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The complementarity principle1 demands that a particle reveals
wave-like properties only when the different paths that it can
take are indistinguishable2,3. The complementarity has been
demonstrated in optics with pairs of correlated photons4,5 and
in two-path solid-state interferometers with phase-coherent
electrons6. In the latter experiment, a charge detector embedded
near one path of a two-path electron interferometer provided
which-path information3. Here, we report on electron dephasing
in an Aharonov–Bohm ring interferometer7 via a charge
detector adjacent to the ring. In contrast to the two-path
interferometer, charge detection in the ring does not always
provide path information. The interference was suppressed only
when path information could be acquired, even if only in
principle. This confirms that dephasing is not always induced by
‘disturbing’ the interfering particle through the interferometer–
environment interactions: path information of the particle must
be available too. Our experiment suggests that acquisition of
which-path information is more fundamental than the back-
action in understanding quantum mechanical complementarity.

The previous electronic ‘which-path’ experiments6 were based
on a solid-state two-path interferometer, fabricated in the plane
of a high-mobility two-dimensional electron gas (2DEG). The
interferometer consisted of an open Aharonov–Bohm ring, with a
source and a drain of electrons weakly coupled to the open ring.
In one path of the interferometer, a coherent quantum dot was
embedded6–8, being electrostatically coupled to a quantum-point-
contact (QPC) charge detector (in the immediate proximity to the
quantum dot). An electron trapped in the quantum dot modified
the conductance of the nearby QPC and thus enabled charge
detection by the QPC9–11. Being an open geometry, with multiple
grounded drains (bases) along the paths of the electron, assured
that only two paths interfered while the backscattered electrons
were drained out by the grounded bases. Thus, the detection of
a charge inside the quantum dot (by the QPC) provided path
information, which led to the suppression of the Aharonov–Bohm
interference oscillations.

Here, we used a ‘closed-loop’ Aharonov–Bohm
interferometer7,12, as shown in Fig. 1a, with a quantum dot and
a QPC detector placed in a similar manner as in Buks and
co-workers6. However, in contrast to the previous schemes, the
closed geometry allowed an electron to encircle the interferometer
loop many times before it reached the drain, making the
interferometer an analogue of the Fabry–Perot interferometer,
where in the closed ring the forward propagating and the
backward propagating paths are spatially separated. Let us look at
a couple of examples: among various possible electron trajectories
contributing to the interference, the most probable trajectories,
which lead to source–drain conductance oscillations with periods
of one (h/e; first harmonic) and a half (h/2e; second harmonic)
flux quantum, are illustrated in Fig. 1b and c, respectively13,14.
In principle, there are an infinite number of other possible
trajectories that give rise to the first- and the second-harmonic
interferences. However, as will be discussed below, these two sets
of trajectories (shown in Fig. 1b,c) are the dominant ones. For the
trajectories plotted in Fig. 1b, path information can be acquired
by detecting the presence of an added electron inside the quantum
dot. Alternatively, for the trajectories plotted in Fig. 1c, charge
detection in the quantum dot does not, in general, provide path
information to distinguish between the blue and red trajectories,
as both pass the quantum dot once12. Hence, we would expect
strong dephasing of the first Aharonov–Bohm harmonic but not of
the second harmonic. Adding an element of time in the detection
process may distinguish between trajectories of an electron trapped
in the quantum dot, and also suppress the second harmonics—as
we describe below—making this experiment clearly different to
its predecessors.

Our closed-loop interferometer (Fig. 1a) was fabricated in a
GaAs/AlGaAs heterojunction wafer containing a 2DEG with an
elastic mean free path of le ∼ 20 µm. Four side gates (M1, M2, M3,
M4) together with an island gate (P) defined an Aharonov–Bohm
ring of about 550 nm in radius (Fig. 1a), with approximately five
conducting channels (N > 5) in each path. A quantum dot and
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Figure 1 Which-path interferometer. a, SEM image of a closed-loop
Aharonov–Bohm interferometer fabricated on the surface of a 2DEG wafer. The
device consists of two parts: an electronic interferometer and a QPC detector. b, The
trajectory leading to the first-harmonic interference (h/e conductance oscillation),
where the charge detection is equivalent to the path detection. c, The trajectory
leading to the second-harmonic interference (h/2e conductance oscillation), where
the charge detection is not necessarily the path detection.

a QPC detector were placed to detect charges trapped inside the
quantum dot.

To examine the characteristics of the quantum dot, the left path
was pinched off by applying a large negative voltage to the side gates
M1 and M2. The Coulomb-blockaded conductance peaks of the
quantum dot were monitored by varying the voltage on the centre
island gate (supplied by the air bridge P, see Figs 1a and 2a). The
quantum dot was tuned to the Coulomb-blockaded conductance
peak marked by the vertical arrow in Fig. 2a. The transmission
probability of the QPC detector, defined as Td = Gd/(2e2/h), was
set to Td = 0.1775, where the dephasing rate was found to be the
highest6. The close proximity between the QPC detector and the
quantum dot lead to a strong modification of its transmission,
1Td, as illustrated in Fig. 2a, each time the number of electrons
inside the quantum dot changed by one. Equivalently, the mere
possibility of measuring the added charge to the dot, leads, by the
inadvertent back-action of the detector on the quantum dot, to
dephasing of the dwelling electron in the quantum dot. Following
the above-described tuning of the dot, the current through the
detector was shut off and the left arm of the interferometer was
opened. The interferometer was then tuned to exhibit both the first
and the second harmonic of the Aharonov–Bohm interference.

The effect of the charge (or path) detection on the interference
pattern, at different detector bias voltages (0–400 µV), is shown
in Fig. 2b. The Aharonov–Bohm oscillations clearly exhibit two
harmonics (with the field periodicity of ∼4.6 and ∼2.3 mT), which
are being suppressed with increasing the bias of the detector, as
expected. As the number of ‘detecting electrons’ that pass the
detector during the dwelling of the electrons in the quantum dot
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Figure 2 Detection procedure and Aharonov–Bohm oscillation. a, With the left
path in Fig. 1a pinched off, the Coulomb blockade of the quantum dot (left vertical
axis) and the conductance of the QPC detector (right vertical axis) are taken by
sweeping the island gate voltage (Vp). Each time an electron passes through the
quantum dot, the transmission through the QPC detector is affected, showing a
saw-tooth-like behaviour. b, With both the left and the right paths open, the
coherent transmission of the partial waves leads to Aharonov–Bohm oscillations.
Around the Coulomb-blockade peak denoted by an arrow in a, Aharonov–Bohm
oscillations reveal both the first- and the second-harmonic interferences, where the
amplitude of the first harmonic is suppressed with increasing QPC detector bias.
However, the second-harmonic amplitude is almost insensitive to the detector bias
in this low bias range up to 400 µV (also see the inset).

increases, dephasing is enhanced. The inset of Fig. 2b clearly shows
that the first Aharonov–Bohm harmonic is much more sensitive to
the bias of the detector than the second harmonic. As alluded to
above, the difference arises from the fact that the charge detection
cannot distinguish between the two types of trajectory illustrated in
Fig. 1c leading to the second harmonic.

To be more specific, there are two major sets of trajectories
for the second harmonic. In the first set of trajectories shown in
Fig. 1c, the partial wave of an electron starting with the left path
at the source makes one and a half clockwise turns around the
interferometer (blue), whereas that starting with the right path
makes just a half turn (red). In the second set of trajectories (not
shown), the directions of the two partial waves are switched: the
shorter path goes though the left and the anticlockwise path makes
one and a half turns passing through the quantum dot twice. In
the latter case, path information is obtained via charge detection
because only the longer path passes through the quantum dot
(even twice), whereas the other path never passes through the
quantum dot. The transmission probability through the quantum
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Figure 3 Time-resolving measurements on the second-harmonic interference. a, FFT amplitudes of Aharonov–Bohm oscillations for the first- and the second-harmonic
interference with varying the bias of the QPC detector. Inset: Schematic diagram illustrating the source–quantum-dot transit time difference of electron wave packets
between the left (t2) and the right (t1) paths. The source–quantum-dot distances of the left and right paths are ∼2.5 µm and ∼0.83 µm, respectively. b, The gate voltage
(Vg) dependence of the QPC transmittance showing the least detection-sensitive region (non-detection regime) and the most sensitive region (detection regime). c, FFT
amplitudes for the two harmonics normalized by the corresponding zero-detector-bias values. An error bar for each QPC detector bias was determined by the standard
deviation for four different sets of measurements.

dot, TP, can be estimated as follows: as the conductance peak is
about GQD/(2e2/h) ∼ 0.25 and the number of transverse channels
in each path is about N ∼ 5, the transmission probability is
TP = GQD/(2e2/h)/N ∼ 0.05. Therefore, other more complicated
sets of trajectories can be ignored owing to the low transmission
probability through the quantum dot. This also explains the
absence of higher-order harmonics with n > 2. Furthermore, the
second set of trajectories, compared with the first set shown
in Fig. 1c, can also be neglected owing to the large dwell time
in the quantum dot (td ∼ 2 ns), which is much larger than the
characteristic mean time interval, tf,, between successive injection
of electrons through the left (shorter) path. From the bias voltage
of the interferometer, V = 10 µV, we find that tf ∼ h/2eV ∼ 0.2 ns.
For the first set of trajectories shown in Fig. 1c, both the partial
waves pass the quantum dot only once, and there is no considerable
time delay in the arrival of the two wave packets. However, for the
second set of trajectories, the characteristic time of the shorter path
is about tf ∼ 0.2 ns and that of the longer path is about 2td ∼ 4 ns.
This large time delay strongly suppresses the interference owing to
the lack of overlap of the wave packets taking two different paths.
Therefore, the second harmonic is dominated by the trajectories
shown in Fig. 1c, which do not provide path information in the
charge detection process.

It should be noted that the sets of electron trajectories such
as those described in Fig. 1c may be distinguished via charge

detection in the quantum dot if the difference in their dwell time
in the interferometer can be differentiated, hence dephasing also
the second Aharonov–Bohm harmonic. The difference in the path
lengths of the two possible trajectories shown in Fig. 1c, going
from the source to the quantum dot, is about 1.7 µm, and for a
Fermi velocity of νF ∼ 1.62×105 m s−1 we get a time difference of
∼10 ps. This must be compared with the time difference between
consecutive electron arrivals in the QPC detector, h/2eVd, where
Vd is the applied bias voltage to the QPC detector6. This simple
argument leads to the conclusion that path information for the
trajectories shown in Fig. 1c is provided when the bias on the
detector will exceed ∼210 µV.

To observe this ‘time-resolving’ detection, the effect of the
detector bias Vd was monitored up to 1.5 mV. Applying a
high bias to the detector without modifying the transmission
through the quantum dot is by no means a trivial task, as the
electrostatic coupling between the detector and the quantum dot
is strong15. Hence, the genuine dephasing was excluded from
the inadvertent electrostatic effect by setting the detector to a
regime where it is not sensitive to the potential in the quantum
dot (Fig. 3b). Compensating for the electrostatic gating effect led
to the dependence of the two Aharonov–Bohm harmonics on
detector bias as shown in Fig. 3c. With increasing detector bias,
the first-harmonic dropped monotonically; however, the second
harmonic remained unaltered in a low-bias regime, altering its
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declining slope at Vd ∼ 500 µV. Still the suppression rate of the
second Aharonov–Bohm harmonic remained lower than that of the
first Aharonov–Bohm harmonic.

Because of the low transmission probability through the
quantum dot, the major contribution of the first harmonic comes
from the two direct paths through the interferometer. Thus, the
dephasing rate16–18 of the first Aharonov–Bohm harmonic can be
analysed in a similar manner to that in the previous experimental
work with an open-loop interferometer5. The expected visibility
(in terms of its fast-Fourier-transformed (FFT) amplitude A1) has
the form, ν = A1/A1(Vd = 0) = 1−Γd/Γe, where Γe is the natural
broadening of the state in the quantum dot due to coupling to the
leads, and Γd is the dephasing rate induced by the charge detection.
Γe ∼ 0.33 µeV in our experiment7 and Γd is given by an algebraic
sum of two different contributions Γd =ΓT +Γφ, where ΓT and Γφ

correspond to the current- and the phase-sensitive dephasing rates,
respectively19–24, expressed as:

ΓT = (eVd/8π)(1Td)
2/Td(1−Td),

Γφ = (eVd/2)Td(1−Td)(1φ)2.

The phase sensitivity, 1φ, is defined as the relative phase shift of the
transmitted and reflected partial waves induced by an extra charge
in the quantum dot. Recently, an unexpectedly large dephasing rate
was observed and interpreted15 only in terms of ΓT. It has been
theoretically proposed that this can be understood by taking into
account Γφ as well, which is much larger than ΓT in a generic
situation with a non-negligible asymmetry in the charge response
of the QPC potential21. In practice, 1φ cannot be directly extracted
from our measurement set-up. The best fit to the data for the
first Aharonov–Bohm harmonic, with 1φ (= 0.031) as a fitting
parameter, is given by the solid line in Fig. 3c. The fits reveal that the
phase-sensitive dephasing mechanism is more effective than that
of the current-sensitive dephasing (namely, Γφ/ΓT ∼ 35), which is
consistent with the previous observation15,21.

The question of why the dephasing rate of the second
Aharonov–Bohm harmonic at higher detector bias is so low
may still be raised. We speculate that the lower rate may
originate from the finite size of the electron wave packet in
the detector channel, being larger than the interferometer. The
time-resolving detection is effective only when the size of the
electron wave packets is infinitesimally small. The dephasing can
be alternatively understood in terms of the back-action3, which
is the randomization of the phase of an electron passing through
the quantum dot due to the fluctuations of the quantum dot
potential induced by the current noise in the QPC detector3. For
the trajectory in Fig. 1b (first-harmonic interference), the random
phase is collected for the right path during the entire passage
of a wave packet through the quantum dot, whereas no random
phase is collected for the left path, which leads to the suppression
of the first-harmonic interference. However, for the trajectory in
Fig. 1c (second-harmonic interference), both wave packets taking
the left and the right paths dwell some time in the quantum dot
simultaneously and collect a common random phase, which does
not suppress the interference. The random phase collected while
only one of the packets occupies the quantum dot suppresses the
interference. Thus, the random phase accumulated for the second
harmonic should be smaller than that of the first harmonic, which
gives a qualitative explanation for the lower dephasing rate of the
second harmonic.

So far, it has been widely accepted that the quantum mechanical
complementarity of a particle can be understood in terms of
the momentum transfer (or back-action), which is inevitably
caused by detecting the path of the particle, as explicitly stated

by Feynman et al.2 a few decades ago. Recently, however, it has
been demonstrated that the particle-like behaviour also takes place
by the which-path information even for the sufficiently weak
momentum transfer5, which refutes the back-action picture of the
dephasing. In clear contrast to previous studies, our work confirms
that the wave-like behaviour is preserved unless the which-path
information can be acquired out of the detection process, even if
it can be done only in principle, regardless of the strength of the
finite ‘disturbance’ caused by the charge detection. This is verified
by investigating the second-harmonic dephasing in a closed-loop
Aharonov–Bohm-ring interferometer, which has no analogue in
the systems studied previously, including the optical4, atomic5 and
solid-state6 interferometers. Thus, this study demonstrates that
acquisition of which-path information is of prime importance for
quantum mechanical complementarity.

METHODS

The 2DEG in a GaAs/AlGaAs heterojunction wafer resided about 80 nm
below the surface. The electron density was ns = 1.8 × 1011 cm−2 with a
corresponding mobility of µ = 3.3×106 cm2 V−1 s−1 at 4.2 K, resulting in
an elastic mean free path of le ∼ 20 µm. Figure 1a shows a scanning electron
micrograph of the device used in this study. Negative voltages were applied
to the gates so as to pinch off the 2DEG underneath them. Four side gates
(M1, M2, M3, M4) together with an island gate (P) defined an Aharonov–Bohm
ring with a geometrical radius of about 550 nm, which was also confirmed
by the Aharonov–Bohm interference oscillations. Two QPCs (Q1, Q2) at the
source and the drain were used to configure the two-terminal measurement. A
quantum dot and a QPC detector were placed to detect charges trapped inside
the quantum dot. Two gates (F1, F2) defined the quantum dot and separated it
from the QPC detector. The island gate was electrically controlled through the
bridged electrode P. The measurements were made by applying a 10 µV r.m.s.
excitation voltage to the source and monitoring the output current at the drain
(the electron temperature was 140 mK).
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