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Anyonic interference and braiding phase in a 
Mach-Zehnder interferometer
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Fractional quantum Hall states have long been predicted to be a testing 
ground of fractional—anyonic—exchange statistics. These topological 
states, which can have either an Abelian or non-Abelian character, harbour 
quasiparticles with fractional charges. The charge of the quasiparticles 
can be measured by shot noise measurements, whereas their quantum 
statistics can be revealed by appropriate interference experiments. The 
multipath Fabry–Pérot electronic interferometer is easier to fabricate, but it 
is often plagued by Coulomb interactions, area breathing with the magnetic 
field and fluctuating charges. Yet, recent experiments with an adequately 
screened Fabry–Pérot interferometer allowed the observation of anyonic 
interference at a bulk filling factor of ν = 1/3. Here we demonstrate the 
interference and braiding of anyons in an interaction-free two-path Mach–
Zehnder interferometer tuned to bulk filling of ν = 2/5 with an outermost 
ν = 1/3 edge mode. Interference with this mode reveals a phase dependence 
that corresponds to the predicted anyonic braiding. This proves that a 
Mach–Zehnder interferometer is a powerful tool that probes the quantum 
statistics of complex anyonic states.

Quantum Hall effect states were the earliest protagonists of topological 
phases of matter. Although the bulk is insulating, the current is carried 
by gapless chiral edge modes with a universal edge conductance of 
νe2/h, where e is the electron charge, h is the Planck constant and ν is 
the filling factor (integer or fraction)1–3. In the fractional regime, that 
is, the fractional quantum Hall effect, the excitations are quasiparti-
cles, each carrying a fractional charge with an attached flux4–10. The 
quasiparticles are neither bosons nor fermions—they are classified as 
anyons11,12. On exchanging two identical quasiparticles, the phase of 
their joint wavefunction changes by a fraction of π, whereas it is π for 
fermions and 2π for bosons8,13,14.

Ideally, observing the statistics of the quasiparticles can be accom-
plished by interfering edge modes around localized quasiparticles 
in the bulk. The two best-studied electronic interferometers are the 
Fabry–Pérot interferometer (FPI)4,15–24 and Mach–Zehnder interferom-
eter (MZI)25–33. The FPI (a large version of a quantum dot (Fig. 1b)) pos-
sesses a finite charging energy for the addition of quasiparticles23,34,35, 
which tends to blur the interference. However, recent experiments with 

screened FPIs enabled the observation of anyonic Aharonov–Bohm 
(AB) interference21,22. The MZI is free of charging effects since one of 
its drains is located in its interior, thus adding or removing particles 
at will (Fig. 1a); however, thus far, interference was only observed in 
the integer quantum Hall regime25–27,33. The apparent lack of anyonic 
interference was attributed to the relatively large interferometer size, 
poor quality of interior drain contact and presence of non-topological 
neutral modes36–42.

Here we describe the observation of high-visibility interference of 
the outer ν = 1/3 edge mode in a bulk filling factor of ν = 2/5, employing 
an optimized MZI. As detailed below, the anyonic MZI is unique because 
bare AB interference is naturally dressed by an added anyonic braiding 
phase. The dressing results from the natural inclusion (into the AB loop) 
of the already interfered quasiparticles, leading to an added braiding 
phase to the bare AB phase (Fig. 1a). Our measurements support the 
theoretical prediction that Laughlin’s quasiparticles are expected to 
exhibit an interference periodicity of a single flux quantum30,31,43–47. 
Below, we describe the interferometer structure, experimental results 
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two different molecular-beam-epitaxy-grown 2D electron gases with 
electron density of 0.92 and 1.22 × 1011 cm–2 and 4.2 K dark mobility 
of 4.1 and 3.6 × 106 cm2 V–1 s–1, respectively, at electronic tempera-
tures in the range of 10–15 mK. We devoted particular effort to fab-
ricate a low-resistance inner drain D2 (Supplementary Section 1).  
Conductance and shot noise were measured at 900 kHz, with an 
appropriate bandwidth in each case. A homemade pre-amplifier, 
cooled to 1.5 K, cascaded by a room-temperature amplifier, provided 
a total gain of ≈5,000. The measurement results are summarized  
in Table 1.

We first studied the smaller MZI with the magnetic field tuned to 
bulk fillings of ν = 3 and ν = 2. The 2D pyjama plot (conductance in the 
VMG–B plane) of the interfering outermost edge mode (closest to the 
edge and furthermost to the bulk) of ν = 2 is shown in Fig. 2a. The perio-
dicity is of a flux quantum, ϕ0 = h/e, and the plot is characteristic of AB 
interference with a constant area25 (Fig. 2a,b, Table 1, Supplementary 
Section 2 and Supplementary Fig. 2). In both fillings of ν = 3 and ν = 2, 
the innermost edge mode (closest to the bulk) did not exhibit interfer-
ence, probably due to dephasing caused by the inner drain (due to a 
finite bulk resistance). The general behaviour of the larger MZI was 
similar to that of the smaller MZI but with lower visibility (Table 1 and 
Supplementary Section 8).

Assuming a constant MG capacitance C, it depletes a charge 
Δq = CΔVMG = neeΔA, where ne is the density and ΔA is the depleted area. 
Consequently, the AB phase changes by Δφ = 2𝜋𝜋

BΔA
ϕ0

, with flux ratio of 
Δϕ2
Δϕ1

= B2ΔVMG2
B1ΔVMG1

 (Supplementary Section 3). In particular, the expelled 

charge per period (a single flux quantum) was Δq(ν = 2) = 2e and 
Δq(ν = 3) = 3e (Table 1).

The highest visibility, ve ≈ 91%, remained constant for all the values 
of TMZI-D1 ≤ 0.5 (to be distinguished from the maximum interference 

and a brief sketch of the theoretical arguments, followed by a simpli-
fied toy model that provides a better ‘feel’ of the anyonic interference, 
agreeing with the experimental results.

The MZI is formed by two closely placed quantum point contacts 
(QPCs), acting as partitioning beamsplitters and two ohmic contacts 
serving as drains: D2, a small, grounded contact on the inner periphery; 
D1, a contact located downstream from the MZI (Fig. 1a,d). The imping-
ing edge mode partitions in QPC1, with the resultant two trajectories 
rejoin in QPC2, thus enclosing a magnetic flux. Note that there is a 
π-phase difference between the transmission (ti) and reflection (ri) 
amplitudes in each QPC. The transmission probabilities in the integer 
regime are

TD1 = |t1t2 + r1r2ei2𝜋𝜋ϕ/ϕ0 |2

= |t1t2|2 + |r1r2|2 + 2|t1t2r1r2| cos(2𝜋𝜋ϕ/ϕ0),
(1a)

TD2 = |t1r2 + r1t2ei2𝜋𝜋ϕ/ϕ0 |2

= |t1r2|2 + |r1t2|2 − 2 |t1t2r1r2| cos (
2𝜋𝜋ϕ
ϕ0

) ,
(1b)

where ϕ/ϕ0 is the number of flux quanta threading the area enclosed 
by the two trajectories, and TD1 + TD2 = 1. A modulation gate (MG) tunes 
the threaded flux by changing the enclosed area. The visibility of elec-
trons is defined as ve =

Tmax−Tmin
Tmax+Tmin

, where Tmax and Tmin are the maximum 

and minimum transmission at each drain, respectively.
We studied two different-sized MZIs. One with an effective area 

of 3.67 μm2 and a larger one with an area of 13.50 μm2 (Supplemen-
tary Fig. 1), with single path lengths of 1.9 and 5.1 μm, respectively. 
The MZIs were fabricated in a high-mobility two-dimensional (2D) 
electron gas embedded in a GaAs/AlGaAs heterostructure. We tested 
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Fig. 1 | Device structure and conductance quantization. a,b, Schematic 
of MZI (a) and FPI (b). The difference in the position of drain D2 makes the 
interferometers fundamentally different, especially in the fractional regime. 
c, Two-probe Hall resistance as a function of magnetic field. The distinct 
quantization of quantum Hall plateaus is observed. d, Schematic of our 
measurement setup. A chiral edge mode injected by source S impinges on the 

first beamsplitter (QPC1) and splits into two paths guided by ‘gate-defined’ 
paths, which later recombine and interfere at QPC2. This results in two outputs 
measured by drains D1 and D2. When the phase between the two paths varies, the 
signals oscillate out of phase in D1 relative to D2. The area enclosed by the dashed 
lines determines the AB flux.
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amplitude at the half transmission of MZI, namely, TMZI-D1 = 0.5). The 
visibility gradually diminished with an increase in the magnetic field, 
ultimately disappearing altogether at ν = 1 (Supplementary Section 4). 
The previously observed dependence could result from the absence 
of an inner (screening) mode and/or a spontaneous edge reconstruc-
tion that may have led to short-range non-topological neutral 
modes32,33,36,37.

Bulk filling of ν = 2/5 supports two downstream edge modes with 
conductance of e2/15h (inner edge and closest to the bulk) and e2/3h 
(outer edge and closest to the edge) (Supplementary Section 5 and 
Supplementary Fig. 4). The inner edge is reflected first by the QPC, as 
we pinch it to partition at the outer edge. The two QPCs were tuned to 
partition the outer ν = 1/3 edge mode and fully backscatter the inner 

ν = 1/15 mode. Care was taken to assure (via shot noise measurements) 
the partitioned quasiparticles charge is e/3 (Fig. 3a,b). Partitioning the 
inner edge mode leads to a quasiparticle charge of e/5 (Supplementary 
Section 6).

The observed periodicity in B was of a single flux quantum  
(Fig. 2c,d and Table 1). At the same time, the periodicity in VMG cor-
responded to a depleted charge of Δq ≅ 0.4e—corresponding to an 
expelled single flux quantum (Table 1 and Supplementary Section 3). 
Similar periodicities were found in the larger MZI (Table 1 and Supple-
mentary Section 8). The interference diminished exponentially with 
increasing temperature, with a characteristic temperature of 23 mK 
(Fig. 3c,d). Comparing the visibilities in the two MZIs, we estimate 
a typical dephasing length of 10.5 μm for electrons and 3.3 μm for 
quasiparticles.

An intermediate summary: the present data of interfering e/3 
quasiparticles, expected by theory18,30,31,43–47, proves that an anyonic 
MZI is fairly different from an anyonic FPI. In the FPI, the B-dependent 
flux periodicity is 3ϕ0, whereas the VMG repels the charge Δq = e per 
period, corresponding to three e/3 quasiparticles depleted from the 
interfering Landau level21. Comparison of FPI and MZI: FPI, flux perio-
dicity of quasiparticles charge e/m is mϕ0, and gate-depleted charge 

Table 1 | Details of interference at integer and fractional quantum Hall regimes

Device size (2D 
density)

ν B (T) ΔB (Gauss) Δϕ (ϕ0) ΔVMG (mV) Δ|q| (e) Δϕ2
Δϕ1

= B2ΔVMG2
B1ΔVMG1

Visibility (%)

3.67 µm2 (high density) 2 2.5 10.8 1 22.2 2 1 90.7

3 1.675 10.96 1.01 32.9 2.96 1.01 62.4

2/5 12.65 10.59 0.98 4.2 0.38 1.04 22.0

13.50 µm2 (low density) 2 1.85 3.02 1 9.8 2 1 67.6

3 1.245 3.02 1.0 14.7 3.0 0.99 13.9

2/5 9.05 2.91 0.96 1.8 0.37 1.10 8.3

The normalization is with respect to the interference of the outer edge in ν = 2 with an electron.
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Fig. 2 | Integer and fractional AB interference patterns. a,c, ‘Pyjama plots’: 
conductance oscillation (gD1) with interfering outer edge mode in the VMG–B 
plane. Interference of the outer edge mode in bulk filling of ν = 2 (B = 2.5 T) (a). 
Interference of the outer edge mode (ν = 1/3) in bulk filling of ν = 2/5 (B = 12.65 T). 
The equiphase lines are typical of AB interference. In both states, the field 
periodicity is of a single flux quantum. b,d, 2D Fourier transforms of the pyjama 
plots showing a single peak, excluding Coulomb effects. The two periodicities in 
VMG, namely, 22.2 mV in ν = 2 and 4.2 mV in ν = 2/5, are proportional to 1/B.
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Fig. 3 | Charge determination via shot noise measurements and temperature-
dependent visibility. a, Nonlinear differential transmission of the partitioned 
1/3 outer edge mode by a QPC (at bulk filling of ν = 2/5), where |tQPC |2 ≈ 0.82.  
b, Current-dependent spectral density of the shot noise (red discrete data 
points). The fit (blue line) agrees with charge e* = 0.31e at electronic temperature 
of 12 mK. c, Temperature dependence of the B-dependent interfering traces 
of the 1/3 mode. d, Exponential fit of the temperature-dependent interfering 
oscillations leads to a characteristic temperature of 23 mK.
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of Δq = mνe per period; MZI, flux periodicity is ϕ0, and gate-depleted 
charge Δq = νe per period.

The predicted and observed flux periodicity in the anyonic MZI is 
ϕ0—manifesting the dressed AB interference—which combines the bare 

AB phase with anyonic braiding30,31,43–47. Anyonic braiding strongly 
affects the visibility of the MZI. For electrons, the average transmission 

is TMZI-D1 = |t1t2|2 + |r1r2|2 and the visibility is ve =
2η|t1t2r1r2|
TMZI-D1

, where 𝜂 is a 
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Fig. 4 | Visibility in the integer and fractional regimes. a, Calculated anyonic 
interference patterns in the two drains, D1 and D2 (equations (1a) and (1b)).  
The solid orange and blue lines represent the maximum interference amplitude 
(at |ti|

2 = 0.5), which is expected at D1 and D2 for ve = 1. Although the oscillation 
amplitudes at D1 and D2 are the same (but out of phase), the average 
transmissions are very different (TMZI-D1 ≈ 5 × TMZI-D2), indicating visibility at D1 
(20%, TMZI ≈ 0.83) to be almost five times smaller than at D2 (100%, TMZI ≈ 0.17). 
The visibility drops off rapidly with a diminishing ve. This is shown by dotted 
oscillations (purple and cyan) for ve  = 0.5. b, Traces of the measured interference 
oscillation of the interfering outer ν = 1 mode at bulk filling of ν = 2 (B = 2.5 T).  
c, A similar plot of the measured interfering outer ν = 1/3 mode at bulk filling of 
ν = 2/5 (B = 12.65 T). d,e, Measured visibilities in the integer (d) and fractional (e) 
regimes as a function of average transmission TMZI-D1. Each dot represents a 
different combination of the QPCs’ transmissions (|t1|2 and |t2|2). In the fractional 

regime, the QPCs’ individual transmissions were kept relatively high around the 
peak value of visibility to assure a Fano factor of 1/3 at each QPC. The inset shows 
the representative interference traces at a very weak backscattering limit. Strong 
backscattering, where bunching of quasiparticles takes place, is avoided. 
Interestingly, interference at strong backscattering is suppressed. f,g, Calculated 
visibility at D1 for integer (f) and fractional (g) regimes. The points in the line 
shape are for single |t1|2, whereas |t2|2 is varied for all the possible values in steps. 
The different lines correspond to multiple values of |t1|2, covering both QPC 
limits. The striking difference between these two visibilities emanates from the 
different braiding phases of the electrons and fractional charges (Supplementary 
Section 7). The measured ve dependence on TMZI-D1 is in accordance with η = 0.91 
(d,f). Assuming the same η, the ve/3 profile as a function of TMZI-D1 matches fairly 
well the experimental one. The measured visibility peak is ve/3 ≈ 22.0% at 
TMZI-D1 ≈ 0.60, whereas the expected peak is ve/3 ≈ 15.6% at TMZI-D1 ≈ 0.76.
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dephasing factor. The visibility increases smoothly from zero at 
TMZI-D1 = 1.0 (TMZI-D2 = 0) with a maximum at TMZI-D1 = TMZI-D2 = 0.5. For 
TMZI-D1 < 0.5, the maximum visibility remains constant (Fig. 4f). However, 
in the ν = 1/3 regime, the observed visibility in outer drain D1, ve/3, is 
expected to peak sharply at TMZI-D1 > 0.5 (TMZI-D2 < 0.5) and fall on each 
side of the peak. The expected interference visibility is markedly dif-
ferent in the two drains (Fig. 4g).

Interference periodicity in the MZI, which is ϕ0 in the integer and 
fractional regimes, has already been theoretically predicted4,30,31,43–46. 
The latter resulted from an added braiding phase to the bare anyonic 
AB phase4,30,31,43–46. Although this is not the place to discuss theories in 
any detail, we highlight the main difference between MZI and FPI and 
accompany it with an unrealistic toy model that nevertheless agrees 
with the interference periodicity and unexpected visibility, as well as 
gives some intuitive insight into the physics. In the MZI, the incoming 
edge mode splits into two trajectories that interfere with the resultant 
two output edge modes—one absorbed by the outer drain (D1) and the 
other absorbed by the internal drain (D2). In the FPI, the incoming edge 
mode also splits into two trajectories—one reflected and one splits fur-
ther and interferes with itself—with both outputs absorbed by external 
drains. The critical difference between the two interferometers is the 
reabsorption of an interfered trajectory by the inner drain (D2) of the 
MZI4. The presence of added quasiparticles in the inner volume of the 
MZI leads to an added statistical phase and thus modifies the bare 
AB phase. Theoretically, this unique inner reabsorption affects the 
anyonic tunnelling (partitioning) operators of the QPCs2, expressed 
by the so-called Klein factors30,43,46,48,49, which obey fractional statistics. 
The commutation relations of the Klein factors30,31,43–46 dictate a flux 
periodicity of ϕ0 (ref. 30).

Based on these theoretical arguments, we provide below (Supple-
mentary Section 7) an illuminating toy model that captures the essence 
of the theories (dressed AB phase). This unrealistic model relies on the 
unique absorption of quasiparticles by drain D2. Namely, D2 can absorb 
only electrons (each with its three flux quanta), thus leading to mode-3 
cycles (of entering e/3 quasiparticles), which results in ϕ0 periodicity.

When the AB phase directs a quasiparticle to drain D2, it is screened 
by holes in the drain, whereas its attached flux remains uncompensated 
(effectively occupying the area of a flux quantum). For each of the next 
two quasiparticles, a braiding phase of 2𝜋𝜋

3
 is added to the bare AB 

anyonic phase. Hence, the evolving dressed AB phase for the nth qua-
siparticle is

φAB = 2𝜋𝜋 ( ϕ
3ϕ0

+ n
3 ) (2)

where the (n + 1)th interfering quasiparticle enters the MZI and the 
nth flux quantum gets stuck at drain D2. After three consecutive qua-
siparticles reach the drain, they are absorbed as an electronic charge 
with three flux quanta attached, and the phase will return to its initial 
value (repeating in modulo 3). This counterintuitive mechanism has 
an extraordinary consequence on the visibility and periodicity of the 
interference pattern (Supplementary Section 7); yet, it explains our 
observed experimental data.

The time required for the (n + 1)th quasiparticle to arrive at D2 is 
tn = 1/pn, where pn is its probability of arriving at D2 per unit time. This 
probability is pn = TI(1 + ve cos 2𝜋𝜋( ϕ

3ϕ0
+ n

3
)), where TI = |t1r2|2 + |r1t2|2, 

the flux-independent probability determined by transmission |ti|
2 of 

each QPC30,50. The expected transmission to D2 is

TD2 ≡ 3 [
2
∑
n=0

1
pn
]
−1

= 3TI
2
∑
n=0

[ 1

1+ve cos(
2𝜋𝜋ϕ
3ϕ0

+ 2𝜋𝜋n
3 )

]
−1

= TI
4−3v2e
4−v2e

[1 + v3e
4−3v2e

cos ( 2𝜋𝜋ϕ
ϕ0

)]

(3)

Due to current conservation, the transmission to downstream 
drain D1 is

TD1 = 1 − TD2 = (1 − TI
4 − 3v2e
4 − v2e

) − TI
v3e

4 − v2e
cos (2𝜋𝜋ϕ

ϕ0
) (4)

A few essential features of anyonic interference are apparent: (1) 
flux periodicity is ϕ0; (2) the two drains are not equivalent; (3) the oscil-
lation amplitude is substantially lower than for electrons (for ideally 
similar decoherence rates). The expected visibility at D1 is

ve/3 = TIv3e/[(4 − v2e) − TI(4 − 3v2e)] (5)

reaching a maximum, depending on ve, at TMZI-D1 > 0.5 (TMZI-D2 < 0.5). 
For example, with negligible dephasing in the MZI, that is, ve = 1, the 
anyonic visibility has a maximum at TMZI-D1 = 0.83 and TMZI-D2 = 0.17. 
Note that the AB oscillation amplitude is similar in both drains;  
however, the visibility (according to its definition) is ve/3 ≈ 20% at D1 
and ve/3  ≈ 100% at D2 (Fig. 4a). Moreover, with decreased ve, the  
disparity between D1 and D2 becomes less evident. Illustrative  
examples of the interference patterns in both drains are shown  
in Fig. 4a.

We turn our attention to the experimentally observed visibility 
profiles in the small MZI. The interference pattern of the outer edge 
mode at filling ν = 2 is plotted in Fig. 4b. Multiple combinations of QPC 
transmissions |ti|

2 lead to the same average MZI transmission. We plot 
the measured visibility for multiple combinations of |ti|

2 (Fig. 4d). With 
a dephasing factor of η = 0.91 in ν = 2, the calculated visibility is plotted 
in Fig. 4f. The AB interference of the larger MZI, with η = 0.67, is shown 
in Supplementary Fig. 6.

The measured interference pattern of the outer ν = 1/3 mode is 
plotted in Fig. 4c, with the actual visibility ve/3 plotted for many values 
of |ti|

2 as a function of TMZI-D1 (Fig. 4e) (assuring a measured partitioned 
charge of e* ≈ e/3). As shown in Fig. 4e (calculated values shown in  
Fig. 4g), the visibility peaks sharply at ve/3 ≈ 22.0% (expected ve/3 is 
~15.6%) at an average transmission TMZI-D1 of ~0.6 (expected TMZI-D1 of 
~ 0.76), indicating weak dephasing at the actual size of the MZI. The 
larger MZI behaved similarly with peak visibility of ve/3 ≈ 8.3% at 
TMZI-D1 ≈ 0.54 (Table 1 and Supplementary Section 8).

The MZI is unique in the absence of any charging effects and thus 
exhibits pure quantum interference. In its fractional configuration, 
the interference is dressed, namely, a combined anyonic AB flux perio-
dicity of h/e* and fractional braiding phase of 2πe*/e, giving rise (as 
theoretically predicted) to a long waited flux periodicity of ϕ0 = h/e. 
Theory predicts a more complex interference in other exotic anyonic 
(that is, non-Abelian) states. The road is paved now for experimental 
tests of these predictions, which can unveil the topological order in 
these states.

Online content
Any methods, additional references, Nature Portfolio reporting 
summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41567-022-01899-z.
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