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1 Introduction - an Overview

2 Spin Models

References: Chapters 1 and 2 in Ref. [3].

2.1 Model Building

2.1.1 First Quantization

We consider Bloch wave-functions which are the single electron solutions of the Hamiltonian

H0φks =

[
−~2

2m
∇2 + V ion(x)

]
φks(x) = εkφks(x),

from which we can define a many electron Hamiltonian:

H0 =

Ne∑
i=1

H0(∇i, xi).

The Hamiltonian H0 has eigenfunctions and eigenvalues

ΨFock
K (x1,s1 , x2,s2 ...xNe,sNe ) = det

ij
[φkisi(xi)] , EK =

Ne∑
i=1

εki ,

where the εk are bounded by the Fermi energy EF .

The Hamiltonian H0 describes non-interacting electrons. We add an interaction term and consider

H = H0 +
1

2

∑
i,j

V el−el(xi, xj),

which we can write

H =

Ne∑
i=1

(
H0 + V eff [xi, ρ]

)
+

1

2

∑
ij

Ṽ (xi, xj),

where V eff is obtained by in a mean field sense by “freezing” one xi and summing over all other xj in V el−el and

Ṽ (xi, xj) = V el−el(xi, xj)−
(
V eff(xi)− V eff(xj)

)
/Ne.

If we neglect Ṽ we obtain an effective non interacting theory of Fermions. The theory, however, have compare to H0 new
effective parameters that may be determined, for example, in a self-consistent way. We also assume dynamics which is
slower than the plasma frequency.

2.1.2 Second Quantization

We would like now to present the Many body Hamiltonian using the second quantization formalism. For that we define
a creation operator ψ̂†s(~r). When acting on the vacuum state (a state with zero particles that we denote |0〉) gives

〈~y, σ| ψ̂†s(~x) |0〉 = δsσδ(~x− ~y).

4



(Anti)Commutation relations of ψ
We can choose a basis of the Hilbert space {φα} and write

ψ̂†s(~x) =
∑
α

φ∗αs(~x)c†αs (1)

{
ψ̂†s(~x), ψ̂σ(~y)

}
=
∑
αβ

φ∗αs(~x)φβσ(~y)
{
c†αs, cβσ

}
=
∑
αβ

φ∗αs(~x)φβσ(~y)δsσδαβ

=
∑
α

φ∗αs(~x)φασ(~y)δsσ =︸︷︷︸
{φ}complete

δsσδ(~x− ~y). (2)

The Hamiltonian is now

Ĥ0 =
∑
s

ˆ
d3xψ̂†s(~x)

[
−~2

2m
∇2 + V ion(~x) + V eff(~x)

]
ψ̂s(~x)

ˆ̃V =
1

2

ˆ
d3xd3yṼ (~x, ~y) [ρ̂(~x)ρ̂(~y)− δ(~x− ~y)ρ̂(~x)] (3)

where the second term is because we have no self-interaction. Since

ρ̂(~x) =
∑
s

ψ̂†s(~x)ψ̂s(~x)

ρ̂(~x)ρ̂(~y) =
∑
s,σ

ψ̂†s(~x)ψ̂s(~x)ψ̂†σ(~y)ψ̂σ(~y) = −
∑
s,σ

ψ̂†s(~x)ψ̂†σ(~y)ψ̂s(~x)ψ̂σ(~y) +
∑
s

ψ̂†s(~x)ψ̂σ(~y)δ(~x− ~y)δsσ

=
∑
s,σ

ψ̂†s(~x)ψ̂†σ(~y)ψ̂σ(~y)ψ̂s(~x) + ρ̂(~x)δ(~x− ~y)

setting this in Eq. (2) the second term cancels giving finally

ˆ̃V =
1

2

∑
sσ

ˆ
d3xd3yṼ (~x, ~y)ψ̂†s(~x)ψ̂†σ(~y)ψ̂σ(~y)ψ̂s(~x). (4)

The ability to neglect Ṽ determines whether we can use a Fermi liquid theory with effective parameters or we get more
dramatic interaction effects. For a rough estimate of weather Ṽ is large or small we note that in materials with an outer
electron in the s level the electron wave-functions obey 〈r〉 ∼ a where a is the lattice constant and 〈r〉 is the average
distance of the electron from the nucleolus. For outer electrons in the d,f levels however, 〈r〉 � a.

The typical kinetic energy of electrons is

EF =
k2
F

2m
, kF ∼

1

a
⇒ EF = vF kF ∼

vF
a

while the interaction is (with κ being the dielectric constant)

U =
e2

〈r〉κ
.

giving a ratio

rs =
U

EF
=

e2

κvF

a

〈r〉

Hence, in most cases, Ṽ will be more important in d, f materials (we know that in many metals e2

κvF
∼ 1 ).
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2.1.3 Effective interactions: Direct (Hartree) Exchange (Fock) and Cooper (Pairing) channels

Inserting Eq. (1) [ψ†s(~x) =
∑
α
c†sαφ

∗
α(~x)] in the interaction term ˆ̃V of Eq. (4) and assuming that the wave-function φα

doesn’t depend on the spin - no SO coupling for instance. We have

ˆ̃V =
∑

σs,αβγδ

M̃αβ
δγ c

†
ασc
†
βscγscδσ

where

M̃αβ
δγ =

1

2

ˆ
d3xd3yφ∗α(~x)φ∗β(~y)φγ(~y)φδ(~x); Mαβ

δγ =

{
1
3M

αβ
δγ if α = β = γ = δ

Mαβ
δγ otherwise

Assuming now that we can neglect interaction terms that do not contain at least two identical indexes1 we can split ˆ̃V
into three channels

ˆ̃V =
∑
αγsσ

Mαγ
αγ c
†
ασcασc

†
γscγs +Mαγ

γα c
†
ασcαsc

†
γscγσ +Mαα

γγ c
†
ασc
†
αscγσcγs,

(Notice the factor 1/3 in the diagonal term it is introduced to avoid double counting.) Using the compliances relation of
the Pauli matrices

~σσσ′ · ~σsσ = 2δσσδσ′s − δσσ′δsσ
and the definitions

n̂α =
∑
σ

c†ασcασ, ~̂sα =
1

2

∑
σs

c†ασ~σσscαs, t̂
†
α = c†α↑c

†
α↓

we get

ˆ̃V =
∑
αγ

(Mαγ
αγ −Mαγ

γα /2
)
n̂αn̂γ︸ ︷︷ ︸

Hartree (Direct)

− 2Mαγ
γα ~̂sα · ~̂sγ︸ ︷︷ ︸

Fock (Exchange)

+ Mαα
γγ t̂
†
αt̂
†
γ︸ ︷︷ ︸

Cooper (Pairing)


The three terms may be represented by diagrams, where the circles denote the paired indexes.

Figure 1: The direct (Hartree), exchange (Fock) and pairing (Cooper) channels.
1This will be a good approximation, for example, when the interaction is short-range and the wave function φ are fairly localized but demand

justification in other cases.
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In cases where the off diagonal Cooper terms are neglected the Hamiltonian reduces to

ˆ̃V =
∑

Ũii′nini′ − 2Jii′~si · ~si′

Ũii′ = δii′Uii + (1− δii′)(Uii′ −
Jii′

2
)

and Ui,i′ = M ii′

ii′ , Ji,i′ = M ii′

i′i .

2.1.4 Definition of Heisenberg’s Model

The Heisenberg model neglects the pairing and direct terms and assumes that the dominant contribution is from the
second term, that mean

H = −2
∑
ij

Jij~si · ~sj

we will further assume

Jij =

{
J0 nearest neighbours
0 otherwise

and J0 > 0 for a ferromagnetic interaction, J0 < 0 for an anti-ferromagnetic interaction.

In the ferromagnetic case J0 > 0 case spins will prefer to be aligned. that happens when the overlap between the i and j
orbitals then (similar to the case of Hund’s rule) electron will tend to aline in parallel spin so that they avoid each other
due to the Pauli principle. However if we have opposite spins sitting in neighboring atoms then it can be energetically
preferable for one to tunnel, which is only possible if the spins are reversed, hence in this situation J0 < 0.

2.2 Mean Field Solution of the Heisenberg Model – Spontaneous Symmetry Breaking

Before discussing the mean field solution of the Heisenberg Model let us discuss the general mean field approach:

2.2.1 General Mean Field approximation

The general approach is to take a Hamiltonian of the form

H = A+B +AB

and simplify the interaction term by replacing the operator A by A→ 〈A〉+ ∆A. For consistency we need to check in the
resulting solution that we have

∆A� 〈A〉 .

After a similar substitution for B

H = A+B +A(B −∆B) + (A−∆A)B + ∆A∆B − (A−∆A) (B −∆B)

= A+B +A 〈B〉+ 〈A〉B + ∆A∆B − 〈A〉 〈B〉 .

Assuming the variations are small we define the mean field Hamiltonian

HMF = A+B +A 〈B〉+ 〈A〉B − 〈A〉 〈B〉 .

7



2.2.2 Mean Field solution of the Heisenberg model

Coming back to the Heisenberg case we have

HMF = −2
∑
ij

Jij 〈si〉 sj − 2
∑
ij

Jijsi 〈sj〉+ 2
∑
ij

Jij 〈si〉 〈sj〉

since we can rotate all the spins together we expect that without symmetry breaking we will have 〈si〉 = 0. In the case of
symmetry breaking we look for a state where 〈si〉 = 〈sz〉 êz. We define the magnetization

m = 2
∑
ij

Jij 〈sz〉 êz = 2nJ0 〈sz〉 êz

where n is the number of neighbors. Then if the total number of spins is N,

HMF = −2
∑
i

~m · ~si + |~m|N 〈sz〉

We write the partition function

ZMF = Tr
(
e−βHMF

)
=
(
eβm + e−βm

)N
eβmN〈sz〉 =

((
eβm + e−βm

)
eβm

2/2nJ0

)N
We want to minimize the free energy with respect to m to find the equilibrium value:

∂F

∂m
= − 1

β

∂ lnZ

∂m
= N

eβm − e−βm

eβm + e−βm
+N

m

nJ0
= 0

defining a = m
nJ0

, b = nJ0β we obtain

a = tanh (ab) .

If we consider a as an order parameter which is zero in the disordered phase (since it is proportional to m), we can assume
that it is small and expand:

a ∼= ba− 1

3
(ba)

3

we can look at different cases:

Figure 2: for b < 1 the to lines do not cross so there is no solution while for b > 1 there is a solution. The value
b = 1 = nJ0/Tc defines the phase transition temperature Tc.
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from which we can see that we get a non-zero solution only if b > 1. The value of b which separates the two regimes define
a critical temperature:

b = 1⇒ kTc = nJ0.

For small a we can solve giving

a =
1

b

√
3(b− 1)

b
⇒ m = nJ0

√
3
Tc − T
Tc

taking T → 0⇒ b→∞ we get a→ 1 which means m→ nJ0 giving the following phase diagram

Figure 3: The magnetization as a function of the temperature

2.3 Goldstone Modes (Magnons)

The fact that when continuous symmetry is broken a soft Goldstone mode arises is a general phenomenon. To be explicit
we will work on the Heisenberg model and consider the 1D case although similar results hold for higher dimensions.

We would like to find the low excitation of the problem. The ground state is |G〉 = |↑↑ ... ↑〉, i.e. all the spin pointing up.

H |G〉 = −2J
∑
ij

~si · ~sj |G〉 = −2J0

∑
〈ij〉

szi s
z
j |G〉 − J0

∑
〈ij〉

s+
i s
−
j + s−i s

+
j |G〉 = −2J0Ns

2 |G〉 = EG |G〉 .

Notice that the term S+
i destroy the state as the spin is already in its maximal value and in the last equation the pre-factor

is correct only in one dimension as each spin is interact with its left and right spin but we have to avoid double counting.

In looking for the energy of the excited states it is reasonable to assume that the first excited steaks will be build of linear
coherent combination of a single spin flip.

Denoting the single spin states:|i〉 = | ↑↑ ... ↑ ↓︸︷︷︸
ith position

↑↑〉 and projecting on these single spin states is done by writing

H =
∑
ij

|i〉 〈i|H |j〉 〈j| .

The term diagonal term 〈i|H |i〉 = EG + 2JS2 as two bonds are flipped ( we assume that the spins are not at the edge
of the sample). Due to the definition of the Heisenberg model the of diagonal terms exist only for nearest neighbor and
given by〈i|H |i+ 1〉 = JS2 combing these we have (for the 1D case):

H =
(
EG + 2JS2

)∑
i

|i〉 〈i| − JS2
∑
i

(|i+ 1〉 〈i|+ |i〉 〈i+ 1|)

which can be solved by a fourier transform: |q〉 =
∑
j

eiqaj |j〉, with a being the lattice constant. It diagonalize the

Hamiltonian and gives a spectrum :
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Eq = EG + 2JS2 [1− cos(qa)] .

Taking q → 0 the excited state energies are

Eq − EG → Ja2q2.

These are the soft modes known as the Goldstone modes - their energy goes to 0 as the wave number goes to 0.

Generally the Goldstone modes are linear in q and not quadratic in q as in the ferromagnetic case. The ferromagnetic
case as the order parameter ~M ∝ ~Stot =

∑
α ~sα commutes with the Hamiltonian. Indeed:∑

αβγ

[
SiαS

i
β , S

k
γ

]
=
∑
αβγ

Siα
[
Siβ , S

k
γ

]
+
[
Siα, S

k
γ

]
Siβ =

∑
αβγ

iεikj

(
SiαS

j
γδβγ + SiαS

j
βδαγ

)
= ~Stot × ~Stot = 0.

Indeed writing the equation of motion in real space we have
ˆ
dxṁ = D∇2m

we find that an integration gives a conserved total magnetization

Ṁ = D

˛
∇m = 0.

(Remark: the situation is similar to the diffusion equation of particles that is quadratic in q implying that the total number
of particle is conserved04/17/13

2.3.1 Holstein Primakoff

We seek a semi-classical approximation for the Heisenberg model. Considering ∆x∆p = 〈[x, p]〉 ∼ ~, the spin fluctuations
obey

∆si∆sj = 〈[si, sj ]〉 = |εijk 〈sk〉| ≤ s

∆si
s

∆sj
s
≤ 1

s
→
s→∞

0

hence quantum fluctuations become negligible when we increase the spin size. Adding a lower index to denote lattice site,

[skm, s
l
n] = iεkljs

j
nδmn

and defining s±m = sxm ± isym we have

[s+
m, s

−
n ] = 2δmns

z
m, [s

z
m, s

±
n ] = ±δnms±m

All this has been exact. Defining

s−m = a†m

√
2s− a†mam, s+

m =

√
2s− a†mamam, szm = s− a†mam

where am are bosonic ladder operators, we can check that the new operators obey the same commutation relations. The
HP approximation is taking the limit s→∞ (where s is the spin in each lattice) giving

10



s−m ≈
√

2sa†m, s
+
m ≈

√
2sam

in 1D with periodic BC we have

H = −2J
∑
m

(
szms

z
m+1 +

1

2

(
s+
ms
−
m+1 + s−ms

+
m+1

))

→
s→∞

−2JNs2 − 2Js
∑
m

(
−2a†mam + a†mam+1 + h.c.

)
Using periodic BC sm+N = sm ⇒ a†m+N = am and moving to Fourier space with am = 1√

N

∑
e−ikmak giving

~ωk = 4Js (1− cosk) →
k→0

2Jsk2

giving the same dispersion relation we found before in the mean field approach.

2.4 Absence of LRO (Long Range Order) in 1D and 2D with broken continues symmetry
- Mermin-Wagner-Berizinskii Theorem

2.4.1 Average magnetization

A series problem appears in the calculation of the average magnetization at finite temperature The deviation from the
magnetization at zero temperature where all spin points in the same direction is:

∆m

2Jns
=

1

N
〈sztot〉 − s = − 1

N

∑
k

nk

where nk are the number operators, nk = 1
e−ωk/T−1

.

To perform the summation we introduce an IR cutoff k0 ∼ 1
L for system size L and assuming ~ωk̃ < T < Js we expand

the exponent and set the expression for ωk̃ that we found

∆m = −
k̂̃

k0

dkkd−1

(2π)
d

T

2Jsk2
− 1

N

∑
k>k̃

nk

There is a clear dependence on dimensionality, in one and two dimensions the first term diverges:

∆m ∝

{
− T

2Js
1
k0

1D

−Ts log
(
k̃
k0

)
2D

in 3D we use 1
e−ωk/T−1

=

∞∑
n=1

e−nωk/T in things seems to be fine.

∆m = −
k̂̃

k0

dkk2

(2π)
3

∞∑
n=1

exp

(
−2nk2Js

T

)
≈ −1

8

(
T

2Jsπ

)3/2 ∞∑
n=1

1

n3/2
= −1

8

(
T

2Jsπ

)3/2

ζ(
3

2
)

11



2.4.2 Mermin Wagner theorem and Quantum fluctuations

An alternative way to obtain the Mermin Wagner theorem is to consider the following problem. Imagine we invert a spin
at time 0 and site 0, calculate the probability for a spin flip at time t and a distance x from site 0. This will give a measure
of the correlation of two spins at distance n. In the presence of long range order we expect that the correlation function
approaches a constant in an exponential fassion. In the absence of long range order it diverges. To see that formally
we note following the tutorial that we can write the correlation C(x, t) = 〈s+(x, τ = it)s−(0, 0)− s+(0, 0)s−(0, 0)〉 in the
form:
ˆ
dτ

∑
ωn,ωn′

∑
k,k′

(eikx−iωnτ − 1)
〈
akωna

†
ωn′ ,k

′

〉
=

ˆ
dτ
∑
ωn

∑
k

(eikn−iωnτ − 1)G(k, iωn) =

ˆ
dτ
∑
ωn

∑
k

eikx−iωnτ − 1

−iωn − ξk

We use the functional form of the propagator

G(k, iωn)δk,k′δωn,ωn′ =
〈
ψ̄(k′, ω′n)ψ(k, ωn)

〉
=

´
Dψ̄Dψψ̄k′ωn′ψkωne

−S(ψ̄,ψ)´
Dψ̄Dψe−S(ψ̄,ψ)

=
1

−iωn + εk
δk,k′δωn,ωn′

from which we can find the spectrum by analytic continuation, where we get poles at energy eigenvalues:

Gr(k, ω) = G(k, iωn → ω + iδ) =
1

ω − εk + iδ

Im (Gr) = πδ(ω − εk)

a Finite temperature When the temperature is large (what is the meaning of large depends on the model) the
contribution from the term with ωn = 0 will be significantly larger than the other frequencies. That case corresponds to
the the "classical limit" where thermal fluctuations are much more important than quantum fluctuations. In this case we
get for a massive case:

C(x, t) ∝
ˆ kc

0

dk
(eikx − 1)kd−1

k2 +m2
=

{
π/m(e−mx − 1) 1d

log[kc max(m, 1/x)] 2d

which diverges in the absence of mass in 1 and 2D leading to absence of long range order.

In case of anti-ferromagnetic (not shown yet) G = 1/(ω2 + k2) leading to the same divergence in the classical limit.

b Zero temperature At zero temperature there are no thermal fluctuations any more, one then has to consider the
(usually weaker) quantum fluctuations (due zero point motion) formally we find (in the mass less case) for the 1+1 case

CAF (x, t) ∝
ˆ kc

dωdk
ei(kx−ωt) − 1

ω2 + (vk)2
= 1/2 log

[
k2
c (x2 + (vt)2)

]
.

For the ferromagnetic case the integral converges in 1D. Due to diffusive nature of the dispersion (arising from the
conservation law) quantum fluctuations are too weak to cause distraction of long range order.
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3 Superfluid (Based on Ref. [1])

3.1 Symmetry (Global Gauge symmetry)

We consider a model described by

H =

ˆ
dra†(r)

(
p2

2m
− µ

)
a(r) +

u

2

(
a†(r)a(r)

)2
and we write the partition function as an auxiliary field path integral:

Z = Tr
(
e−βH

)
=

ˆ
DψDψ̄−S(ψ,ψ̄)

where S(ψ̄, ψ) =
β́

0

dτ
´
d3r

[
ψ̄(r, τ)

(
∂τ − 1

2m∇
2 − µ

)
ψ(r, τ) + u

2

(
ψ̄(r, τ)ψ(r, τ)

)2]
ψ |ψ〉 = a |ψ〉 , |ψ〉 = e−

∑
ψa† |0〉

we have a global U(1) symmetry ψ → e−iϕψ.

From Noether’s theorem we have a conserved current

Jµ =
δS

δ
(
∂µψ̄

) ∂ψ̄
∂ϕ

+
δS

δ (∂µψ)

∂ψ

∂ϕ

giving (using the relation ∂ψ̄/∂φ = iψ̄

Ji = − 1

2mi

(
ψ̄∇iψ − ψ∇iψ̄

)
and the conserved charge is an integral over

J0 =
δS

δ ˙̄ψ
iψ = ψ̄ψ = ρ.

Noether theorem itself gives the continuity equation ∂µjµ = ρ̇− ~∇ · ~J = 0 the number of particles is conserved.

3.2 The Bose-Einstein condensation

We consider first the case u = 0 so that H → H0 =
´
dra†(r)

(
p2

2m − µ
)
a(r) .

Matsubara frequencies
To represent the free partittion function it is useful to use the imaginary (Matsubara) frequency using the relation:

ψ(τ, r) =
1√
β

∑
n

e−iωnτψn(r), ψn(r) =
1√
β

ˆ
dτeiωnτψ(r, τ)

with

ψ̄(τ, r) =
1√
β

∑
n

eiωnτ ψ̄n(r), ψ̄n(r) =
1√
β

ˆ
dτeiωnτ ψ̄(r, τ)

ωn = 2πnT for bosons , ωn = 2π

(
n+

1

2

)
T for fermions

insuring periodic and anti-periodic boundary conditions in τ for boson and fermion respectfully.
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Using the Matsubara presebtation for ψ(r, τ) and the relation
´ β

0
e−iωnτdτ = βδωn,0 we have

β́

0

dτψ̄(r, τ)∂τψ(r, τ) =∑
ωn=2πτn

ψ̄n(r)(−iωn)ψn(r). If we further diagonalize the Hamiltonian and develop the field interms of the eigenfunctionφk,i.e.,

ψn(r) =
∑
k φkψkn we can write the partition functionZ in terms of the Fourier field ψkn

Z =

ˆ
Dψ̄Dψ exp

[
−S(ψ̄, ψ)

]
=

ˆ ∏
nk

dψ̄kndψkn exp

(
−β
∑
kn

ψ̄kn (−iωn + ξk)ψkn

)
=
∏
k

∏
n

1

β(−iωn + ξk)

with ξk = k2

2m − µ = εk − µ. Stability of these integrals demands µ ≤ 0. Using the thermodinamic realtion for N(µ) we
find

N(µ) = −T ∂

∂µ
logZ = −T ∂

∂µ

∑
n,k

log

(
−iωn + ξk

T

)
= T

∑
n,k

1

iωn − εk + µ
.

We expect to get
∑
k

1
eβ(εk−µ)−1

and we can see that this function has poles at β(εk − µ) = 2πni and in our case we require

εk − µ = 2πTni since ωn = 2πnT hence the two functions have the same poles. Contour integration with few beatiful
tricks (see for example Altland Simons page 170) show that shows that indeed:

T
∑
n

1

iωn − εk + µ
=

1

eβ(εk−µ) − 1
≡ nB(ξk).

For a fixed external number of particls N the eqution

N ≡ N [µ(T )]

is an equation for the chemical potential as a function of the temperature T . In three dimensions using

N(µ) =
∑
k

nB(ξk) = Ω
1

Ω

∑
k

nB(ξk) = Ω
1

(2π)3

ˆ
d3knB(ξk) = Ω

1

2π2

ˆ
dkk2nB(ξk) =

ΩLi 3
2

(
eβµ
)

2
√

2π3/2(βm)3/2

with Ω being the system volume. Importantly to satisfy the equation N(µ) = N we must increase µ as we lower the
temperature until at µ = 0. We have

N(0) = Ωc
1

λ3
T

with
λT =

1√
mT

known as the particle thermal length and a numerical factor c =
ζ( 3

2 )
(2π)3/2 = 0.165869 at the temperature for which

N(0) = Ωc 1
λ3
T

= N a macroscopic number of particle N0 must occupy the ground state. Notice that it occurs at the

temperature for which the avergae distance between the particles 1/n1/3 = (Ω/N)1/3 ≈ 0.54λT is equal to the thermal
length. This gives

Tc =
(cn)2/3

m
= 0.3

n2/3

m
.

Tc increases for dancer and lighter particles!

Below Tc the we can write teh action in terms of the macroscopic wave filed ψ0 and we identify the number of particles
in the ground state

N0 = ψ̄0ψ0

then
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(a) (b)

Figure 4: (a)The chemical potentia µas a function of the temperature T . (b) The number of bosons in the ground state.

S = ψ̄0βµψ0 +
∑
k 6=0

ψ̄kn (−iωn + εk − µ)ψkn.

Notice that the imaginary time derivative ∂τ → −iωndoes not appear in the first term, this is already an appromixtion.
In the formulation of the path integral the derivative in imaginary time appeard due to the commutation relation of the
operators, neglecting them meaning that we ommit quantum effects. In our case it justified to perform this semiclassical
approximation for teh operator a0since a

†
0a0 ≈ N � 1while the commutation relation are

[
a†0, a0

]
= 1.

So that in the first term we take into consideartion only the thermal fluctuiations (zero Matsubara frequency) and in
the second we include also the quantum terms. (We note that the Ginsburg-Landau theory infact neglect the quantum
fluctuations)

Using the action S we can write the particle number as

N = −∂µF = ψ̄0ψ0 + T
∑
nk

1

iωn − εk
= ψ̄0ψ0 +

Ω

(2π)
3

ˆ
d3k

1

eβk2/2m − 1

= ψ̄0ψ0 +

(
mT

2π

)3/2

ζ

(
3

2

)
= N0 +N

(
T

Tc

)3/2

which give in 3D

N0

N
=

(
Tc−T

Tc

)3/2

3.3 Weakly Interacting Bose Gas

3.3.1 Mean Field Solution

We look at the action of the wave function ψ0 which describes a classical part of the wave function of the BEC.

TS(ψ̄0, ψ0) = −µψ̄0ψ0 +
g

2Ld
(
ψ̄0ψ0

)2
.

Notice that we take into consideration only the classical part of ψ (we assume that it does not depend on τ) this is justified
because N0 = ψ̄0ψ0 � 1 and the commutation relation of the correspond operators is

[
a†, a

]
= 1.

The partition function is Z =
´
dψ̄dψ0e

−TS(ψ̄0ψ0) for T � µ we evaluate Z via saddle point approximation
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Figure 5: (a)The action S for µ < 0 at the minimum |ψ0|2 = 0. (b) The action S for µ > 0. (c) The number of boson in
the condensate N0 = |ψ0|2.

δS

δψ0
= 0⇒ ψ̄0

(
−µ+

g

Ld
(
ψ̄0ψ0

))
= 0.

|ψ0| =

√
µLd

g

Notice that the total number of particle in the condensate ψ̄0ψ0 is proportional to the volume Ld as it should be. Due
to the interaction term g we no longer have a condition on the sign of µ, and we get the transition at µ = 0. In the
interacting case the number of the particles in the condensate is proportional to µ

3.3.2 Goldstone Modes

We will find now the goldstone modes of the system, to do so we define the average condensate density

ρ0 =
ψ̄0ψ0

Ld

so that the field ψ0 is given by:
ψ =

√
ρ0 + ρ(r, t)eiφ(r,t).

The amplitude fluctuations are given by ρ(r, t) and the phase of the condensate φ(r, t).

Substituting in the action we find:

S =

ˆ
dτddrψ̄

[(
∂τ −

∇2

2m

)
ψ +

1

2
g |ψ|2

(
|ψ|2 − 2ρ0

)]
this is equivalent to the action discussed above with ρ0g = µ, where we added terms which depends on derivatives with
respect to time and space to account for the fluctuations. assuming now that ρ(r, t)� ρ0 and expand the action we have

S ≈
β̂

0

dτddr

[
iρ0φ̇+ iρφ̇+

ρ0

2m
(φ′)

2
+

ρ′2

8mρ0
+
u

2
ρ2

]
+O(ρ3, (∇φ)

3
)

In analogy with the lagrangian for a single particle L = pq̇−H with p and q conjugate variables (i.e. quantum mechanically
they do not commute) [p, q] = i, the underlined terms in S helps us identify φ and ρ as conjugate variables, giving

[φ, ρ] = δ(x− x′).
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We want to integrate over the ρ part to obtain an effective action for φ.

For one variable we have

S =

ˆ
dτ

(
ip∂τq −

p2

2m
− V (q)

)
integrating over p gives

ˆ
dτ
m (∂τq)

2

2
− V (q).

In our case we perform a Fourier transform

S =

β̂

0

dτ
ddk

(2π)
d

[
iρ0φ̇0 + iρ−kφ̇k +

ρ0

2m
k2φkφ−k +

1

2g (1 + k2ξ2)
φ̇kφ̇−k

]

ξ = 4mgρ0

and for

kξ � 1

transforming back gives

S =

β̂

0

dτddr

[
iρ0∂τφ+

1

2u
(∂τφ)

2
+

ρ0

2m
(∇φ)

2

]
(valid for r � ξ).

This is an XY model. The name XY is originated from the fact that the order parameter ψ is a complex function that
presented by a real and imaginary part i.e. "live" in an XY plane.

Examine the action we obtain it seems like the same quadratic action we always have, with one important difference:φ is
compact: φ+ 2π = φ. This means that the equations of motion derived from S can be solved by vortices.

A common definition is the superfluid density:

ρs =
ρ0

m

which determines the energetic cost of deforming the condensate phase in space, and a compressibility

κ =
1

g

which determines the cost of phase changes in time. Transforming to q, ω space

S =
1

2

∑
q,ω

(
κω2

q + ρsq
2
)
φqωφ−q−ω

ωq = cq ⇒ c =
√
ρs/κ =

√
ρ0g

m
.

Reminder: we assume |r| � ξ, meaning we have performed coarse graining.
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3.4 Superfluidity

To discuss superfluidity let us add an external chemical potential µext then the Hamiltonian

H =
1

2

ˆ
dx

[
ρs (∇φ)

2
+

1

κ
ρ2 − µexρ

]
we should understand now ρ and φ as operators

[φ(x), ρ(x′)] = δ(x− x′)

the current operator is

J =
1

2mi

(
ψ̄∇ψ − ψ∇ψ̄

)
=
ρ(r, t)

m
∇φ ≈ ρ0

m
∇φ = ρs∇φ

The Hamilton equations are

∂ρ

∂t
= −∂H

∂φ
= −ρs∇2φ = −∇ · J

which is the expected continuity equation. The more interesting equation is

∂φ

∂t
=
∂H

∂ρ
= µex − uρ ≡ µ(r, t).

This is one of the Josephson relations - the time derivative of the phase depends linearly on an external potential.

To see how this system exhibits superfluidity let assume that φ = qx then we have

J =
ρ0

m
∇φ = q

ρ0

m
x̂

and the phase vector in x space looks like this:

x

Figure 6: Phase evolution in the presence of current

The surprising thing is that such a current is stable, since we have Goldstone modes (low energy excitations) in the system
we could have expected that such a current would excite them.
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3.5 Landau’s Argument

For a fluid moving uniformly in the lab frame the system without excitations has energy E0 = 1
2mv

2. In case we have
excitations they will move with the system. Moving to the center of mass frame there is no kinetic energy, and the entire
energy of the system is the energy of the fluctuations ε(p) = c · p. This means that in the lab frame

E1 =
1

2
mv2 + ~p · ~v + ε(p)

(the ~p · ~v term is from moving the fluctuation, just from moving something with momentum p with a velocity v)

If there was dissipation as a result of this fluctuation, we would have E1 − E0 < 0⇒ ~p · ~v + ε(p) = ~p · ~v + ~c · ~p < 0 which
requires |v̄| > c. This means that for low speeds this doesn’t hold and there is no dissipation. The fact that we have a
linear dispersion relation means we don’t always excite the system. Usually we have a quadratic dispersion relation which
means we can always excite the system.

3.6 Various Consequences

3.6.1 Quantization of Circulation

Considering

J =
ρ0

m
∇φ

we integrate over a closed path

˛
∇φ = φ(L)− φ(0) = φ(2π)− φ(0)

and since φ is compact (ψ = ρeiφ) we require

˛
∇φ = 2πn

⇒
ˆ
v · dl =

ˆ
J

ρ0
· dl =

~
m

2πn =
hn

m

where we returned ~. We have a quantization of superfluid velocity.

3.6.2 Irrotational flow

∇× J = ρs∇×∇φ = 0

3.6.3 Vortexes = Vortices

Defining

φ = nθ, n ∈ Z.

where θ is an angle in real space. the fact that n is an integer guaranties that after a rotation in real space the field
ψ ∝ eiφ is single valued.

Explicitly we have:
φ = n arctan(

x

y
).
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and the current is given by:

J = ρs∇φ = ρs
n

r
θ̂.

(it is easy to show that ~∇× ~∇φ = δ(r))

This seems to diverge for small r but we have a cutoff r > ξ.

v =
~
m

n

r
θ̂.

The proportionality of the velocity field to 1/r is very different from a rigid rotation where

v = ωrθ̂,∇× v = ωẑ
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4 Superconductivity

4.1 Basic Model and Mean field solution

Exercise number 4.

4.2 The Anderson -Higgs Mechanism

4.2.1 Local gauge symmetry

The essential difference from the case of the superfluid is that the particles are charged so that we should add coupling to
the electromagnetic filed, this is done by the “minimal coupling”

S =

ˆ
ψ̄

(
∇− ie

~ A
)2

2m
ψ

this changes the symmetry from a global U(1) to local gauge invariance under U(1)

ψ → ψeiφ(x), A→ A−∇φ(x)

and in the polar representation (e = ~ = c = 1)

S =

ˆ
√
ρe−iφ (∇− iA) (∇− ieA/c) eiφ√ρ =

ˆ
√
ρe−iφ (∇− iA) eiφ

(
∂
√
ρ

∂x
+ i
√
ρ
∂φ

∂x
− iA√ρ

)
(ignoring the fluctuations in √ρ)

=

ˆ
ρ0

2m
(∇φ−A)

2
.

Following steps similar to the ones we performed for the neutral superfluid we will get after integrating out the massive
fluctuations of the amplitude ρrestroing the universal factor e, c, ~ we get:

S =
1

2

ˆ
dτ

ˆ
d3r

(∂τφ)
2

u
+
ρ0

m

(
∇φ− e

c~
A
)2

.
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When Quantum fluctuations can be ignored?
To study the Anderson Mechanism we will ignore quantum fluctuations – when is that justified? The GL action is

S[φ,A] =
1

2

ˆ
dτd3r

1

u
(∂τφ− eA0)

2
+ (∇A0)

2
+
ρ0

m
(∇φ−A) + (∇×A)

2

Looking at the terms which contain A0 in fourier space, we have

1

u
ω2φ2 +

2

u
eωφ︸ ︷︷ ︸
a

A0 +

(
e2

u
+ q2

)
︸ ︷︷ ︸

b

A2
0

integrating over A0 gives  1

u
ω2 −

(
1
ueω

)2(
e2

u + q2
)︸ ︷︷ ︸

a2/4b

φ2 =
ω2q2

e2

u + q2

Assuming no magnetic field and minimizing the free energy of the full action we have

ω2q2

e2

u + q2
=
ρ0

m
q2

which for small q gives

ω2 =
ρ0

m

e2

u
=

4πe3n

m
= ω2

p

This is the plasma frequency. It is related to the dielectric constant of a material by the following development (see p. 18
of Ref. [2])

dρ

dt
= eE,

dj

dt
= −e

2nE

m
; iωj = −en

m
E ≡ σ(ω)E with σ(ω) =

ie2n

mω

using Maxwel’s equations we find:

−∇2E = ∇×∇× E = i
ω

c
∇×H = i

ω

c

(
4π

c
j − iω

c
E

)
=
ω2

c2

(
1 +

4πiσ

ω

)
E ≡ ω2

c2
ε(ω)E (5)

and by definition

ε(ω) =

(
1−

ω2
p

ω2

)
When ε is real and negative ω < ωp the solution of Eq. (5) decay in space, i.e. electric field can not propagate in the
material, for ω > ωp radiation can propagate in the metal and it become transparent.
The q2 term came from a 3D fourier transform of a Coulomb interaction V (q). When the material is confined 2D (and
the electric field lines can propagate in 3D) v(q) ∝ q, giving ω ∼ √q. In 1D metal of width a when V (q) ∝ log qa given
ω ∼ q and quantum fluctuations can not be ignored.

Taking the classical approximation (no τ dependence) and adding a term for the action of the magnetic field

S[A, φ] =
β

2

ˆ
d3r

ρ0

m

(
∇φ− e

c~
A
)2

+ (∇×A)
2

=
β

2

ˆ
d3r

ρ0

m

(
∇φ− e

c~
A
)2

+
β

2

ˆ
d3r |B|2 .

In momentum space

S[A, φ] =
β

2

∑
q

ρ0

m

(
i~qφ~q − ~A~q

)(
−i~qφ−~q − ~A−~q

)
+
(
~q × ~A~q

)(
−~q × ~A−~q

)
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=
β

2

∑
q

ρ0

m

[
q2φ~qφ−~q − 2i~q · ~A−~qφ~q + ~A~q · ~A−~q

]
+
(
~q × ~A~q

)(
−~q × ~A−~q

)

We break up ~A into a longditudinal and transverse part: ~A~q = ~A~q −
~q
(
~q · ~A~q

)
q2︸ ︷︷ ︸

A⊥

+
~q
(
~q · ~A~q

)
q2︸ ︷︷ ︸
A‖

.

Notice that only the transverse part will contribute to the magnetic field, since ~B~q = ~q×A⊥q (since ~q× ~q = 0). Performing

a gaussian integral on the φ degrees of freedom
(´

e−x
2+yx ∼ e−y2

)
we have

S[A] =
β

2

∑
q

ρ0

m

 ~A~q · ~A−~q −
(
~q · Ā

) (
~q · ~A

)
q2

+
(
q ×Aq

) (
−q ×A−q

)
.

=
β

2

∑
q

(ρ0

m
+ q2

)
A⊥q A

⊥
−q.

The equation of motion is (ρ0

m
−∇2

)
A⊥ = 0. (6)

The mechanism that we encounter here, namely

1. A symmetry breaking that we find through a mean field solution

2. The appearance of Goldstone soft modes φin the superconducting case

3. Coupling betweeen the Goldstone mode and the gauge filed Aand the Goldstone mode

4. The gauge field acquires a mass

is known as the Anderson Higgs mechanism.

4.3 London Equations (Phenomenology of Superconductivity)

Taking a curl of Eq.(6) we get (The first equation of London)

The First London Equation:
(ρ0

m
−∇2

)
B = 0 (7)

This is the first London equation. It shows that the field decays inside the superconduction

where

λ =

√
m

ρ0
=

√
mc2

4πnse2

with ns representing the density of particles in the superconducting phase.

Since

∇×∇×A =
4π

c
j

if we choose the London gauge
~q · ~A~q = 0
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Figure 7: The Meissner effect: due to the Anderson-Higgs mechanism. An external field outside the superconductor
induced diamagnetic supercurrent inside the superconductor – these current generates a counter field that diminishes the
external field.

we get (since ∇×∇× ~A = ∇(∇ ·A)−∇2A)

q × q ×A⊥ = −q2A⊥

∇2A =
4π

c
j

But from the first London equation we find that ∇2A = ρ0/mA this gives:

The second London Equation: j =
nse

2

mc
A. (8)

Eq. (8) is known as the second London equation. It presents a perfect diamagnetism (notice that it is not gauge invariant).

Physically the Meisenner effect consist of current that due the the Biot-Savart low creates magnetic field that cancels the
external one, see figure .

4.4 Vortexes in Superconductor

4.4.1 The magnetic field penetration depth

To studey the behavior of magnetic field in area were there is superconductivty we will start from the Ginsburg-Landau
theory. The Ginzburg Landau theory can be obtained by introducing a Habburd-Stratanovich field ∆that deacoples the
interaction term gψ4 → ∆ψψ + ∆2/g the action is then quadratic in ψso we can integrate out the ψfield and expand the
action assume that ∆is small we the get (See [7] for details):

Fs =

ˆ
fsd

3x

fs = fn + α |Ψ|2 +
β

2
|Ψ|4 +

1

2m

∣∣∣∣(~
i
∇− e∗

c
A

)
Ψ

∣∣∣∣2 +
B2

8π

were we switch the notation ∆→ Ψhere Ψrepresent the pair function. A microscopic theory gives

α = α′
T − Tc
Tc

, α′ =
12π2mT 2

c

ζ(3)P 2
F

, β =
α′

ne
, e∗ = 2e, m∗ = 2m
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where ne is the electron density. fn describes the electrons which aren’t in the superconducting phase. B is the magnetic
field. For α < 0 we have a minimum at

fs − fn =
−α2

2β
+
B2

8π

We expect that the field will eventually be too strong to be repulsed by the superconductor, and the critical magnetic
field is found from the above equation

H2
c

8π
=
α2

2β
=
nemT

2
c

P 2
F

= mPFT
2
c

mPF is the density of states at EF .

This results should not be suprising as in the nornal state we have electrons near the Fermi level, while in the superconduting
state a gap of size ∆ is formed the energy of the electrons that “repeled” from the Fermi surface is

∑
i,εi<∆ εi ∼ ν∆2 .

(See excersize)

We can identify a magnetic length by comparing terms in F

B2

8π
=

(∇×A)
2

8π
∝ 1

λ2

A2

8π
∼ e∗2

c2
1

2m∗
∣∣ψ2
∣∣A2

λ2
eff =

m∗c2

4π |ψ|2 e∗2

|Ψ∞|2 = −α
β

= n∗s =
ne
2

=
m∗c2

4πe∗2
=

m∗c2

8πe2λ2
eff

.

Notice that the units in the last equation are right as ~/mc has unitis of length and ~c/e2is dimless so that |Ψ∞|2has
units of 1/volume as it should. Finially we can identify

α(T ) =
2e2

mc2
H2
c (T )λ2

eff(T ).

These relations are usefull as Hc and λare experimentallty measurable quantitiies even if we do not have a microscopic
theory.

05/07/13

4.4.2 The Coherence Length

We discussed the following free energy for the superconductor

fs = fn + α |Ψ|2 +
β

2
|Ψ|4 +

1

2m∗

∣∣∣∣(~
i
∇− e∗

c
A

)
Ψ

∣∣∣∣2 +
B2

8π

and found the magnetic length

λ2
eff =

m∗c2

4π |ψ|2 e∗2

We can also define another length scale - the coherence length.

δf

δψ∗
= 0⇒ αψ + βψ∗ψ2 − 1

2m∗
ψ′′
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which can be solved by a stationary solution

|ψ∞|2 = −α
β

ψ

ψ∞
−
(
−β
α

)
ψ∗

ψ∞
ψ2 − 1

2m∗α

ψ′′

ψ∞

and assuming ψ is real and defining f = ψ
ψ∞

we have

f − f3 +
~2

2m∗ |α|
f ′′ = 0

The coefficient of the last term has units of 1/area, which allows us to define a coherence length:

ξ2(T ) =
~2

2m∗ |α|
∝ Tc
Tc − T

ξ2(T = 0) ∝ 1

mα
∝︸︷︷︸

microscopic expression for α

p2
f

m2T 2
c

=
v2
f

T 2
c

⇒ ξ =
vf
Tc

For dirty systems with diffusion we derive a length scale from the diffusion equation which contains the mean free path
due to diffusion:

D

ξ2
d

= Tc ⇒ ξd =

√
D

Tc
=

√
vpl

Tc
=
√
ξl

We can look at small deviations from ψ∞ by defining f = g + 1 and linearizing the equation

(1 + g)− (1 + g)
3

+ ξ2g′′ = 0

ξ2g′′ = 2g

g ∼ e±
√

2x/ξ.

4.4.3 Two types of superconductors

The relation between the two length scales defines two types of superconductors.

In type I materials, λ � ξ we expel the magnetic field which costs energy, but are not yet in the superconducting phase
which is beneficial energetically, hence such a boundary costs energy

Fb > 0

In type II materials, λ� ξ

In this case we obtain the reduced energy of entering the superconducting phase without having to expend much energy
on expelling the field. We then have

Fb < 0
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Figure 8: The surface energy is positive when λ < ξ we "pay" (the free energy is positive) for repealing magnetic field and
still do not gain energy from the superconductor. For λ > ξ we have superconductor and still do not repel the magnetic
field hence "gain" from both, the surface energy is negative.

and it becomes energetically favorable to increase the boundary as much as possible, which is done by generating vortexes.

The phase diagram for type II looks like this (see Fig 9)

We recall that each vortex carries at least Φ0 of flux. Hence if the flux through the entire model is less than Φ0 there can
be no vortexes and we have a perfect Meissner effect. The next phase allows creation of vortexes. Eventually the vortexes
are so common that they coalesce, leaving the superconducting phase only on the boundary.
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Figure 9: Hc1 the critical filed when the first vortex penetrates. Hc2 when the vortices core overlap and Hc3 when the
residue superconductivity on the surface disappears

4.4.4 Vortexes in Type II superconductor

Looking at a type II superconductor near Hc1 where we have a single vortex. The energ is

F =

ˆ
d3r

1

8π

[
h2 + λ2 (∇× h)

2
]

the last term is the kinetic energy which was derived using j = ensv = ∇× h 4π
c and λ =

√
mc2

4πns

Ekin =
1

2
mv2ns =

1

2

m

nse2
j2 = λ2 (∇× h)

2

Taking a variation we derive the equation of motion:

h+ λ2∇×∇× h = 0

We want to solve for a single vortex hence we add a term to ensure the integration over the surface gives the correct flux.

h+ λ2∇×∇× h = Φ0δ(r)

integrating over the surface of the model

ˆ
dsh+ λ2

ˆ
ds∇×∇× h =

ˆ
dsh+ λ2

˛
c

dl∇× h = Φ0

For r � λ , the field is effectively uniform along the integration contour and the second term drops giving
ˆ
dsh = Φ0
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while if ξ < r < λ the first term is negligible

λ2

˛
c

dl∇× h = 2πrλ2∇× h = Φ0

dh

dr
=

Φ0

2πλ2

1

r

h =
Φ0

2πλ2

(
log

(
λ

r

)
+ const

)
while for r � λ we have h ∼ e−r/λ.

We can also solve exactly by a fourier transform:

h+ λ2h′′ = Φ0δ(r)

(
1 + λ2k2

)
hk = Φ0

h(r) =
Φ0

(2π)
2

ˆ
eikrcosθkdkdθ

1 + λ2k2
=

Φ0

2π

ˆ
kdk

1 + λ2k2
J0(kr) =

Φ0

2πλ2
K0(r/λ)

The free energy of a vortex of a model of height L is given by

Fvor =

ˆ
dV

h2 + λ2 (∇× h)
2

8π
=

Φ0

8π

Φ0

2πλ2
log

(
λ

ξ

)
L

The critical field for creating separated N vortex is thus given by

0 = Fvor −
ˆ
BHc1

4π
= N

(
Fvor −

Φ0Hc1

4π

)
where the second term is the multiplication of the internal B field by the external one (see Ref. [4] (pages 33 50 and 66)).

Hc1 =
Φ0

4πλ2
log

(
λ

ξ

)
We ignored the energetic cost of destroying the superconducting phase in this calculation. The energy we gained per unit
volume of superconductor is

α2

β
=
H2
c

8π
∝ mpFT 2

c

(Hc is defined for type 1 superconductors)

and this the energy loss due to the creation of the core of the vortex is

Ecore = CνT 2
c ξ

2L

where ν is the density of states, and C is some parameter which contains the details of the shape of the core.
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5 XY Model Kosterlitz-Thoeless Beresinskii pahse transition

Here we follow [B. I. Halperin, Superfluidity, Melting and Liquid Crystal Phases in Two-Dimensions, in Proceeding of
Kyoto Summer Institute 1979- Physics of Low Dimensional Systems, edited by Y. Nagaoka and S. Hikami (Publications
Office, Progress of Theoretical Physics, Kyoto, 1979), p. 53.]

This model features a complex scalar order parameter

ψ = Sx − iSy

Superconductor with complex order parameter that have a phase and an amplitude are one example but there are many
other examples, e.g, spin that are confined to be in plane, having only x and y components.

We already saw that in 2D we do not have long range order. Indeed if we define

ψ = ψ0e
iφ(r).

and the Hamiltonian which describes the system is

H =
1

2

ˆ
κ0 (∇φ)

2
dr (9)

then the correlation function is

〈ψ∗(r)ψ(0)〉 =
〈
ψ0e

iφ(r)ψ0e
−iφ(r)

〉
= |ψ0|2 e−

1
2 〈(φ(r)−φ(0))2〉 (10)

with 〈
(φ(r)− φ(0))

2
〉

=
T

κ0

ˆ
d2k

(2π)
2

∣∣∣ei~k·~r − 1
∣∣∣2 〈φ2

k

〉
.

The last equation follows from the Fourier substitution:

φ(~r) =
1

(2π)2

ˆ
ei
~k·~rd2kφ~k

and the relation: ˆ
dr2ei(

~k−~k′)·~r = δ2(~k − ~k′)

Using the free Hamiltonian in Eq. (9) and the relation

1

(2π)2

ˆ
dk2ei

~k·(~r−~r′) = δ2 (~r − ~r′)

we find:
H = κ

1

(2π)4

ˆ
d2r

ˆ
d2k

ˆ
d2k′∇(ei

~k·~rφ~k)∇(ei
~k′·~rφ~k′) = κ

1

(2π)2

ˆ
d2kk2φ~kφ−~k

from this we can easily find the correlation function:〈
φ~kφ~k′

〉
= δ(~k − ~k′)κ 1

k2
.

Using the relation

F (|~r|) =
∣∣∣eik·r − 1

∣∣∣2 = (cos(kr)− 1)
2

+ sin2(kr) = 1− 2 cos(kr) + cos2(kr) + sin2(kr) = 2− 2 cos(kr)

we notice that for ~k · ~r � 1 the function F (|~r|) is zero and for kr � 1 the cos terms is oscillating so that its integral will
be paretically zero and we can ignore it. We therefore can approximate Eq. (10) by:
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〈
(φ(r)− φ(0))

2
〉

=
2

(2π)
2

T

κ0

1/aˆ

1/r

2πk

k2
dk =

T

πκ0
log
( r
a

)
.

Here a is a short range (ultra violet) cutoff. Hence we have

〈ψ∗(r)ψ(0)〉 = |ψ0|2
(

1

r

)η
, η =

T

2πκ0
.

Thus we don’t have long range order (only quasi long range order).

5.1 Vortexes in the XY model

Figure 10: vortex and anti vortex in the spin configuration ψ = ψ0e
iφ = Sx− iSy denoted by arrows in the spin direction

and in the velocity ∇φ dented by bold lines

For ψ 6= 0, we define a velocity field

∇φ(r) = v(r)

From the fact that eiφ is single valued, we have a condition for an integral around the core of a vortex
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˛
v(r)dr = 2πn

from which we define the vortex charge

N =
1

2π

˛
v(r)dr

and integrating over a number of vortices

˛
v · dr =

∑
i

2πNi ≡ 2πNc

We can define a vortex charge density

N(r) =
∑
i

Niδ(r −Ri)

Nc =

ˆ
dsN(r) =

1

2π

˛
v(r)dr =

1

2π

ˆ
∇× vds

N(r) =
1

2π
∇× v

which gives the following continuity equation

∂N

∂t
=

∂

∂t

∑
i

Niδ(r −Ri) =
∑
i

Ni
∂Ri
∂t

∂

∂Ri
δ(r −Ri) = −

∑
i

Ni
∂Ri
∂t

∂

∂r
δ(r −Ri)

= − ∂

∂r

(∑
i

Ni
∂Ri
∂t

δ(r −Ri)

)
≡ − ∂

∂r
Jv

The energy of a single vortex of charge 1 in a system of size R is

E = Ecore +

R̂

ξ

2πrdrκ0
(∇φ)

2

2
= Ecore + πκ0

R̂

ξ

dr

r
= Ecore + πκ0 log

(
R

ξ

)

This diverges unless we add another vortex with opposite charge at a distance x0 � ξ, which gives

E2 = 2πκ0 log

(
x0

ξ

)
+ const

where const ≈ 2Ecore.
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5.2 Kosterlitz-Thouless Argument

The probability of creating a single vortex is

p1 ∼ e−H1/T = exp

(
−πκ0

T
log

R

ξ
+
Ec
T

)
= e−Ec/T

(
R

ξ

)−πκ0/T

.

We have (R/ξ)
2 possible locations to place the core, giving

P =

(
R

ξ

)2

e−Ec/T
(
R

ξ

)−πκ0/T

= e−Ec/T
(
R

ξ

)2−πκ0/T

.

Thus if

2− πκ0

T
> 0⇒ T >

πκ0

2
≡ TKT ,

it becomes preferable to crate vortexes. Below TKT they will not be created. We saw

〈ψ∗(r)ψ(0)〉 = |ψ0|2
(

1

r

)η
, η =

T

2πκ0

hence if T < Tc ⇒ η < 1/4.

The argument that we gave here is equivalent to the competition between the energy and the entropy of a single vortex.
The free energy of the vortex is:

F = E − TS = πκ0 log

(
R

ξ

)
− 2T log

(
R

ξ

)
for positive F when the energy "wins" vortexes are not created. For a negative F when the entropy wins at they are
created. We expect a phase transition at Tc = πκ0. Below Tc we will have vorteces bounded in pairs and above Tc we will
have free vortexes – plasma of vortexes.

5.3 Describing vortices as a Coulomb gas

We will show now how this vortex plasma is mapped on to a 2D Coulomb gas, with logarithmic interactions. In the
absence of magnetic field the total vorticity is zero hence hence the vortexes charges obey

∑
Ni = 0

and we define a velocity field and divide it into a rotational and irrotational part

~v = ~v0 + ~v1, ∇× ~v1 = 0, ∇ · ~v0 = 0

N(r) =
∇× ~v

2π
⇒ ∇× ~v0 = 2πN(r)

We shall also assume that at the boundary of the system we have:v0⊥ = 0 where v0⊥ is the component of ~v perpendicular
to the boundary.

From which we have

ˆ
~v1 · ~v0d

2r =

ˆ
(∇ · φ) · ~v0d

2r =

ˆ
∇ ·
(
φ~V0

)
d2r =

˛
φ~v0⊥dl = 0. (11)
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The Hamiltonian of the system is given now by:

H = Hvortex +Hsw

with
Hvortex =

κ0

2

ˆ
|v0|2 d2r + core energies

and
Hsw =

κ0

2

ˆ
|v1|2 d2r.

.

(Due to Eq. (11) there are no cross terms.)

We can define now an analog of the electric field in the form

~E = −2πκ0~z × ~v0

doing so we obtain

∇ · ~v0 = 0⇒ ∇× ~E = 0

~v0⊥ = 0⇒ ~E‖ = 0

∇× ~v0 = 2πN(r)⇒ ∇ · ~E =
4πN(r)

ε0
, ε0 =

1

πκ0

Hvortex =
1

8πε0

ˆ
|E|2 d2r + core =

1

2ε0

∑
ij

NiNjG(
−→
R i,
−→
R j) +

∑
N2
i Ec

where the last equality is from previous lectures. The effective interaction is similar to the 2D Coulomb interaction.

G(~Ri, ~Rj) = −2 log

(
~Ri − ~Rj

ξ

)
.

5.3.1 RG Approach

We expect that when we apply coarse graining, the dielectric constant of the medium will change due to screening by
intermediate vortex pairs which act as effective dipoles between any given vortex pair. We can define a new dielectric
constant

εR = ε0 + 4πχ

with χ being the dielectric susceptibility due to the vortices.

We expect the following behavior of the dielectric constant:

εR =

{
finite T < Tc

”∞” T > Tc

here Tc is the temperature at which there will be vortex proliferation (they will still exist at lower temperatures due to
fluctuations despite the fact that they are not energetically favorable).

34



ε = εξ + 4π

ˆ
α(r)2πrp(r)dr.

With α(r) being the polarizaility of a pair at distance r, and p(r) the probability density to have a pair of vortices at
distance r. Using E2(r) = 2Ec + 2πκ0 log r

ξ , which gives

p(r) ∼ 1

ξ4
e−E2(r)/T =

1

ξ4
e−

2Ec+2πκ0 log r
ξ

T

We assume that the gas is dilute enough that the probability that there will be more than one pair is negligible. Thus
this treatment only holds for T < Tc near Tc.

=
1

ξ4
y2

0

(
ξ

r

)2πκ0/T

where y0 = e−Ec/T is the fugacity which we assume to be small. The 1/ξ4 is there from dimensional considerations since
this probability distribution is integrated with a measure of dimension x4.

To find the polarizability α(r) we note that the a dipole moment ~P in an external filed ~E has an energy V given by:

V = −~P · ~E = −|p||E|cosθ = −q|r||E| cos θ.

Averaging over the configuration of the dipole moment we find:

P = qrcosθ = qr

´
e−V/kT cosθdθ´
e−V/kT dθ

= r

´
eqrEcosθ/kT cosθdθ´
eqrEcosθ/kT dθ

=︸︷︷︸
a= qrE

T

d

da
log

(ˆ
ea cos θdθ

)
≈︸︷︷︸
a�1

1

2
a

giving,

P =
r2

2T
E ≡ α(r)E, with α(r) =

r2

2T
.

Substituting in the expression for the dielectric constant we find:

ε = εξ + 4π

∞̂

ξ

r2

2T

(2πr)

ξ4
y2

0

(
ξ

r

)2πκ0/T

dr = εξ +
4π2

T
y2
ξ

∞̂

ξ

(
r

ξ

)3−2/εT
dr

ξ
.

We now want to apply coarse graining

= εξ +
4π2

T
y2
ξ

ξ(1+dl)ˆ

ξ

(
r

ξ

)3−2/εT

d

(
r

ξ

)
︸ ︷︷ ︸

≡εξ′

+
4π2

T
y2
ξ

∞̂

ξ(1+dl)

(
r

ξ

)3−2/εT
dr

ξ
. (12)

Defining ξ′ ≡ ξ (1 + dl) we have

= εξ′ +
4π2

T
y2
ξ

(
ξ′

ξ

)4−2/εξT

︸ ︷︷ ︸
≡y2

ξ′

∞̂

ξ′

(
r

ξ′

)3−2/εT

d
dr

ξ′

= εξ′ +
4π2

T
y2
ξ′

∞̂

ξ′

(
r

ξ′

)3−2/εT

d
dr

ξ′
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from the Eq. (12) that defines εξ′ , and using the fact that dl is small we have:

εξ′ = εξ + y2
ξ

4π2

T
dl

and hence
dε

dl
=

4π2

T
y2.

From the definition of yξ′ and ξ′ we find

y2
ξ′ = y2

ξ + y2
ξ

(
2− 2

εT

)
dl

and
ξ′ ≡ ξ (1 + dl)⇒ dξ

ξ
= dl⇒ ξ(l) = ξ0e

l

so that

dy2

dl
= y2

(
4− 2

εT

)
.

Defining

κ =
1

εTπ

we have

dy

dl
= (2− κπ) y +O(y3)

and

dκ−1

dl
= 4πy2 +O(y4).

For κπ < 2 the fugacity y increases while for κπ > 2 it decreases.

It is useful to use further the following definitions

x =
2

κπ
− 1⇒ κ =

2

π

1

1 + x
≈ 2

π
(1− x) for x� 1

dκ−1 =
π

2
dx⇒ π

2

dx

dl
= 4π2y2

giving

dy

dl
= 2xy,

dx

dl
= 8π2y2

d2x

dl
= (4πy)

2
,
d (4πy)

dl
= 2x (4πy)

with x̃ = 2x and ỹ = 4πy we have

dx̃

dl
= ỹ2,

dỹ

dl
= x̃ỹ (13)

These are the KTB RG flow equations.
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From them we can define a constant of the motion by multiplying the first equation by x̃, the second by ỹ and subtracting

dx̃2 − ỹ2

dl
= 0

x̃2 − ỹ2 = const

We remove the tildes from now on. Along the line x = −y

dy

dl
= −y2

−dy
y2

= dl⇒ 1

yξ
− 1

y0
= l = log

(
ξ

ξ0

)

yξ =
y0

1 + y0l
≈ 1

l

y = −x = − 1

log
(
ξ
ξ0

)
at T = TC we have x = 0 ⇒ κ = κR

Tc
= 2

π , εR = 1
2TC

where εR is the dielectric constant at TC .

The probability of the existence of a pair at a distance r from one another at TC

P (r) =
y2

r4
=

1

r4log2 (r/ξ0)

We now look at other areas.

For T < TC , near y = 0

x2 − y2 = (T − TC) b2
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we can assume a linear dependence because x2 − y2 changes sign when we change the relative sizes of T and TC

x = b
√
TC − T

κR
TC

=
2

π
+ b
√
TC − T

This development breaks down in the area of positive x where y grows. This is because it was based on the assumption
that the fugacity is small and the pair density is low.

For T > TC

y2 = x2 + b2 (T − TC)

dx

dl
= x2 + b2 (T − TC)

ξ̂

ξ0

dl =

1̂

x0

dx

x2 + b2 (T − TC)

where x = 1 is some scale beyond which the RG treatment breaks down

l =
1

b
√
T − TC

tan−1

(
x

b
√
T − TC

)∣∣∣∣1
x0

≈ 1

b
√
T − TC

From this we can extract a length. We identify this temperature dependent length scale as the screening length

ξ+ = rsc = ξ0e
1/b
√
T−TC

If we want to discover how many vortices we have, we can calculate the effective screening radius of a certain vortex
concentration and compare to the one we found. According to Debye

4πnfree

Tε
= 8πnfree

from which

nfree =
1

ξ2
+

5.3.2 The order of the KTB phase transition

Which thermodynamic quantity changes in this phase transition?

HNU =

ˆ [
αψ2 + βψ4 + J (∇ψ)

2
]
ddr

and a saddle point approximation gives ψ2 = α
2β and assuming the derivative terms are of the same scale as the potential

terms

J

ξ2
∼ α
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1

2

ˆ
J (∇ψ)

2
ddr ∼ Jξd−2 |ψ|2 =

Jξd−2α

2β
=
J2

2β
ξd−4

for D=2

HNU ∝
1

ξ2

Fsingular ∼
1

ξ2

thus

∂nF

∂Tn
=

b

(T − TC)
n+1/2

e−2/b
√
T−TC

meaning the transition is continuous at any order.

The superfluid density however changes discontinuously.

We also saw that the 2 point function changes its behaviour

〈ψ(r)ψ(0)〉 =

{
T > TC e−r/ξ+

T < TC (1/r)
T/2πκ

5.4 Coulomb gas and the Sine-Gordon mapping (Momentum RG)

5.4.1 Mapping between Coulomb Gas and the Sine Gordon model

SV =
1

T

 1

2ε0

∑
ij

NiNjG(

∣∣∣−→R i −
−→
R j

∣∣∣
ξ

) +
∑

N2
i Ec


G(x) = −2log (x)

z =
∑

Ni=0,±1

exp (−SV )

where we drop vortices with charge larger than 1. Using the general formula for a Gaussian integral

ˆ
dx1...dxn

(2π)
n/2

exp

(
−1

2
xiAijxj + xiJi

)
= (detA)

−1/2
exp

(
1

2
JiA

−1
ij Jj

)
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exp

(
− 1

2ε0
NiNjVij

)
= det

(
V −1

2ε

)1/2
1

(2π)
1/2

ˆ
dϕ1..dϕnexp

(
−1

2
ϕiV

−1
ij ϕj + iϕiNi

)
and adding the core energy term

z = N

ˆ
Dϕ(x)exp

−1

2

∑
i 6=j

ϕ(xi)V
−1 (xi − yi)ϕ(yi)2ε0T

Π
i

∑
Ni=0,±1,...

exp
(
iϕiNi +N2

i Ec/T
)

≈ N
ˆ
Dϕ(x)exp

−1

2

∑
i 6=j

ϕ(xi)V
−1 (xi − yi)ϕ(yi)2ε0T

Π
i

(1 + 2 (cosϕi) exp (−Ec/T ))

≈ N
ˆ
Dϕ(x)exp

−1

2

∑
i 6=j

ϕ(xi)V
−1 (xi − yi)ϕ(yi)2ε0T

 exp
(
−y
∑

2 (cosϕi)
)

V (q) = 1
q2 ⇒ V −1(q) = q2 ⇒ V (x) = δ(x)∇2

= N

ˆ
Dϕ(x)exp

(
−1

2

ˆ
(∇ϕ(x))

2
d2x2ε0T +

2y

a2

ˆ
d2xcosϕ(x)

)
changing variables to

√
2ε0Tϕ, β = 1√

2ε0T
,M = 2y0 = 2e−Ec/T

= N

ˆ
Dϕ(x)exp

−1

2

ˆ
(∇ϕ)2d2x︸ ︷︷ ︸

S0

+M

ˆ
d2x cos(βϕ)︸ ︷︷ ︸
S1


5.4.2 (Momentum shell) Renormalization group of the sine Gordon Model

[Here we follow with some additional details chapter 10 of Ref. [6]]

We split a high momentum shell from the system (b > 1)

ϕΛ(x) =
1√
V


∑
K<Λ

b

eikxϕK

︸ ︷︷ ︸
ϕS(x)

+
∑

Λ
b <K<Λ

eikxϕK

︸ ︷︷ ︸
ϕF (x)


and since S0 is diagonal in momentum space,

zΛ =

ˆ
DϕSDϕF e−S0[ϕS ]−S0[ϕF ]−S1[ϕF+ϕS ]

=

ˆ
DϕF e−S0[ϕF ]

ˆ
DϕSe−S0[ϕS ]

´
DϕF e−S0[ϕF ]−S1[ϕF+ϕS ]´

DϕF e−S0[ϕF ]

= zF

ˆ
DϕSe−S0[ϕS ]

〈
e−S1[ϕF+ϕS ]

〉
F
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giving an effective action for the slow degrees of freedom:

Seff(ϕS) = S0 (ϕS)− log
〈
e−S1[ϕF+ϕS ]

〉
F
.

The basic idea here is to average over the fast degree of freedom a ϕf and obtain an effective action in terms of the slow
variables ϕs. The parameters of the action S are renormalized and the RG procedure is established.

We assume the core energy is small, hence M is small. Thus using the cumulant expansion log
〈
1− S1 + 1

2S
2
1

〉
= 〈S1〉 −

1
2

〈
S2

1

〉
+ 1

2 〈S1〉2

Seff(ϕS) = S0 (ϕS)− 〈S1 (ϕF + ϕS)〉+
1

2

〈
S2

1 (ϕF + ϕS)
〉
− 1

2
〈S1 (ϕF + ϕS)〉2

a First order term

a.1 Integrating out the fast variables – thinning the degrees of freedom The first order term is

〈S1 (ϕF + ϕS)〉 =
M

a2

ˆ
d2x 〈cos (β (ϕS + ϕF ))〉F

=
1

2

M

a2

ˆ
d2x

∑
σ=±1

eiβσϕS
〈
eiβσϕF

〉
F

〈
eiβσϕF

〉
F

= e−
1
2β

2〈ϕ2
F 〉 ≡ e− 1

2β
2G(0) ≡ A(0)

G(0) = 〈ϕF (0)ϕF (0)〉 =
1

(2π)
2

Λ̂

Λ−dΛ=Λ/b

d2k
1

k2
=

1

2π

ˆ
dk

k
=

1

2π
dlogΛ ≡ 1

2π
dl

A(0) = e−
1
2β

2〈ϕ2
F 〉 = 1− β2

4π
dl

Thus to first order

Seff(ϕS) =
1

2

ˆ
(∇ϕS)

2
d2x+M

(
1− β2

4π
dl

)ˆ
d2x

a2
cos (βϕS)

a.2 Rescaling We apply

x′ = x/b⇒ q′ = bq

where b = 1
1−dl

which doesn’t change S0

Seff(ϕS) =
1

2

ˆ
(∇ϕS)

2
d2x′ +M

1 +

2− β2

4π︸︷︷︸
dim

 dl

 ˆ d2x′

a2
cos (βϕS)

M ′ = M (1 + (2− dim) dl)
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M ′ −M =
dM

dl
= (2− dim)M

M(L) = M0

(
L

a

)2−dim

M0 represents the fugacity. We can see that for dim < 2 the coefficient M grows and our approximation breaks. This
allows us to obtain a scale which is an effective screening length, since beyond it there are many vortices and our treatment
breaks down.

1 = M0

(
ξ+
a

)2−dim
⇒ ξ+ =

(
1
M0

)1/(2−dim)

a.

It is useful to remember that an operator with a large dimension is irrelevant in the renormalization group sense

a.3 Field rescaling We neglected the fact that ϕS also depends on x when we changed variables to x′. We can show
that to first order this is trivial

ϕ(x) = ζϕS (x′)

ϕq = ζϕq′

we choose ζ = 1 to keep S0 invariant. This means

ϕq =

ˆ
d2xeiqxϕS(x) = b2

ˆ
d2x′ϕS(x′)eiq

′x′ = b2ϕq

giving

ζ = b2

b Second order term

b.1 Integrating out the fast variables – thinning the degrees of freedom We now consider the O(M2) terms
in the cumulant expansion of Seff(ϕS):

2O(M2) =
〈
S2

1 (ϕF + ϕS)
〉
− 〈S1 (ϕF + ϕS)〉2

= M2

ˆ
d2xad

2xb
〈
cos (β (ϕaF + ϕaS)) cos

(
β
(
ϕbF + ϕbS

))〉
− 〈cos (β (ϕaF + ϕaS))〉

〈
cos
(
β
(
ϕbF + ϕbS

))〉

=
M2

4

ˆ
d2xad

2xb
∑

σa,σb=±1

(〈
eiσaβϕ

a
F eiσbβϕ

b
F

〉
−
〈
eiσaβϕ

a
F

〉〈
eiσbβϕ

b
F

〉)
eiσaβϕ

a
Seiσbβϕ

b
S .

The sum over σa, σb = ± gives four terms. The one with σa = σb = 1 (whose integrant we denote by Y1) is given by

M2

4

ˆ
d2xad

2xb

(〈
eiβϕ

a
F eiβϕ

b
F

〉
−
〈
eiβϕ

a
F

〉〈
eiβϕ

b
F

〉)
eiβϕ

a
Seiβϕ

b
S ≡ M2

4

ˆ
d2xad

2xbY1e
iβϕaSeiβϕ

b
S .

Since the free part of the action is quadratic we have
〈
e±iβϕ

a
F

〉
= 1±〈iβϕaF 〉−

β2

2

〈
ϕa2
F

〉
+ · · · = 1− β2

2

〈
ϕa2
F

〉
= e−

β2

2 〈ϕa2
F 〉.
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(An alternative way to prove this identity is to complete to a square and performing the Gaussian integration.) Using this
identity we find:

Y1 = e
− β

2

2

〈
(ϕaF+ϕbF )

2
〉
− e−

β2

2 〈ϕa2
F 〉e−

β2

2 〈ϕb2F 〉 = e−β
2〈ϕa2

F 〉
(
e−β

2〈ϕaFϕbF 〉 − 1
)

≡ e−β
2G(0)

(
e−β

2G(xa−xb) − 1
)
≡ A2 (0)

(
A2 (xa − xb)− 1

)
.

Averaging over the free field action S0 give the following expression for the function G:

G(xa − xb) =

Λ̂

Λ/b

eip(xa−xb)

(2π)
2
p2

d2p.

A similar term Y2 = Y1 when taking σa = σb = −1 and two other terms where the sign in the first exponent is flipped,
giving

O(M2) =
M2

4

ˆ
d2xad

2xb

[
A2 (0)

(
A2 (xa − xb)− 1

)
cos
(
β
(
ϕaS + ϕbS

))
+A2 (0)

(
1

A2 (xa − xb)
− 1

)
cos
(
β
(
ϕaS − ϕbS

))]
.

For x� b
Λ the oscillations in G(x) ∝

Λ́

Λ/b

eipx

p2 dp lead to G(x) ≈ 0⇒ A2(x) ≈ 1, and thus A2(x) 6= 1 only for small x < b/Λ.

Hence xa is very close to xb. Setting xa = xb the first term contains cos (2βϕaS) which is a vortex of charge 2 made by two
overlapping charge 1 vortices - even though we didn’t include such vortices in our partition function. In such situations
we say that the RG procedure generated a new term. For parameters near the KTB transition (large

The second will act like a derivative.

Defining z = xa+xb
2 , ξ = xa − xb, around xa = xb

O(M2) =
M2

2

ˆ
d2zd2ξ

[
A2 (0)

(
A2 (ξ)− 1

)
cos (2βϕS (z)) +A2 (0)

(
1

A2 (ξ)
− 1

)
cos (ξβ∂zϕS (z))

]
.

and since ξ is very small we can use the approximation cos (ξβ∂zϕS (z)) ≈ 1− 1
2 (ξβ∂zϕS (z))

2 to find:

O(M2) =
M2

2

ˆ
d2z

[
a1 cos (2βϕS (z)) + a3 −

a2β
2

2
(∇ϕS)

2

]
,

where
a1 =

ˆ
d2ξA2 (0)

(
A2 (ξ)− 1

)
, a2 = ξ2

ˆ
d2ξA2 (0)

(
1

A2 (ξ)
− 1

)
, a3 =

ˆ
d2ξA2 (0)

(
1

A2 (ξ)
− 1

)
.

In addition

G(ξ) =
1

(2π)
2

Λ̂

Λ/b

eipξcosθ

p2
pdpdθ =

1

2π
J0 (ξΛ)

dΛ

Λ

where J0 is a Bessel function. It features oscillations which are due to the fact that we used a sharp cutoff. Developing
the exponent in A,

a2 ≈ β2 1

2π

ˆ
d2ξJ0 (ξΛ)

dΛ

Λ︸︷︷︸
dl

≡ β2dlC

43



where C is a number. Carefully examine the last integral we see that it does not converge, it can be shown (we do not
show it here) that when the sharp cutoff is replaced by a soft one, the expression for C converges. This gives

O(M2) =
1

2
M2β4 (2C) dl (∇ϕS)

2
.

Gathering terms of order M also we have:

Seff =
1

2

ˆ
d2x

[(
1 +M2β42Cdl

)
(∇ϕS)

2
+M

(
1− β2

4π
dl

)
cos (βϕS) + a1M

2 cos (2βϕS) + a3

]
where the term ∝ a2 is irrelevent in the RG sense, and the term a3 is a normalization constant. The normalization
constant is not important as it will drop off in all the Gaussian averaging procedures.

b.2 Rescaling Rescaling the space x as in sub paragraph a.2 we obtain the equation:

M ′ = M

1−

 2︸︷︷︸
from rescaling of x

−β
2

4π

 dl


b.3 Field Rescaling Unlike the first order case the field rescaling here is not trivial. Defining

ϕnew =
√

1 +M2β42CdlϕS ≈
(
1 +M2β4Cdl

)
ϕS

β′ = β
(
1−M2β4Adl

)
So that eventually

Seff == N ′
ˆ
Dϕ(x)exp

−1

2

ˆ
(∇ϕ)2d2x︸ ︷︷ ︸

S0

+M ′
ˆ
d2x cos(β′ϕ)︸ ︷︷ ︸
S1


To complete the RG equation near the KTB transition we define β2

4π = 2 + x, y =
√

2M and get the RG equations as in
the real space approach in Eq. (13)

dy

dl
= −xy, dx

dl
= −y2. (14)

The sign change compared to the former renormalization is because now we go to smaller momenta vs. longer lengths.
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6 Introduction to Graphene

This chapter should be taught at the beginning of the course.
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7 The Quantum Hall Effect – This chapter is still under construction

A nice review of the quantum Hall Effect is given in [5] it includes discussions of Graphine as well.

7.1 Classical Hall Effect

Figure 11: The Hall effect in classical system, current is driven in the x direction and in the presence of magnetic field
the Lorentz force pushes electrons to the boundaries of the sample. This process continues until the electric field due to
the electrons accumulated at the boundaries cancels the Lorentz force

The classic Hall experiment is depicted in Fig. 11. In response to the electric Field Ex current Jx is flowing in the wire.
In addition due to the magnetic field B in the ẑ direction a Lorentz force deflect the electrons. The deflected electrons
are accumulated in the sample boundary and build up an electric field Ey that cancels the Lorentz force. Working in the
convention e = − |e| we find:

e

c
~v × ~B = −eEy.

Defining j in terms of the carrier density n as j = env we find:

B
env

c
× ẑ = −enEy ⇒ ~E = − B

enc
~J × ẑ,

which gives

Ey
Jx
≡ RB =

−B
enc

.

Hence, measuring the Hall voltage allows measuring the carrier density n and the sign of their charge. Notice that in the
absence of impurities the current flows in a direction that is perpendicular to both the the electric and the magnetic field
~J ∝ ~E × ~B.

If we add impurities, quantify their strength by the mean free collision time τ between them the EOM become:

m~̇v = e ~E +
e

c
~v × ~B − m~v

τ
⇒ ~J =

ne2

m
~E +

e

cm
~J × ~B − ~J/τ.

We solve the equation in the frequency space, with (i) ~̇J = iω ~J and (ii) the matrix relation between ~J and ~E

~E =

(
Ex
Ey

)
= ρ̂ ~J =

(
ρxx ρxy
ρyx ρyy

)(
Jx
Jy

)
we find:

ρ =

(
m
ne2τ (1 + iωτ) B

nec

− B
nec

m
ne2τ (1 + iωτ)

)
.
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Figure 12: the Hall cobductance σxy as a function of magnetic

Using the matrix relation demand careful examination of the boundary conditions, for example assuming that we apply
electric field ~E = Ex̂ in the presence of magnetic filed, ~B = Bẑ because current is not flowing in the y direction we will
obtain Ey = ρxyJx.

We can rearrange ρ̂ in the form:

ρ̂ =
1

σ0

(
1 + iωτ ωcτ
−ωcτ 1 + iωτ

)
,

where σ0 = ne2τ
m , ωc = eB

mc . Inversion of the resistivity matrix to the conductivity we have:

σ̂ (ω = 0) =
σ0(

1 + (ωcτ)
2
) ( 1 ωcτ

−ωcτ 1

)
−→
ωcτ�1

(
σ0

(ωcτ)2 −necB
nec
B

σ0

(ωcτ)2

)
. (15)

We note that for large ωcτ (large B) both the resistivity (ρxx and ρyy) and conductivity (σxx and σyy) on the diagonal are
negligible (with ω = 0) with respect to the Hall terms. This "wired"situation that both resistance and conductance are
small is special to the motion of electrons in strong magnetic field. To understand qualitatively the origin of this behavior
we note that the terms on the diagonal can be written as:

e2n

m

[
τ

1

(ωcτ)
2

]

giving

τeff =
1

ω2
cτ

From dimensional considerations we can define a diffusion constant. [D] = [lv] = v2τ = l2/τ with l typical step length
in a random motion and τ the typical time between steps. And hence (since the electrons move typically in the Fermi
velocity) we have
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D = v2
F τeff =

(vFωc)
2

τ
=
R2
c

τ
.

In strong magnetic field the typical step is Rc the cyclotron radius and the typical time between "hoping between circles" is
τ . We note the surprising fact that increasing the impurities and hence decreasing τ will actually increase the conductivity.
This can be explained by the fact that without impurities the electrons will simply perform circular orbits. The scattering
from the impurities will cause them to move in the direction of the external field.

7.2 Quantum Hall effect

The (Integer) Quantum Hall effect was discovered in 1980 by Klaus von Klitzing who measured the Hall resistance
in a two-dimensional electron gas, realized with a silicon metal-oxide-semiconductor field-effect transistor. The Hall
conductance was quantized of e2/hν with ν being an integer. Later, in 1982 Dan C. Tsui, Horst L. Stormer, and Art
C. Gossard observed conductance quantization at a fractional values ν = 1/3 more fraction were measured later on
ν = 2/5, 3/7, 2/3, 3/5, 1/5, 2/9, 3/13, 5/2, 12/5 . . . . The fractional values are observed originally and in most experiments
later on heterostructure of Aluminium Gallium Arsenide/ Gallium Arsenide. In the boundary between the two materials
a clean two dimensional electron gas is formed. Recently quantum and fractional Hall effect where also observed in
Graphene.
2

Two Nobel prises were awarded for the discoveries and the explanation of the Integer and fractional quantum Hall effect.
The purpose of this chapter is to highlight the experimental finding and to show how we use topological arguments to
explain the novel state of matter that give integer values for the Hall conductance.

The discussion here tries to exemplify the dialogue between theory and experiment. Experimental results give hints and
clues for the state of the system then clever arguments lead to additional conclusions about the nature of the system,
those are drawn even without having a microscopic theory.

7.2.1 Experimental observations

Fig. 13 depicts typical experimental observation of the quantum Hall effect, the main effects are:

1. Quantized values of the Hall resistance

The Hall resistance show plateaus at

ρxy =
h

e2ν
, ν ∈ N

With a stronger field there are also plateaus at fractional values

ν =
1

3
,

2

5
,

3

4
, ...

2. Effect of disorder It was found experimentally that for cleaner samples we have more plateaus however that
plateaus are narrower.

3. Vanishing longitudinal resistance Rxx
As we can see in the Fig. 13 at small magnetic field there are small oscillations in the resistance these are known
as the Shubnikov-deHaas oscillations, similar oscillations in the magnetization are deHaas van Alphen oscillations).
At stronger magnetic field when plateaus are developed in the Hall resistance Rxy the longitudinal resistance Rxx
is close to zero. Notice that due to the strong magnetic field, not surprisingly, the longitudinal conductance is also
very small. The temperature dependance of the resistance is not shown in Fig. 13, but it was found that it increases
exponentially with the temperature, i.e., σ ∼ e−T0/T .

2Notice that in a square 2D sample of thickness d and linear dimension Lx = Ly = L the resistance Rxx = ρ Lx
dLy

= ρ
d
.
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Figure 13: Here we plot the Hall resistance Rxy and the resistance Rxx In the classical Hall effect Rxx is constant and
Rxy depends linearly on the Magnetic field. As we see the experimental result are quite different, Rxx fluctuates with the
magnetic field and is zero at filling integer and fractional filling factor.

7.3 Basic explanation of the quantization effect

The Hamiltonian describing electrons moving in three dimensions in the presence of magnetic field is given in Landau’s
gauge by:

Ĥ =
−~2

2m

∂2

∂y2
+

1

2m
(~kx − eBy)

2
+ eExx+ U(x, y) +

k2
z

2m
− µ. (16)

In finite width samples (in the z direction) electrons can not move in the z direction hence kz = πnz/Lz is quantized. We
will assume henceforth that only the first sub-band with nz = 1 is occupied and absorb the energy k2

z/2m in the definition
of µ . The potential U(x, y) describes the effect of disorder – scattering of the electrons due to impurities. In principle,
we should include also interaction effects between the electrons. Microscopically, these interactions are responsible for the
formation of the fractional states.

The motion of the electrons in a strong electric field lead to the formation of Landau’s levels. Taking periodic boundary
conditions in the x direction, (having a Corbino geometry) we obtain a set of of Landau levels as follows. First choose a
convenient gauge ψ(x, y) = eikxφ(y) the Schrodinger equation become:

Ĥψ(x, y) = eikxx
[

1

2m
(~kx − eyB)

2
+

1

2m
∂2
y − µ

]
φ(y) (17)

with the periodic boundary condition in the x direction we have kx = 2π
L nx with nx an integer. Defining now:

ynx =
2π~
Be

nx =
l2B
Lx

nx; Bl2B ≡
h

e
= Φ0

we obtain
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Hψ (x, y) = eikxx
[
~ωc
2

(y − ynx)
2

+
1

2m
∂2
y − µ

]
φ(y) (18)

hence the Landau levels with energy E = ~ωc(nLan + 1/2) are centered around ynx .

From the requirement 0 < ynx < Ly we can find the degeneracy of each level:

0 < nx <
LxLy
l2B

=
LxLyB

Φ0
=

Φ

Φ0
.

Denoting N the total number of particle we can define also the filling factor:

ν =
number of electrons
degeneracy of LL

=
N

Φ/Φ0
=

Φ0

Φ/N
=

flux quantum
flux per electron

=
NΦ0

Φ
=
N/(LxLy)Φ0

Φ/(LxLy)
=
nΦ0

B
.

For example for ν = 2 we have exactly one flux quantum for two electrons, and the spin up and spin down levels of the
first Landau’s level (with nLan = 0) are filled. For ν = 1/3 we have 3 quantum fluxes per electron.

Semiclassically, we expect that near the edge of the sample the parabola will be effectively narrower (as one side is blocked
by the infinite potential of the sample edge) so that the energies of the Landau levels are higher near the edge.

Similarly we expect that smooth disorder (smooth on the scale of lB) will tend to change the Landau level energies in the
bulk of the sample. It can be shown (we do not explain it in details here) that states with energy at the center of the
Landau level are delocalized through out the sample while those away from the center are localized. These qualitative
explanations are summarized in the Fig. 15.

Figure 14: (a) Corbino geometry. (b) The nLan = 0, 1 Landau levels, in the presence of disorder the level is broaden, at
strong magnetic filed away from the Landau level center the state are localized. (Zeeman effect that split the level further
is not shown here). Near the edges of the sample we have extended states.

Having this rough picture in mind we can understand qualitatively the integer quantum Hall effect.

1. The first and most crucial observation of plateaus: As we increase the external magnetic field or decrease the electron
density by reducing the chemical potential the filling factor ν crosses integer values. Since the states between the
Landau levels are localized and can not conduct we observe conduction plateaus.

The fractional case is much more delicate and goes beyond the scope of this course.

2. Effect of disorder: An increase in the disorder will make the plateaus wider as more states between the Landau level
are localized and do not contribute to the conductance as we change the chemical potential.
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Interestingly from the third experimental observation, i.e., the exponential temperature dependance of the resistances we
can conclude that there us a gap in the system. This will lead us later on the a set of conclusions.

3. In the classical limit we saw that due to the matrix structure of the resistance both the conductance and the resistance
are small compared to the off diagonal terms. 3

Experimentally it is observed that both
ρxx
h/e2

∼ e−T0/T

and we expect that also the conductance will have similar exponential dependance on the temperature.

As we know the dissipative conductance is related to the rate W of absorbing external electro-magnetic field W ∼
~J ~E ∼ σE2. To calculate this rate we can use the standard Fermi golden rule:

W ∼
∑

initial states

e−εi/t

z

∑
final states

~ω |〈f |H ′|i〉|2 (δ (εf − εi − ω) + δ (εf − εi + ω)) ,

with H ′ presenting the interaction of the electrons in our sample with the external EM field. εi the energy of the
initial state and εf the energy of the final states. Since we are interested in the limit of ω = 0 we have to require
εf ∼ εi. If there is a gap in the system then the factor ∝ e−εi/T will yeild an exponential dependance in the
temperature.

7.4 Additional conclusions, based on the existence of a gap in the system

7.4.1 Edge states

Figure 15: (a) Semiclassically: in the bulk electrons move in circles and near the edge in skipping orbits. (b) When we
have a gap we find σxx = 0, then on the boundary separating σxy 6= 0 and σxy = 0 we must have an edge state.

Due to the exponential dependance on the temperature we expect that at zero temperature σxx ≈ 0 so that the electrons
move perpendicularly both to the electric field and to the magnetic field. We saw that

σxy =
νe2

h
, σxx = 0

and since the current is perpendicular to both the magnetic and electric field, if we look at an edge parallel to the electric
field we have a current towards the edge. As we reach the edge, since charge can not be accumulated on the edge, we
must have a current parallel to the edge.

3Notice that in thin sample the resistance is Rxx = ρxxLx/(Lyd) so that for a square sample with Lx = Ly the resistance R is equal to
the resistivity ρ/d. Similarly the conductance G is equal to the conductivity σ times the thickness d. We therefore usually do not distinguish
between conductivity and conductance (per square) or resistivity and resistance per square when discussing 2D systems.
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This can be explained semiclassically in terms of skipping orbits performed by electrons near the edge. As we already
so the motion of the electrons is perpendicular to both E and B the edge its self exsert an electric field on the electrons
perpendicular to the edge so that electron will move along the edge.

7.4.2 Fractional charges (Laughlin)

Figure 16: A change of the flux by φ0 does not change the spectrum but push charges from edge to edge.

Noting σxy = ν e
2

h we will show now (following an argument by Laughlin) that there are fractional charges in the system.
To do so we will use to important concepts:

1. The adiabatic principle: Assume that the system has a gap Eg for excitations above the (non degenerate) ground
state |Ψ (R(t))〉. When we change the parameters R(t) controlling the system at a slow rate Γ such that Eg � ~Γ
then the system will follow the ground state |Ψ (R(t))〉 (and will not be excited to a different state).

2. Gauge invariance: Byers and Yang (1961): showed using gauge invariance, that spectra of rings threaded by flux
are periodic in the flux with period of the flux quantum φ0 = h/e. The Byers and Yang theorem is valid also in the
presence of disorder and electron electron interaction.

Assuming we have a solenoid passing through the core of the system and we slowly (compared to the gap in the system)
increase the flux. This generates an electric field in the x̂ direction. (See Fig. 16) As there is a constant magnetic filed
perpendicular to the sample a Hall current will flow perpendicular to ~B and ~E, which will cause electrons to flow outward
towards the edge.

From gauge invariance, after changing the flux by a flux quantum φ0 we must return to the original spectrum. Hence the
total charge the transferred between the edges is:

∆Q =

ˆ
Iydt =

ˆ
J2πrdt = σxy

ˆ
2πrEdt = σxy

ˆ
∂Φ

∂t
dt = σxy∆Φ

Using δΦ = φ0 = h/e we obtain: ∆Q = ν e
2

h
h
e = νe

i.e. a fractional charge was transferred from edge to edge.
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Figure 17: A change of the flux adiabatically move the Landau states. At φ0 each state is replacing its neighbor position.

7.4.3 Quantization of Hall conductance in the integer case

In the presence of the flux the boundary condition on kx after Eq. (17) are modified so that eikxL = ei2πΦ(t)/φ0 which
gives:

kx(t) =
2π

L

(
n+

Φ(t)

φ0

)
.

Pictorially, the parabolas of the Landau levels are adiabatically moving in the y direction until for Φ(t) = φ each parabola
substitution the position of its neighbor. For the ν = 1 case each state was filled exactly by 1 electron so that in this
process 1 electron was transected from edge to edge. So that we have:

e = ∆Q =

ˆ
Iydt =

ˆ
J2πrdt = σxy

ˆ
2πrEdt = σxy

ˆ
∂Φ

∂t
dt = σxy∆Φ

hence for a change of one flux quantum

σxy =
e

Φ0
=
e2

h

7.4.4 Quantization of the Hall conductance and Chern numbers using Linear response

In this subsection we are following an argument by Thouless that lead to quantization of the Hall conductance. This
argument is very similar to Laughlin arguments mentioned above and also related to works by Berry (The Berry phase)
and Avron. It is based on a formalism that is called "The Linear Response" formalism.

in the y direction, see Fig. 20

In the presence of electric field the Hamiltonian of Eq. (16) is modified by adding a term

δH = eEx

where E is the applied electric field in the x direction. For E = 0 we must have

Jy =
〈

Ψ0|Ĵy|Ψ0

〉
= 0.

Here |Ψ0〉 is the many body ground state. We now assume that E is small and calculate the change in the current using
perturbation theory.

The first order perturbation theory (in the operator E x̂) for the ground state gives

δ |Ψ0〉 =
∑
m6=0

x̂0m

E0 − Em
|m〉 .
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Figure 18: This figure is taken from Thouless []

Writing it in a slightly different and compact form, that will simplify the notation later we have:

δ |Ψ0〉 = eE P
E − Ĥ

x̂ |Ψ0〉

= eE
∑
m

P
E − Ĥ

|m〉 〈m| x̂ |Ψ0〉 =
∑
m6=0

eE
E0 − Em

xm0


where P is a projection operator that projects out the ground state and E = E0.

Similarly we have for the bra part of the ground state:

δ 〈Ψ0| = eE 〈Ψ0| x̂
P

E − Ĥ
.

Combining the expressions we find:

〈Ψ| Ĵy |Ψ〉 = (〈Ψ0|+ δ 〈Ψ0|) Ĵy (|Ψ0〉+ δ |Ψ0〉)

= eE
(〈

Ψ0|Ĵy
P

E − Ĥ
x̂|Ψ0

〉
+

〈
Ψ0|x̂

P
E − Ĥ

Ĵy|Ψ0

〉)
. (19)

In addition we have the relation
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Ĵx = e
∂x̂

∂t
=
ei

~

[
Ĥ, x̂

]
⇒

−i~
e
Jx |Ψ0〉 =

[
Ĥ, x̂

]
|Ψ0〉 = (H − E) x̂ |Ψ0〉 ⇒

x̂ |Ψ0〉 =
i~
e

P
E − Ĥ

Jx |Ψ0〉 . (20)

Substituting Eq. (20) (and a similar expression for the bra term.) in Eq. (19) we obtain

Jy = −i~E

〈
Ψ0

∣∣∣∣∣∣∣Ĵy
P(

E − Ĥ
)2 Ĵx − Ĵx

P(
E − Ĥ

)2 Ĵy

∣∣∣∣∣∣∣Ψ0

〉
(21)

We can continue and express the current operators in a different form. Closing the two leads in each direction to form a
loop which allows to pass a flux through it, using the relation

Ĵ =
δH

δA
, (22)

and defining Φv as the flux through the loop in the plane perpendicular to ŷ and ΦJ as the flux in the loop in the plane
perpendicular to x̂ (see Fig. 20) we have

Ĵx =
∂H

∂Φv
, Ĵy =

∂H

∂ΦJ
.

Substituting in Eq. (21) we have:

σH (Φv,ΦJ) = i~

〈
Ψ0

∣∣∣∣∣∣∣
∂H

∂ΦJ

P(
E − Ĥ

)2

∂H

∂Φv
− ∂H

∂Φv

P(
E − Ĥ

)2

∂H

∂ΦJ

∣∣∣∣∣∣∣Ψ0

〉
.

We can further simplified the expression by noting that writing

H = H0 +
∂H

∂Φv
δΦv

we have
δ |Ψ〉 = δΦv

P
E −H

∂H

∂Φv
|Ψ0〉

giving ∣∣∣∣ ∂H∂Φv

〉
=

P
E −H

∂H

∂Φv
|ψ0〉

and hence
σH = i~

(〈
∂ψ0

∂Φv

∣∣∣∣∣∣∣∣ ∂ψ0

∂ΦJ

〉
−
〈
∂ψ0

∂ΦJ

∣∣∣∣∣∣∣∣ ∂ψ0

∂Φv

〉)
.

Since the result cannot depend on the flux we used to perturb the system and create an electric field (as long as there is
a gap in the spectrum), we can integrate over it and find:

σH = i~
( e
h

)2
h/cˆ

0

dΦJ

h/cˆ

0

dΦv

(〈
∂ψ0

∂Φv

∣∣∣∣∣∣∣∣ ∂ψ0

∂ΦJ

〉
−
〈
∂ψ0

∂ΦJ

∣∣∣∣∣∣∣∣ ∂ψ0

∂Φv

〉)
≡ i~

( e
h

)2
h/cˆ

0

dΦJ

h/cˆ

0

dΦvB.
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Due to the periodicity in φ0 = h/e (due to the gauge invariance) both in ΦV and ΦJ the space of the fluxes forms a torus.

We can define a Berry curvature B and Berry connection A which obey

∇×A = B

~A =
1

2

(〈
∂Ψ0

∂ΦJ

∣∣∣∣∣∣∣∣Ψ0

〉
−
〈
ψ0

∣∣∣∣∣∣∣∣∂Ψ0

∂ΦJ

〉
,

〈
∂ψ0

∂Φv

∣∣∣∣∣∣∣∣ψ0

〉
−
〈
ψ0

∣∣∣∣∣∣∣∣ ∂ψ0

∂Φv

〉)
.

Notice that ~A is in fact given by the gradient of the argument of the wave function indeed, if we write |Ψ0,ΦJ ,ΦV 〉 =
Ψ0,ΦJ ,ΦV ({xi} = rΦJ ,ΦV {xi}eiηΦJ ,ΦV

{xi}, with the set {xi} being the set of the location of all the particles we have
(suppressing the arguments in the middle terms):

i Im (〈∂Ψ0| |∂ΦΨ0〉) =
1

2
i

ˆ ∏
i

dxi Im
(
r′eiηre−iη + iη′r2eiηe−iη + cc

)
= i

ˆ ∏
i

dxi
∂η

∂Φ
= i

∂ 〈η〉
∂Φ

≡ i ∂η
∂Φ

hence

~A =

(
∂η

∂ΦJ
,
∂η

∂Φv

)
.

We now have to perform the integral. We use Stokes’ theorem to convert the integrals to ones over A.

ˆ
Bdv =

ˆ
∇×Adv =

˛
Ads

Since the integral is on a torus we have to be a bit careful.

Figure 19: The integration contour for the calculation of the Chern number

We first integrate on loops of ΦV at different values of ΦJ . This integral will give the flux through that slice.

˛
A (ΦJ + δΦJ) dΦv −

˛
A (ΦJ) dΦv = η (ΦJ + δΦJ)− η (ΦJ) =

∂η

∂ΦJ
δΦJ .
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And now it remain to integrate on the loop of ΦJ :

˛
∂η

∂ΦJ
dΦJ = η (2π)− η (0) = 2πn

The last equal sign is correct because η is a phase on a loop and mast return to its value mod 2π after the rotation so
that the wave function is unique.

Substituting in the expression for the conductance we find finally

σH =
e2

h
n

with n defined as the Chern number, which we have shown is an integer.

8 Graphene – Quantum Hall effect without constant magnetic field

Figure 20: Haldane’s Hamiltonian of Graphene with next nearest neighbor interactions finite flux in the shaded triangles
and opposite flux in the complementary triangles

In this chapter we will show that a non zero Chern number leading to σxy 6= 0 and to the presence of edge modes can be
obtain even when the average magnetic field is zero.

8.1 Preliminary notations

In Graphene the vectors connecting a site to its neighbors are

δ1 =
a

2

(
1,
√

3
)
, δ2 =

a

2

(
1,−
√

3
)
, δ3 = a (−1, 0) .

At points

K =
2π

3a

(
1,

1√
3

)
,K ′ =

2π

3a

(
1,− 1√

3

)
the two bands of the Graphene touch each other.

Following Haldane, PRL 61, 2015 (1988) we define a hopping Hamiltonian which includes next nearest neighbors interac-
tion:
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H = t1
∑
〈ij〉

c†i cj + t2
∑
〈〈ij〉〉

e−iνijφc†i cj +M
∑
i

εic
†
i ci (23)

with εi = the on site energy . In Graphene all εi are identical, since they are all carbon atoms, but in other examples,
like that of Boron Nitride where the A and B atoms are different the situation is modified. The gist of Haldane idea is
to study situations with an alternating magnetic field whose average is zero. For example a situation for which triangles
around the B atoms circling positive flux and the complementary triangles negative flux.

Formally, we can include the alternating magnetic field by adding phases to the second nearest neighbors hopping matrix
elements. For example we can choose νij in Eq. (23) to be:

νij = sign (δi × δj)

where δi, δj are the vectors between sites i and j and the site between them. This ensures that a loop of 3 sites which
contains a site gives a positive sign for ν while one that doesn’t gives a negative sign. Any other choice of phases consistent
with that condition is possible.

In Fourier space, choosing εA = 1, εB = −1 for the two sublattices we have:

H =
∑

c†kh(k)ckwith h(k) = ε(k)I + di(k) · σi (24)

ε(k) = 2t2 cosφ
∑
i

cos
(
k · δi

)

d1 = t1
∑
i

cos (k · δi) , d2 = t1
∑
i

sin (k · δi) , d3 = M − 2t2 sinφ

(∑
i

sin
(
k · δi

))

where δ1 = δ2 − δ3, δ2 = δ3 − δ1, δ3 = δ1 − δ2 are the vectors connecting the next nearest neighbors.

Few symmetry properties of the Hamiltonian are noticeable. To study them let us first analyze the consequences that
time-reversal has for Bloch Hamiltonians.
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Time reversal symmetry
For spinless particles, T leaves the on-site creation operators unchanged, (unlike the case for spinful particles). We have:

TcjT
−1 = cj

where we can add any orbital indices to the creation operators as long as the index is not spin.
Using these rules we then have in the Fourier space:

TcjT
−1 =

1√
N

∑
k

e−ikRjTckT
−1 =

1√
N

∑
k

e−ikRjTckT
−1

In the above, the Fourrier exponent was complex conjugated because of the action of the T operator on complex c numbers
is to complex conjugate them. Hence the action of the time-reversal operator on the annihilation operator of an electron
at momentum k just flips the sign of the momentum. In order to fulfill the condition TcjT−1 = cj we must have

TckT
−1 = c−k

this forms the rules for time reversal transformation of spin less particles in the momentum space.
We are now ready to explore the condition for time reversal of a Bloch Hamiltonian h(k). By definition in clean systems
we have:

H =
∑
ij

c†jhi−jci =
∑
k

c†kh(k)ck

The time reversal operation will be then:

THT−1 =
∑
k

c†−kTh(k)T−1c−k =
∑
k

c†−kh ∗ (k)c−k,

we therefore conclude that THT−1 will be identical to H, i.e. will be time reversal invariant when h ∗ (k) = h(−k).
Coming back to Haldane’s Hamiltonian in Eq, (24) we note that for the special case of φ = 0, π time reversal symmetry
is preserved.
Indeed at this point we have

ε(k)∗ = ε(k) = ε(−k)

di(k)∗ = di(k) = di(−k).

hence time reversal symmetry is preserved at these values of the flux.
In addition h(k) unchanged also under the inversion symmetry I

I : σxh(−k)σx = h(k)

In the discussion of the conductivity using the fluxes we use Eq. (25) for the definition of current when the momentum k
is a good quantum number the current can also be defined as:

Ĵ =
e

~
δH

δk
, (25)

The integration over the periodic fluxes is than substituted by an integration over a full Brillouin zone and we can also
write the conductivity as

σxy =
e2

h

ˆ

Full Brillouin Zone

dkxdkyFyx(k) (26)

Fxy =
∂A

∂kx
− ∂A

∂ky
(27)

Aj = −i
∑

Full bands

〈
α,~k

∣∣∣∣ ∂∂kj
∣∣∣∣α,~k〉 (28)
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where α is a band index. The Chern number is then given by:

Ch =
1

2π

ˆ

FBZ

dkxdkyFyx(k) = n (29)

Generally when h(k) is a 2× 2 matrix (as in Eq. (24)) its diagonalization gives:

E± = ε± d(k) = ε±
√
d2

1 + d2
2 + d2

3

ψ+ =
1√

d (d+ d3)

(
d3 + d
d1 − id2

)
, ψ− =

1√
2d (d+ d3)

(
d3 − d
d1 − id2

)
hence:

Aij = i
〈
ψ−|∂kj |ψ−

〉
= − 1

2d (d+ d3)
(d2∂jd1 − d1∂jd2) (30)

Fij =
1

2
εabcd̂a∂id̂b∂j d̂c (31)

8.2 Chern number in Haldane’s model and Obstruction of Stokes’ theorem

8.2.1 Obstruction of Stokes’ theorem

There is a nice topological interpretation for the integral of the k space. Due to the periodic boundary conditions the k
variables span a two dimensional torus T 2. On the other hand the unit vector d̂(kx, ky) is a point in the two dimensional
sphere S2.

The expression for the Chern number in Eq, (29) forms a mapping from the torus (k) space to the sphere (d) space. i.e.,
T 2 7→ S2.

It appears that the Berry curvature F is simply the Jacobian of this transformation, indeed according to the result of
Eq. (31) we have:

Fij =
1

2

∣∣∣∣∣∣
d̂1 d̂2 d̂3

∂kx d̂1 ∂kx d̂2 ∂kx d̂3

∂ky d̂1 ∂ky d̂2 ∂ky d̂3

∣∣∣∣∣∣ = sin θ

∣∣∣∣∣ ∂θ
∂kx

∂φ
∂kx

∂θ
∂ky

∂φ
∂ky

∣∣∣∣∣
in the last equation we used the standard spherical coordinate system

d1 = sin θ cosφ, d2 = sin θ sinφ, d3 = cos θ

The expression for the Chern number is now:

Ch =
1

4π

ˆ
∂

sin θdθdφ,

but we have to determine the boundaries ∂ of integration.

To do so we neglect the ε which will not change the eigen vectors then the Hamiltonian is:

h(~k) = ε(~kk) + σ · d(~k)→
(

cos θ sin θe−iφ

sin θeiφ − cos θ

)
and the lower energy solution is:

60



ψI =
1√

2d (d+ d3)

(
d3 − d
d1 − id2

)
→
(
−e−iφ sin θ

2

cos θ2

)
which isn’t defined at θ = 0. On the other hand we can multiply by a phase and have

ψII =

(
− sin θ

2

eiφ cos θ2

)
which isn’t defined at θ = π. Hence we can use each ψ only in the half sphere where it is well defined. We can then use
Stokes’ theorem to obtain that the integral over the sphere can be converted to two integrals over the respective Berry
connections of the two half spheres on the equator, giving:

1

4π

ˆ
cos θdφ =

1

4π

ˆ
(AI −AII) dl

where Aj = i 〈ψj |∇|ψj〉 is the Berry connection for the region where ψj is defined.

We can easily calculate AI and AII on the equator and and find

AI =
i

2

(
eiφ, 1

)
∂φ

(
−eiφ

1

)
= 1

and similarly

AII = −1

giving

Ch =
1

4π

ˆ
2dφ = 1

The conclusion of these procedure, known as the obstruction of stokes theorem, is the following: if the vector d of the
solution reaches both the north and the south poles of S2 the Chern number is 1. If on the other hand d span only the
north hemisphere then we can do the whole integration with one of the wave function shrink the loop of integration to a
point and the Chern number is zero.

8.2.2 Chern number in Haldane’s model

Coming back to Haldane’s model in Eq. (24) we find the following results

for φ = 0, d3(k) = M = const so clearly as we change k we will not get into the south pole and the Chern number is zero.

A more careful analysis of the dependance of ~d(k) on k (we will discuss that in the next section) shows that it is sufficient
to discuss the behavior of d3 near the special points K and K ′. At these points:

d3(K) = M − 3
√

3t2 sinφ, d3(K ′) = M + 3
√

3t2 sinφ

and we can use these values to see whether d reaches the south pole, which means we have non-zero Chern number. This
gives the phase diagram
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Figure 21: The Chern number for Haldane model

8.2.3 Chern number near a Dirac point

Developing the Hamiltonian around K,K ′ for the Haldane model in Eq. (24) we have:

H(k) = −3t2 cos (φ) +
3

2
t1 (kxσx + kyσy) +

(
M ∓ 3

√
3t2 sinφ

)
σz

+
9

4
t2 cos (φ)

(
k2
x + k2

y

)
+

9

4

√
3 sinφt2

(
k2
x + k2

y

)
σz (32)

where the ∓ is for K,K ′ respectively.

The linear part (divided by 3/2t2 with the relation (
(
M ∓ 3

√
3t2 sinφ

)
/(3/2t2) = m±) gives(

m± kx − iky
kx + iky −m±

)
= kxσ1 + kyσ2 +m±σ3

the Berry curvature near the massive Dirac point is given by

Fxy =
m

2 (k2 +m2)
3/2

So that we can easily calculate the Chern number:

Ch =
1

2π

ˆ
m

2 (k2 +m2)
3/2

2πkdk =
m3

(m2)
3/2

∞̂

0

dy

(1 + y)
3/2

=
sign (m)

2
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The Chern number depends on the sign of m, and in the phase diagram the lines in fig 21represent the values of M and
φ where m is 0 and changes sign across them.

Notice that the Chern number that we got from the the analysis of the massive dirac point is half integer. We prove
however that it has to be a n integer. That occurs because we did not treat properly the other parts of the spectrum.
The contribution of the other parts of the spectrum that must convert the Chern number to be an integer is called "the
contribution of spectator fermions". The change of the mass, however, at the dirac points give correctly the change of the
Chern number. it jumps by one when the mass change its sign.

In order to determine the contribution of the spectator fermions (that in principle could be positive or negative) we
examine the system in simple cases. In the so cold atomic limit when M →∞ we expect that system will not conduct at
all, as there is a large gap and the electrons are localized on the atomic level. Thus for large M we expect that Ch = 0.
The changes in the value of m gives the phase diagram of Fig. 21.

8.2.4 Explicit solution of edge mode in a massive Dirac spectrum

We show that a massive dirac spectrum may have a Chern number that is not zero. From our studies of the Hall effect
we expect that when the Chern number is not zero the system will have edge modes. Unlike the Hall effect the simple
interpretation in terms of skipping orbits on the edges does not exist here.

In this subsection we will construct an explicit solution of the edge modes: In order to do so we assume that we have a
semi infinite system for positive x and write H as:

H = Hx +Hy,

examine Eq. (32) we find

Hx =
(
C −Dk2

x

)
+
(
m−Bk2

x

)
σz +Akxσx

Hy = −Dk2
y −Bk2

yσz +Akyσy.

We want to solve this Hamiltonian on the edge of the model. We notice that the Dirac cone have a symmetry under
rotations around the x axis which allows us to set initially

ky = 0, Hy = 0

to assume that there is a solution at E = 0 and then treat Hy perturbatively. Then the Hamiltonian is:

(
C +D∂2

x +m+B∂2
x iA∂x

−iA∂x C +D∂2
x −m−B∂2

x

)
ψ0 = Eψ0.

We use an anzats

ψ0 = aeλx

with a being a two component vector. This yields

(
m+Bλ2

)
σza = −iσxaAλ,

multiplying by iσx we find

(
m+Bλ2

)
σya = aAλ.

The eigenvalues of σy are

a± =
1√
2

(
eiπ/4

∓e−iπ/4
)
, σya± = ±a±.
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Setting these in the equation we find

(
m+Bλ2

)
a± = ±Aλa±.

We have 2 quadratic equations with 4 solutions. 2 of them are

λ1,2 =
1

2B

(
A±

√
A2 − 4MB

)
(for the other two take A→ −A) thus the eigenvectors are

ψ0 =
(
aeλ1x + beλ2x

)
a+ +

(
ce−λ1x + de−λ2x

)
a−

We impose a boundary condition ψ(0) = 0 ⇒ b = −a, d = −c. The normalizability condition of the wave function will
prevent ψ from exploding at infinity.

If Re (λ1) > 0 and Re (λ2) < 0 or vice versa the normalization can’t be achieved without setting all coefficients to 0, hence
in this situation there is no solution.

However, if Re (λ1) < 0 and
sign(Re(λ1)) = sign(Re(λ2)),

which is satisfied if

√
A2 − 4MB < |A|

Then we have two options:
A/B < 0⇒ Re(λ1, λ2) < 0

A/B > 0⇒ Re(λ1, λ2) > 0

Giving solutions

ψ0 = a
(
eλ1x − eλ2x

)
a+, A/B < 0, Re(λ1, λ2) < 0

, c
(
e−λ1x − e−λ2x

)
a−, A/B > 0, Re(λ1, λ2) > 0

We found that we have a 1D edge state with a linear dispersion relation if we perturb around it in the y direction.

∆E = 〈ψ0|Hy|ψ0〉 → Aky

8.3 Topological insulators and Spin-orbit coupling, Kane and Mele Model (2005))

Given some magnetic field induced by movement in an electric field

−→
B = −

−→v
c
×
−→
E

We add a spin-orbit interaction (?sign)

Hso = −1

2
gµB
−→σ ·
−→
B ⇒ ~e

2m2c2
−→σ · −→p ×

−→
E

1

2
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where the 1
2 factor comes from an exact development of this term from the Dirac equation. In the case of the atom with

a radial field with term will be proportional to σ · L.

In matter SO coupling can be a significant effect due to the strong fields in the locality of ions, as opposed to freely
propagating fermions. We can write

Hso =
1

2m

{
e

c
−→p ·

(
~

4mc
−→σ ×

−→
E

)
+
e

c

(
~

4mc
−→σ ×

−→
E

)
· −→p
}

and identify
−→
A so ≡ ~

4mc
−→σ ×

−→
E .

The AB flux from a field passing through a ring of radius R is

Aθ =
Φ

2πR

If we want an electric field which decays in the same manner we can generate it with a charged wire. This will affect
different spin states in the opposite direction.

Where can such electric field arise? It is natural to assume that there will be an abundance of positive charge around the
ions giving an effective negative charge between them

(drawing of graphene with charge distribution)

This effect can be introduced by adding the following term to the Hamiltonian

iλR
∑
ij

c†i

(
~s · (~di × ~dj)

)
cj

With ~di(j) are in-plane vectors connecting the next nearest neighbor i, j through a common neighbor. Each band produces
two edge modes for the two spin states. These are protected from scattering off each other from time reversal symmetry
(there is no magnetic field in the problem). However, such states from different bands can scatter off each other which
usually destroys the conductance which can be produced by them.
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