominator states. Starting with =5/2 and a pinched SG, Fig. 3(a) shows the Jdown (L to R) 

versus TL
2-T0

2 (T0∼11mK) plots measured at the =5/2 plateau’s center (B=4.64T). Figure 3(b) 

shows the Jup (R to L) versus TR
2-T0

2 with a pinched SG and the bulk conduction with a fully open 

SG (see also SI-4). Figures 3(c-f) present the edge mode configurations between the floating 

contacts for different SG voltages (SI-3 and Fig. SI-4c). 

Table 1 outlines the thermal conductance derived from the plots in Figs. 3(a) & 3(b). 

Here, the coefficients kd(N) and ku(N) represent downstream and upstream thermal 

conductance for N number of propagating modes (Fig. SI-4c). Accordingly, the topological 

thermal conductance coefficient is kxy(N)=kd(N)-ku(N). The bulk contribution 

kbulk=0.54k0±0.03k0 (Fig. 3(b & f)). Finally, we find kxy(3)=2.5k0±0.07k0, kxy(2)=1.39k0±0.05k0, 

and kxy(1)=0.29k0±0.04k0. The thermal conductance of the isolated inner mode (kxy(1)) is 
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substantially smaller than its contribution when joined with the integer modes, suggesting an 

enhanced energy loss of the isolated mode. We will return this issue later. 

We repeated the measurements at different locations on the =5/2 conductance 

plateau. The bulk conductance (~Gbulk, orange) between the floating contacts is plotted for 

reference (Fig. SI-1f). In Fig. 4(a) we plot kd(3) (red), ku(3) (green), and the topological value 

kxy(3) (blue). We find an average topological thermal conductance across the plateau, 

Kxy(3)=2.5k0±0.2k0. Figure 4(b) presents a comparison between the measured kxy (red) and the 

expected values (blue) of the PH-Pf order as a function of N. 

For the second even-denominator =7/2 state we employed a similar device 

configuration but with an L to R distance of 30µm showing better quality =7/2 state (see the 

comparison in Fig. SI-1e and Fig. SI-1f). Figure 5(a) shows Jdown as a function of TL
2-T0

2, measured 

at the center of the plateau (Fig. 1b-inset, B=3.305T). Similar plots of Jup and the bulk’s 

contribution are shown in the SI-4 and SI 5. Table 2 summarizes the thermal conductance 

results for the =7/2 state. Here, we find kxy(4)=3.48k0±0.07k0, kxy(3)=2.40k0±0.05k0, 

kxy(2)=1K0±0.05K0 and kxy(1)=0.22k0±0.04k0. The contribution of the bulk is kbulk=0.6k0±0.03k0, 

slightly higher than separately measured upstream heat flow, ku~0.52K0±0.02K0 (used to 

calculate kxy). The higher kbulk is likely due to a fitting error arising from the relatively noisy 

data (SI-5). Figure 5(b) presents kxy (red) as a function N (Fig. SI-4d), with a comparison with 

the expected values for the PH-Pf order (blue). 

In the two studied states, we find a lower thermal conductance than expected of the inner 

mode(s) when measured after peeling away the integer modes, allegedly contradicting the 

measured K2t of the most inner mode in the =5/2 case [22]. The measurement of k2t relies on 

the heat that leaves the heated Source contact, while our present measurement of kd or ku 

depends on the heat that reaches the PM, which may suffer from heat loss on its way. We 

suggest that as we peel off the integer modes by ‘opening’ the Side Gate (SG), the confining 

potential gets softer, thus lowering the modes’ drift velocity and increasing the inner modes' 

dwell time – thus possibly increasing its heat loss. This handicap was considered in the design 

of a relatively short L-to-R separation. 

This rather elaborate 'four-terminal' configuration was developed to obtain the topological 

order of fractional states in the Fractional Quantum Hall regime [37],[38]. Moreover, it 



 

7 

overcomes the drawbacks of previously tested ‘two-terminal’ measurements [24],[25]. It 

allows employing higher-quality 2DEG (with wider conductance plateaus and lower 

longitudinal resistance) by eliminating the contribution to heat transfer of the highly intricate 

doping configuration [21], [37],[39][40]. While the long-standing theoretical predictions of 

anti-Pfaffian [3]-[5], all our measurements of the =5/2 states came up with the Particle-Hole 

Pfaffian order [21][22],[23]. Finding the same order in the =7/2 state may point to more 

fundamental reasons that prefer the Ph-Pf order for the even denominator states. It will be 

commendable if new theoretical works address the unavoidable disorder and Landau-level 

mixing in the GaAs devices [8],[9],[10],[45],[46] . These shortfalls might be overcome in high-

quality hBN-encapsulated graphene hosting even denominator states [47]. 
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Figure 1: The device and the quantum Hall response. (a) An SEM image of the device showing 

the floating contacts (orange), L (temperature TL), and R (temperature TR), the continuous side 

gate, SG (yellow, charged by VSG), and the mesa arms (grey), defined by etching grooves in the 

GaAs (purple). The arrowed lines represent the QH edge modes. Red arrowed dashed lines 

show current-carrying edge modes (injected from S1 and S2 or S3 and S4) that heat the 

floating contacts. Solid red and blue lines represent the outgoing edge modes from contacts L 

and R. A1 and A2 amplifiers' contacts. (b) Rxy (red) and Rxx (dashed blue) are plotted as a 

function of the magnetic field B (fridge temperature, Tfridge=8mK). Plateaus and minima of 

=7/3, 5/2, and 8/3 are distinct. The inset shows Rxy (red) and Rxx (dashed blue) vs. B around 

the =7/2 plateau. 
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Figure 2: Thermal conductance of =2: For downstream heat flow, contact L acts as the 

Source, and contact R acts as the PM. Currents +I and –I heat contact L. The temperature of 

the two floating contacts is determined by measuring the spectral density of the Johnson-

Nyquist noise, denoted by SV1 and SV2. (a) Configuration for downstream heat flow 

measurement with two edge modes (solid red lines) carry heat from L to R (VSG=−2V). (b) 

Configuration for the inner edge mode reaching contact R, while the outer edge mode is 

diverted to Ground (VSG=−0.85V). (c) Downstream heat flow Jdown arrives at contact R and 

heats the contact. The Jdown is plotted as a function of TL
2-T0

2 (T0∼11mK, electron 

temperature). The red, blue, and black colors correspond to heat conduction by two modes, 

one mode and only the bulk, respectively. Solid red lines are the linear fit to the data. (d) Jdown 

vs. TL
2-T0

2 response away from the plateau's center (at B=5.6T). Red and blue colors 

correspond to downstream heat flow by two and one edge modes, respectively. The green 

and black colors represent upstream heat flow for the same two configurations. Here, finite 

upstream heat flow is via the bulk. (e) kxy as function number of edge mode (N) determined 

from kd and ku values at 6T (red circles) and 5.6T (blue square). For clarity, we have removed 
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the error bars. kxy has the same values in both cases, effectively eliminating the bulk heat 

conduction. 
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Figure 3: Thermal conductance of  =5/2. (a) Downstream power flow Jdown leaves the heated 

contact L and reaches contact R plotted vs. TL
2-T0

2 (T0=9mK, electron temperature). The red, 

green, and blue data points are for all edge modes, two outer and the innermost fractional 

mode, respectively. The downstream heat conductance kd(N=3,2,1) is determined from the 

linear fittings shown by the solid lines and are given in Table 1. (b) Upstream heat flow Jup are 

measured by changing the roles of L and R with all modes participating, and plotted as a 

function of TR
2-T0

2 (in black), while the bulk itself is in grey. Error bars show a statistical error. 

(c)-(f) Different configurations of edge modes propagation between L & R: (c) Fully pinched 

SG (VSG=-2V), (d) and (e) Partially pinched SG with one (VSG=-1V) and two (VSG=-0.52V) edge 

modes diverted to ground. (f) Fully open SG (VSG =0V). The arrows indicate edge modes: solid 

red for downstream integer modes, dashed red for downstream fractional mode, and blue 

dashed arrow for upstream modes. White arrows show edge modes emanating from the 

ground. 
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Table 1: Downstream and upstream thermal conductance kd(N) and ku(N) and topological 

thermal Hall conductance kxy(N) as a function of the number of downstream charged edge 

modes (N) between the floating contacts L and R. kbulk is the bulk thermal conductance. 
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Figure 4: Summary of data of =5/2. (a) Bulk conductance between L and R Gbulk (orange) in 

units of G0, kxy (blue), kd (red), and ku (green) - as function magnetic field (B) around the minima 

of Gbulk. (b) kxy as a function of the number of edge modes (N) propagating downstream 

between L and R. The blue squares are the expected values of Kxy of the PH-Pf order. The 

arrows show the edge structures of the PH-Pf order at different VSG. Solid and Dashed red 

arrows represent downstream integer and ½ fractional mode, respectively. Blue dashed 

arrows show upstream Majorana mode. The error bars in the figures correspond to statistical 

error. Note the more significant deviation at N=1. 
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Figure 5: Thermal conductance of =7/2. (a) Jdown vs. TL
2-T0

2 plots at the center of =7/2 

plateau at 3.3T (T0=9mK, electron temperature). The red, green, blue, and black data points 

correspond to all edge modes: inner three, inner two, and innermost fractional mode. The 

corresponding downstream heat conductance kd(N=1,2,3) are shown in Table 2. (b) kxy (red 

error bars) as a function of the number of downstream edge modes (N) propagating from L to 

R at =7/2. The blue squares are the expected values of kxy of the PH-Pf order. The error bars 

in the figures correspond to statistical error. Note the more significant deviations for N=1,2. 

 

 

 

 

 

 

 



 

20 

 

 

Table 2: For =7/2, downstream and upstream thermal conductance kd(N) and ku(N) and 

topological thermal Hall conductance kxy(N) as a function of number downstream charged 

edge modes (N). kbulk stands for bulk’s thermal conductance. 
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SI-1: Quantum Hall response of the thermal conductance devices 

Figure SI-1a shows Rxy (in red) and Rxx (in blue) as function of magnetic field B around the =7/2 

plateau from the Hall bar sample. In contrast to the Hall bar, the thermal conductance device’s 

geometry doesn't permit direct measurement of longitudinal resistance (Rxx) [1,2]. Instead, 

we rely on bulk leakage current (ΔI) between floating contacts (L and R) to identify the minima 

of bulk conductance Gbulk  (equivalent to minima of Rxx). Figure SI-1b illustrates the low-

frequency (∼17Hz) setup to measure Gbulk between the floating contacts. An ac current (Iac) is 

injected from source contact S1 and in absence of any bulk leakage it is carried to the floating 

contact L by the edge modes denoted with red dashed arrows. Here, the current splits 

between the outgoing edge modes (colored orange). In each arm the outgoing current (Iout) is 

determined by the voltage drop (Vm) on a separate ohmic contact connecting the outgoing 

edge modes to the ground, like the probe V1 in the top-left arm. Vm given by, 

Vm= IoutRH
     (SI-1) 

where RH is the quantum Hall resistance. We find Iout~
Iac

3
  for all the arms at the QH plateau 

centers, even for the =7/2 and =5/2 states, with finite bulk conductance. The equal splitting 

of current indicates significantly small or absent bulk conductance at the plateau centers. Also, 

equal current-splitting results in a voltage drop at the floating contact L, given by, 
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     VL ~ 
Iac

3
RH     (SI-2) 

Similarly, in the presence of bulk leakage, any small current ΔI reaching the other floating 

contact R induces a voltage drop at R, 

VR ~ 
 ΔI

3
RH.      (SI-3) 

This drop is measured by the voltage probe V2 (at the bottom-right mesa arm). The magnitude 

of Δ𝐼  depends on the difference, VL-VR  and bulk resistance (Rbulk ), between the floating 

contacts, hence, 

 VL-VR ~ ΔI Rbulk .       (SI-4) 

Using Eqs. SI-1 to SI-3 we get, 

                              Rbulk = (RH/3)(VL-VR)/VR ~ (RH/3)(VL/VR) ~  

                                                                 ~ (
RH

2

9
) (

Iac

VR
),      (SI-5) 

Here we have ignored the second term on the right-hand side since the measured VL is two 

orders larger than VR. Finally, Eqs. SI-5 leads to, 

            Gbulk=
1

Rbulk
=

9

RH
2 (

VR

Iac
) .      (SI-6)  

  

 The Figs SI-1c, SI-1d, and SI-1e display the measured Gbulk (in blue) as a function of the 

magnetic field (B) for filling factors =2, =5/2, and =7/2, respectively in the device with 

10µm L-R separation. Additionally, two-terminal Hall resistance (R2t) traces (in red to black) 

measured at different voltage probes or current injection contacts in the sample are also 

shown. R2t is determined by measuring the voltage drop at the contacts while injecting a 

known current. For the integer =2 state, Gbulk remains zero throughout the plateau (Fig. SI-

1c). In the =5/2 state, R2t traces exhibit clear plateaus for different contacts (Fig. SI-1d). The 

Gbulk reaches a minimum of ∼0.01G0, near the plateau's center at B=4.64T, while increasing 

rapidly away from the center of the plateau. The =7/2 state, however, is not well developed, 

as seen in the R2t and Gbulk responses in Fig. SI-1e. The Figure SI-1d shows the =7/2 state’s  
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Figure SI-1: Quantum Hall responses - (a) Quantum Hall response around the =7/2 state in 

the Hall bar device. (b) Measurement configuration for determining bulk conductance Gbulk 

between the floating contacts. The gate SG is fully open, diverting all edge modes from contact 

L to ground. (c)-(e) Two-terminal quantum Hall resistance R2t and Gbulk as functions of the 

applied field B at =2, =5/2, and =7/2 in the device with a 10µm separation between the 

floating contacts. R2t traces measured from different contacts are shown by the colors red to 

black. The measured Gbulk is depicted in blue. (f) R2t and Gbulk vs. B responses around the =7/2 

state in the device with a 30µm separation between the floating contacts. 
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response in the device with 30µm separation between the floating contacts. In this device, 

the =7/2 state is well developed with R2t plateaus visible in different contacts. Here, Gbulk 

shows a clear minimum of ∼0.03G0 at 3.305 T, prompting us to check the thermal 

conductance of =7/2 state in this device. 

 

 

Figure SI-2: Excess thermal noise measurement - (a) Setup to measure excess thermal noise 

from the floating contacts: the contact L (dark red) heated with known electrical power acts 

as temperature source, while the contact R (light red) heats up from arriving power from the 

source, thus acts as power meter (PM). (b) Measured excess noise (SI) from the floating 

contacts plotted against injected current (I) to the source. The colors red and blue are for the 

source (contact L) and power meter (contact R) noises, respectively. (c) Temperatures TL (red) 

and TR (blue) of the floating contacts determined from SI using Eqs. SI-7, as function of applied 

power Pin to the source. 
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SI-2. Thermal conductance measurement 

There are two steps in the thermal conductance measurement [1,2]: 1) J-N thermal noise 

measurement and 2) Power-Meter (PM) calibration. The following sections describe the two 

steps using the downstream thermal conductance measurement at =2 as an example. Note 

for the upstream case, the roles of the floating contacts are reversed. 

 

Thermal noise measurement: In this step, one of the floating contacts is directly heated with 

a known electrical power, functioning as a temperature source. The other floating contact 

heats up due to incoming power carried by the arriving edge modes from the temperature 

source or the bulk. The latter contact is labeled as the power meter (PM).  The heating of both 

contacts results in outgoing edge modes carrying excess J-N noise, subsequently converted to 

the temperature of the floating contacts. 

Figure SI-2a shows the setup where the floating contacts L and R act as the source and PM, 

respectively. Contact L is heated with the equal and opposite currents (dc) +I and -I injected 

from contacts S1 and S2 and are carried by the edge modes denoted as red dashed arrows. 

The dc currents are injected using the 1GΩ resistances in series with the sample and the dc 

voltage source Vs. The injected currents cause net power dissipation I2RH at the floating 

contact L. At a steady state, the dissipated power equals the net outgoing power carried by 

the outgoing edge modes (red solid lines). By applying a suitable gate voltage VSG, the edge 

modes in the middle arm are directed to contact R, increasing its temperature. The resulting 

excess J-N thermal noise (SI) is measured by amplifiers connected to the contacts A1 and A2 

for L and R, respectively. The amplifier lines play as an LC tank circuit, followed by a cold 

amplifier (CA) at a temperature 4K followed by a room temperature (NF) amplifier. Noise is 

measured at the LC resonance frequencies (∼632 kHz and ∼717 kHz for L and R, respectively), 

with a bandwidth (BW) of ∼61.3kHz. Figure SI-2b presents the measured excess J-N noise SI 

from the two floating contacts as a function of the injected current I when contact L is heated. 

Figure SI-2c presents the excess noise being converted to the temperature of the floating 
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contacts (TL and TR) as a function of dissipated power (Pin=I2RH). We use the following 

expression for the conversion [1,2] , 

SI=2kBΔT G*    (SI-7) 

where 𝑘B  is the Boltzmann constant, ΔT (TL-T0 or TR-T0)  is the excess temperature of the 

floating contacts and G* is given by: 

             G* =
GS→AGS→G

GS→A+GS→G
,    (SI-8) 

with GS→A is conductance between source and amplifier contact, and GS→G is the conductance 

between the source and cold grounds. 

Power-meter calibration: In this step, the PM is heated with known electrical power to 

establish its temperature vs. input power response, labeled as the calibration curve. 

Leveraging this curve, the PM temperature (TR) from the preceding step is translated to 

arriving power. With the exception of heating the PM instead of the source, the rest of the 

calibration step is identical to the noise measurement step. 

Figure SI-3a, illustrates the setup for generating the calibration curve for contact R. In this 

configuration, the contact R (rather than L) is heated with the equal and opposite dc currents 

+I and -I, injected via the source contacts S3 and S4, respectively. The excess noise (SI) for both 

floating contacts, resulting from heating of contact R are presented in Figure SI-3b. Similar to 

the previous step, the excess noise responses are converted to temperatures of the floating 

contacts using Eqs. SI-7. Figure SI-3c shows the resultant temperatures TR and TL as function 

of the input power Pin to contact R.   Here, the TR vs. Pin response represents the calibration 

curve. We use this calibration curve to determine the input power to PM corresponding to the 

measured PM temperatures from the previous step. In Figure SI-3d, the calibration curve is 

depicted in red, with green squares representing the measured PM (contact R) temperatures 

when the source (contact L) is heated. The power arriving to the PM (PS-PM, from source) 

corresponding to the green squares is plotted against input power Pin
 s

 to the source L in Figure 

SI-3e. Finally, Figure SI-3f shows PS-PM vs. TL
2 – T0

2 plot for the determination of thermal 
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conductance. In this plot TL corresponds to the source temperature when it is heated with 

known power. 

 

Figure SI-3: Calibration of power-meter- (a) Setup to establish the temperature vs. input 

power (Pin) calibration curve for the PM (contact R, dark red).  (b) Excess noise (SI) from the 

floating contacts plotted against injected current (I) to the PM contact R. The colors red and 

blue are for excess noises from contacts R and L, respectively. (c) Temperatures TR (red) and 

TL (blue) of the floating contacts determined from SI as function of injected power Pin to the 
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PM. The TR vs. Pin curve serves as the calibration curve. (d) The calibration curve (red) together 

with the PM temperatures (green square) from the noise measurement step to determine the 

arriving power (Ps-PM) to PM when the source (contact L) is heated. (e) Ps-PM against the power 

injected Pin
 s  to source in the noise measurement step. (f) Ps-PM as function of TL

2 – T0
2 with TL 

the temperature of the source contact, for determining the thermal conductance.  

 

SI-3: Controlling number of edge modes between the floating contacts  

 

Figure SI-4: Gate responses - (a) Measurement setup for gate transmittance (t) versus gate 

voltage (VSG) responses.  (b), (c) and (d) Transmittance (t, in red) and  LR (in blue) as function 

of the gate voltage VSG for the  LR = 2, 5/2 and 7/2 states, respectively. The horizontal dashed 

lines mark the plateaus at ½ integer values. The edge mode number N corresponding to the 

plateaus are shown in the figures. 
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As mentioned in the main text we use the gate SG to control the number of edge modes 

between the floating contacts. To select appropriate gate voltages (VSG) we utilize the gate 

transmittance (t) versus VSG responses. Figure SI-4a illustrates the measurement configuration 

to find the transmittance 𝑡 as function of VSG. The gate SG (yellow shaded region) divides the 

middle mesa into three parts: the upper part between floating contacts (L and R), the mesa 

directly below SG, and the lower part. By adjusting the filling factor below SG with VSG, 

downstream edge modes (blue arrows) from the left floating contact L can be directed to the 

bottom cold-ground (cg) or to the right floating contact R.  To measure t, a low frequency ac 

current Iin is injected from the contact S5 (in the lower part) and is carried by downstream 

edge modes (red arrows) to the SG-controlled region. From here the reflected edges reach 

the cold ground.  The transmitted edges enter floating contact R, which splits the transmitted 

current It equally between outgoing edge modes (orange arrows) of the three arms.  It is 

measured from the voltage drop Vm at the probe V2 using  

     Vm=
It

3
RH                              (SI-9) 

where RH is the QH resistance. Consequently, t is given by: 

                                                                 t=
It

Iin
=

3Vm

IinRH
                                                        (SI-10) 

In this configuration, the number (N) of downstream edge modes moving from L to R is equal 

to the number of reflected downstream edges at SG.  Therefore, 𝑡 can be translated into 

effective filling factor ( LR) of the edge modes moving from L to R, with 

                                                              = (1-t) LR                                                         (SI-11) 

where  is the filling factor set by applied magnetic field. Note,  LR determine the electrical 

conductance GLR=  νLRG0   between the floating contacts. For t=0, the gate is fully pinched 

(LR = ), allowing all available modes to propagate between floating contacts. Conversely, at 

t=1, the gate is fully open ( νLR =0), preventing any direct edge propagation between floating 

contacts.  
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 Figures SI-4b to SI-4d depicts measured t (in blue) and  LR (in red) as functions of the 

gate voltage VSG for the studied filling factors. For ν = 2, we find  LR = 0 (i.e. t=1), for VSG > -

0.38 V (Figure SI- 5b), indicating a fully open gate. For the even-denominator states, the gate 

remains fully open at VSG=0 before applying any non-zero gate voltage. However, once a 

voltage is applied, the gate does not open fully even at VSG=0. Consequently, the transmittance 

never returns to unity, (see Fig. SI-4c and SI-4d). This behavior is due to the hysteretic nature 

of the complicated SPSL-type doping in our GaAs samples. Regardless, in all cases, as VSG 

decreases, t approaches zero after consistently passing through multiple (single for   = 2) 

plateaus. As a result,  LR increases and match the filling factor  (beyond VSG < -1.3V). These 

plateaus signify sequential addition of the edge modes between L and R. Therefore, to vary 

number of edge mode (N) in the thermal conductance measurement, gate voltages are set in 

the middle of these plateaus. As seen, for   = 2, a lone intermediate plateau appears at  LR 

= 1 (t = 0.5) indicating the presence of a single integer edge mode (N=1) between L and R. In 

the case of even denominator states, the plateaus appear at half-integer values of  LR, as 

marked by the horizontal dashed lines in Figures SI-4c and SI-4d. The plateau with  LR = 0.5   

is for the isolated fractional ½ charged mode (N=1) with GLR=
1

2
G0. The subsequent plateaus 

appear at  LR  = 1.5, 2.5 and 3.5 (  LR  = 3.5 is exclusive to   = 7/2  state), indicating to 

inclusion of one, two and three integer edge modes, respectively, atop the ½ fractional mode 

(resulting in N=2,3 and 4, respectively). The edge mode numbers for corresponding to the 

plateaus are shown in the figures. 
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SI-4: Upstream thermal conductance as function of the edge mode number 

 

Figure SI-5: Upstream thermal conductance - (a) and (b)Upstream heat current Jup vs. TR
2 – 

T0
2 plots with number of edge mode (N) between the floating contacts for the    =5/2 and 

  =7/2 states, respectively.  The red lines are linear fit to the plot to find the thermal 

conductance ku(N). The ku(N) values determined from the plots are color coded.   

 

For upstream heat conductance (ku) measurement, we reverse the roles of the floating 

contacts: the right floating contact R becomes the temperature source, and the left contact L 

serves as the power-meter (PM). Figures SI-5a and SI-5b show the upstream heat current Jup 

relative to TR
2 – T0

2 for different edge mode numbers (N) between L and R, for the =5/2 and 

=7/2 states, respectively. The ku(N) values (color coded) determined from the plots are also 

shown in the figures. As can be seen, for both the states, the upstream heat conductance is 

independent of edge mode count.  
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SI-5: Bulk and Upstream heat conductance at v=7/2 

 

Figure SI-6: (a) heat current J vs. TR
2 – T0

2 plots for bulk and upstream heat conductance at 
=7/2. (b) Comparison of PM excess noises due bulk (red) and upstream (green, blue) heat 
flow at =7/2. 

 

Figure SI-6a compares heat current J vs. TR
2 – T0

2 plots for bulk and upstream heat conductance 

at v=7/2. We observe slightly higher kbulk ~ 0.6 k0, compared to the average upstream ku ~0.52 

k0, which is unusual. However, the plot for bulk heat conductance closely flows the plot for 

upstream heat conductance. This alignment is more evident in Figure SI-6b comparing PM 

excess noise due to bulk (in red) and upstream (in blue and green) heat flows. The observed 

higher value can be attributed to fitting error arising from more noisy data of bulk taken at 

within a lower temperature range. 
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SI-6: Gain calibration of the cryo-amplifiers 

  

Figure SI-7: Gain calibration- (a) Measured background voltage fluctuation δ𝑉𝑜𝑢𝑡
2   as a 

function temperature (T), at filling factor  = 2, for both amplifiers. Red lines are the linear 

fits to find the slopes to determine the amplifier gains. (b) and (d) Resonance plots at different 

filling factors for Amp1 and Amp2, respectively. The resonance frequencies are ∼634 kHz and 

∼717 kHz, respectively.  Vout corresponds to the amplified output signal in response to a 

known high frequency signal applied to the sample. 

 

The gains of the HEMT cryo-amplifiers vary with temperature cycle, necessitating gain 

calibration before conducting noise measurements. For the robust integer =2 state we have 

used equilibrium Johnson-Nyquist noise to determine the amplifier gains. The equilibrium 

thermal noise at any temperature T is given by  SV=4 kBTR = <δVth
2 >/BW, where δVth

2  is thermal 
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noise voltage fluctuation,  kB is Boltzmann constant, R is Quantum Hall resistance, and  BW is 

the measurement bandwidth (∼61.3 kHz). In Figure SI-6(a), the total background noises  

(δVth
2 ) measured by the amplifiers are plotted against the sample temperature T, with green 

and red colors representing noise from the left (denoted as Amp1) and right (denoted as 

Amp2) amplifiers, respectively.  The measured noise contains amplified thermal noise as well 

as the amplifiers own current and voltage noises (δVA
2), 

                                                      δVout
2 = A2 (δVth

2 +δVA
2)                                            (SI-12) 

 However, since the amplifiers sits at 4k the amplifier noises are independent of the sample 

temperature. This enables determination of the gain (A) from the slope of the linear  δ𝑉𝑜𝑢𝑡
2  vs, 

T plots, using A=√slope/(4 kBT R BW). While measuring the 10 µm separation device, we 

measured gain 8.22±0.22, and 7.60±0.20 for Amp1 and Amp2, respectively, at =2. In the 

second measurement of the 30 µm separation device, Amp1 exhibited gains of 7.59±0.5, while 

Amp2 had gains of 5.03±0.11 at =2. 

For the fragile even denominator states the amplifier gains are estimated by comparing the 

LC resonance plot areas associated to the states to that of  = 2. This method utilizes the 

relation between the resonance plot area, amplifier gain and measurement bandwidth given 

by, 

                                                            A=
1

Vin
√   

Area

BW
,     (SI-13) 

where Vin  a frequency independent input signal to the amplifier contacts. Comparing 

resonance area with known gain to resonance area for unknown gain eliminates Vin which is 

difficult to measure accurately, due to capacitive losses. Figure SI-6b and SI-6c illustrates 

comparison of the resonance plots for both amplifiers at the studied filling factors. For the 5/2 

states’ measurement, Amp1 gain was ∼8.7, and Amp2 had gain of ∼7.41. During the 7/2 

states’ the gain were ∼8.52 and ∼5.64, respectively. 
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