MEAN-FIELD GAP EQUATION

In this supplement we will obtain the self-consistent mean-field gap equation for the case in-which the gap function depends on frequency. To obtain the mean-field gap equation we consider a system of fermions Fermions with an attractive interaction g (see tutorial \#4) and decouple it using the HS transformation into the BCS channel

$$
\begin{align*}
& S_{H S}=\int \frac{d \tau d^{d} x}{(2 \pi)^{d+1}}[\sum_{s=\uparrow, \downarrow} \bar{\psi}_{s}(\boldsymbol{x}, \tau)\left(\partial_{\tau}-\frac{\nabla^{2}}{2 m}-\mu\right) \psi_{s}(\boldsymbol{x}, \tau) \tag{1}\\
&\left.+\Delta(\boldsymbol{x}, \tau) \bar{\psi}_{\uparrow}(\boldsymbol{x}, \tau) \bar{\psi}_{\downarrow}(\boldsymbol{x}, \tau)+\bar{\Delta}(\boldsymbol{x}, \tau) \psi_{\downarrow}(\boldsymbol{x}, \tau) \psi_{\uparrow}(\boldsymbol{x}, \tau)-\frac{|\Delta(\boldsymbol{x}, \tau)|^{2}}{g}\right] \\
&=\int \frac{d \tau d^{d} x}{(2 \pi)^{d+1}}\left[\bar{\Psi}(\boldsymbol{x}, \tau) \mathcal{G}^{-1} \Psi(\boldsymbol{x}, \tau)-\frac{|\Delta(\boldsymbol{x}, \tau)|^{2}}{g}+\text { const }\right]
\end{align*}
$$

where $\bar{\Psi}=\left(\bar{\psi}_{\uparrow}, \psi_{\downarrow}\right)$ and

$$
\mathcal{G}^{-1}=\left(\begin{array}{cc}
\partial_{\tau}-\frac{\nabla^{2}}{2 m}-\mu & \Delta(\boldsymbol{x}, \tau) \\
\bar{\Delta}(\boldsymbol{x}, \tau) & \partial_{\tau}+\frac{\nabla^{2}}{2 m}+\mu
\end{array}\right)
$$

The mean-field solution of this action is equivalent to seeking it's saddle point, which essentially means neglecting all of the quantum fluctuation effects. To find the saddle point solution for $\Delta(\boldsymbol{x}, \tau)$ we take a variation of the action with respect to $\bar{\Delta}(\boldsymbol{x}, \tau)$ and average over Fermi feilds.

$$
\frac{\delta S_{H S}}{\delta \bar{\Delta}}=-\frac{1}{g} \Delta(\boldsymbol{x}, \tau)+\left\langle\psi_{\uparrow}(\boldsymbol{x}, \tau) \psi_{\downarrow}(\boldsymbol{x}, \tau)\right\rangle=0
$$

which gives

$$
\begin{equation*}
\Delta(\boldsymbol{x}, \tau)=g(\tau)\left\langle\psi_{\uparrow}(\boldsymbol{x}, \tau) \psi_{\downarrow}(\boldsymbol{x}, \tau)\right\rangle=g(\tau) F(\boldsymbol{x}, \tau) \tag{2}
\end{equation*}
$$

where the expectation value, which we have denoted by F, is known as the anomalous Green's function. To obtain an expression for F let's look at the definition of the Green's function

$$
\mathcal{G}(\boldsymbol{x}, \tau)=\left(\begin{array}{cc}
G^{e}(\boldsymbol{x}, \tau) & F(\boldsymbol{x}, \tau) \\
\bar{F}(\boldsymbol{x}, \tau) & G^{h}(\boldsymbol{x}, \tau)
\end{array}\right)=\left(\begin{array}{cc}
\left\langle\bar{\psi}_{\uparrow} \psi_{\uparrow}\right\rangle & \left\langle\psi_{\uparrow} \psi_{\downarrow}\right\rangle \\
\left\langle\bar{\psi}_{\downarrow} \bar{\psi}_{\uparrow}\right\rangle & \left\langle\psi_{\downarrow} \bar{\psi}_{\downarrow}\right\rangle
\end{array}\right)
$$

which is defined by the operatorial relation $\mathcal{G}^{-1} \mathcal{G}=\mathbb{1}$ or more explicitly

$$
\left(\begin{array}{cc}
\partial_{\tau}-\frac{\nabla^{2}}{2 m}-\mu & \Delta(\boldsymbol{x}, \tau) \tag{3}\\
\bar{\Delta}(\boldsymbol{x}, \tau) & \partial_{\tau}+\frac{\nabla^{2}}{2 m}+\mu
\end{array}\right)\left(\begin{array}{cc}
G^{e}(\boldsymbol{x}, \tau) & F(\boldsymbol{x}, \tau) \\
\bar{F}(\boldsymbol{x}, \tau) & G^{h}(\boldsymbol{x}, \tau)
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

To shorten notations we will from now on omit the \boldsymbol{x} and τ indices (Keep in mind that the multiplications in this matrix equation are matrix multiplications in the space of τ and \boldsymbol{x}.). The equation above gives us the identities

$$
\begin{align*}
& \left(\partial_{\tau}-\frac{\nabla^{2}}{2 m}-\mu\right) F+\Delta G^{h}=0 \tag{4}\\
& \bar{\Delta} F+\left(\partial_{\tau}+\frac{\nabla^{2}}{2 m}+\mu\right) G^{h}=1 \tag{5}
\end{align*}
$$

Solving for F we obtain

$$
\begin{align*}
& {\left[\bar{\Delta}-\left(\partial_{\tau}+\frac{\nabla^{2}}{2 m}+\mu\right) \Delta^{-1}\left(\partial_{\tau}-\frac{\nabla^{2}}{2 m}-\mu\right)\right] F=1 \rightarrow} \tag{6}\\
& F=\left[|\Delta|^{2}-\Delta\left(\partial_{\tau}+\frac{\nabla^{2}}{2 m}+\mu\right) \Delta^{-1}\left(\partial_{\tau}-\frac{\nabla^{2}}{2 m}-\mu\right)\right]^{-1} \Delta
\end{align*}
$$

Using (2) we obtain the desired result, a closed equation for the gap

$$
\begin{equation*}
\Delta=g\left[|\Delta|^{2}-\Delta\left(\partial_{\tau}+\frac{\nabla^{2}}{2 m}+\mu\right) \Delta^{-1}\left(\partial_{\tau}-\frac{\nabla^{2}}{2 m}-\mu\right)\right]^{-1} \Delta \tag{7}
\end{equation*}
$$

Generally, this equation is hard to solve. However, it can greatly simplify if Δ is rather flat for times longer than $t_{D} \sim 1 / \omega_{D}$ and varies slowly in space. In this case we can neglect the spatial and temporal dependance of Δ in the denominator. The idea is that $\Delta \ll \omega_{D}$ such that for frequencies of the order of ω_{D} the gap Δ is just a small correction, and thus it can be substituted by Δ_{0} which is it's value at $\omega=0$. Equation (7) assumes the form

$$
\begin{equation*}
\Delta(\boldsymbol{x}, \tau)=g(\tau) \frac{1}{\left|\Delta_{0}\right|^{2}-\left(\partial_{\tau}+\frac{\nabla^{2}}{2 m}+\mu\right)\left(\partial_{\tau}-\frac{\nabla^{2}}{2 m}-\mu\right)} \Delta(\boldsymbol{x}, \tau) \tag{8}
\end{equation*}
$$

To solve, we transform to Matsubara frequencies and momentum space

$$
\begin{equation*}
\Delta(\omega)=-\frac{1}{\beta \Omega} \sum_{\omega} \sum_{\boldsymbol{k}} \frac{g(\omega-\nu) \Delta(\nu)}{\nu^{2}+\xi_{\boldsymbol{k}}^{2}+\left|\Delta_{0}\right|^{2}} \tag{9}
\end{equation*}
$$

where ν and ω are bosonic and fermionic Matsubara frequencies, $\xi=k^{2} / 2 m-\mu, \Omega$ is the volume of the system and we have used the convolution theorem. Notice that we have taken g (and also Δ) to be a function of time but independent on space. This mimics a local interaction with retardation. We will demonstrate the retardation effect in the exercise.

