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Chapter 1

Tutorial #1 - many-body
path-integral formalism and the
Hubbard-Stratonovich
transformation

1.1 References for this tutorial

Altland & Simons Chapter 4 & 6.
Mahan

1.2 Introduction

In this tutorial we have two objectives: (i) Imaginary time coherent state
path integral formalism - to prove the identity (1.9). The motivation will
be to show that quantum averages of many-body systems in thermal equi-
librium can be computed using Feynman’s path integral formalism. (ii)
The Hubbard-Stratonovich transformation - To provide a rigors formalism
in which the phenomenological Ginzburg-Landau (GL) theory can be related
to it’s underlying microscopic theory theory. Here the motivation is obvious.

1.3 (i) Coherent-state path-integral in imag-

inary time

Before getting to the path integral itself let us quickly go over a few basic
properties of coherent states. A coherent state is an eigenstate of an annihi-
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lation operator a

|ψ〉 ≡ eζψa
†|0〉 (1.1)

where ζ = 1 (ζ = −1) for Bosons (Fermions).

1.3.1 c-numbers

In the simpler case a describes a bosonic degree of freedom and ψ is simply
a c-number. We will make use of three basic identities, first the overlap
between two coherent states

〈ψ1|ψ2〉 = eψ̄1ψ2 (1.2)

The second is the resolution of identity which follows directly from (1.2)

1 =

∫
dψ̄dψ e−ψ̄ψ |ψ〉〈ψ| (1.3)

Generally ψ is a vector with a discrete set of components ψi corresponding
to the underlying Fock space. Thus it’s continuum limit will be a field, for
example ψ(x). Additionally, ψ̄ψ ≡

∑
i ψ̄iψi and dψ̄dψ ≡

∏
i
dψ̄idψi
π

. Finally,
the third identity is the Gaussian integral of the complex variables ψ and ψ̄∫

dψ̄dψ e−ψ̄Aψ =
1

|A|
(1.4)

where A is a matrix with a positive definite Hermitian part.

1.3.2 Grassmann numbers

If the operator a describes a fermionic excitation things become a bit more
complected. This is because the eigen value ψ can not be taken to be an
ordinary complex number (it is easy to show that if the ai’s anti-commute
amongst themselves and ψi are c-numbers then 〈ψ|aiaj|ψ〉 = 0 directly fol-
lows). To make sense we need special numbers that anti-commute, these are
known as Grassmann numbers:

ψiψj = −ψjψi (1.5)

The operation of integration and derivation with these numbers are defined
as follows ∫

dψ = 0 ;

∫
dψ ψ = 1 (1.6)
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and

∂ψ ψ = 1 (1.7)

The overlap between two coherent states and the resolution of identity remain
in the form of (1.2) and (1.3). The Gaussian integral on the other hand is
significantly different ∫

dψ̄dψ e−ψ̄Aψ = |A| (1.8)

where A can be any matrix. Exercise: use (1.5) and (1.6) to prove (1.8).

1.4 Imaginary-time many-body path-integrals

In what follows we will prove the following identity

Z = Tre−β(Ĥ−µN̂) =

∫
D[ψ, ψ̄]e−

∫ β
0 dτ(ψ̄∂τψ+H[ψ̄,ψ]−µN [ψ̄,ψ]) (1.9)

where H and N are the Hamiltonian and particle number respectively and
ψ, ψ̄ are c-numbers (Grassmann variables) in the case that the particles have
Bosonic (Fermionic) mutual statistics. The boundary conditions of this path
integral is ψ(0) = ζψ(β) and ψ̄(0) = ζψ̄(β). As mentioned above, our
motivation will be computing expectation values of quantum many-body
systems in thermal equilibrium, for example

〈Â〉 =
1

Z

∫
D[ψ, ψ̄]A[ψ, ψ̄]e−

∫ β
0 dτ(ψ̄∂τψ+H[ψ̄,ψ]−µN [ψ̄,ψ]) (1.10)

Question: why did we choose a coherent state path integral? and not say a
real space or momentum path integral.

Let start with the definition of the trace

Z = Tre−β(Ĥ−µN̂) =
∑
n

〈n|e−β(Ĥ−µN̂)|n〉 (1.11)

Notice that each term in this sum is the probability amplitude of finding the
the system at the same Fock state it started in, i.e. |n〉, after a time t = i~β,
which, as you know, can be casted to a Feynman path integral. In the first
step we will want to ”get rid” of the summation over n, to do so we insert
the resolution of identity (1.3) into equation (1.11)

Z =

∫
dψ̄dψ e−ψ̄ψ

∑
n

〈n|ψ〉〈ψ|e−β(Ĥ−µN̂)|n〉 (1.12)
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We can sum over n using the resolution of identity 1 =
∑

n |n〉〈n| but we
first need to commute 〈n|ψ〉 with another. In the case of bosonic particles
this is just a number and it commutes with anything. In the case of fermions
it is a Grassmann number and therefore collects a minus sign which can be
absorbed into the coherent state

Z =
1

π

∫
dψ̄dψ e−ψ̄ψ 〈ζψ|e−β(Ĥ−µN̂)|ψ〉 (1.13)

Now let us continue to the second step: we divide the imaginary-time evolu-
tion operator into M small steps

e−β(Ĥ−µN̂) =
[
e−δ(Ĥ−µN̂)

]M
(1.14)

where δ = β/M . In the third step we insert M resolutions of identity in the
expectation value in equation (1.13)

〈ζψ|[e−δ(Ĥ−µN̂)]M |ψ〉 =

∫ M∏
m=1

dψ̄mdψme−
∑
m ψ̄mψm× (1.15)

〈ζψ|ψ1〉〈ψ1|e−δ(Ĥ−µN̂)|ψ2〉〈ψ2|e−δ(Ĥ−µN̂)|ψ3〉〈ψ3|...|ψM〉〈ψM |e−δ(Ĥ−µN̂)|ψ〉

=

∫
ψ0=ζψM ;ψ̄0=ζψ̄M

M∏
m=1

dψ̄mdψme
ψ̄0ψ0−δ

∑M
m=0

[(
ψ̄m−ψ̄m+1

δ

)
ψm+H[ψ̄m,ψm+1]−µN [ψ̄m,ψm+1]

]

where we have denoted ψ0 = ζψM+1 = ψ. Now if we insert this expression
in (1.13) we get

Z =

∫
ψ0=ζψM ;ψ̄0=ζψ̄M

M∏
m=0

dψ̄mdψme
−δ
∑M
m=0

[(
ψ̄m−ψ̄m+1

δ

)
ψm+H[ψ̄m,ψm+1]−µN [ψ̄m,ψm+1]

]

(1.16)
Finally, the fourth step, we take M →∞ and obtain (1.9),

Z =

∫
D[ψ, ψ̄]e−

∫ β
0 dτ(ψ̄∂τψ+H[ψ̄,ψ]−µN [ψ̄,ψ]) (1.17)

where

D[ψ̄, ψ] ≡ lim
M→∞

M∏
m=0

dψ̄mψm (1.18)

It is very important to note that by neglecting the time derivative term we
resume to the classical integration over configurations of the fields ψ and ψ̄.
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Indeed the time derivative term takes into account the effects of the non-
trivial (anti-)commutation between ai and a†i which have now been casted to
fields ψi and ψ̄i which always have trivial (anti-)commutation relations.

To compute path integrals we usually transform to the Fourier basis where
the derivative operators are diagonal. This procedure applies also for the
imaginary time

ψ(τ) =
1√
β

∑
ν

ψ(ν)e−iντ (1.19)

in which case the action takes the form

S =
1

β

∑
n

(
−iνψ̄ψ +H[ψ̄, ψ]− µN [ψ̄, ψ]

)
(1.20)

To obey the boundary conditions ψ(0) = ζψ(β) we choose the following
frequencies in the wave functions e−iντ

νn =

{ 2nπ
β

Bosons
(2n+1)π

β
Fermions

(1.21)

These imaginary-time frequencies are known as Matsubara frequencies. Sum-
ming over them is a whole story to itself which will not be discussed in this
course. I will only state the identity

ζ

β

∑
n

1

−iνn + x
=

{
nB(x) Bosons
nF (x) Fermions

(1.22)

where nB(x) (nF (x)) is the Bose (Fermi) distribution function at temperature
β−1. I will also note that in the limit of zero temperature (β → ∞) the
sum becomes a simple integral 1

β

∑
νn
→
∫∞
−∞

dν
2π

. Students that wish to
understand how to perform these sums should refer to Altland & Simons
pages 169-172 or the book by Mahan.

1.5 The Hubbard-Stratonovich transformation

In this tutorial we will learn a general method to relate a Ginzburg-Landau
theory to the microscopic theory that underlies it. For example let us consider
the GL theory of a ferromagnet

FGL =

∫
d3x

[
−αm∇2m+ am2 + βm4

]
(1.23)

Here, if a < 0 a transition to a ferromagnetic state may occur.
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To see how to relate this theory to an underlying microscopic theory let
us consider an interacting model of fermions

Z =

∫
D[ψ̄, ψ]e−S (1.24)

S =

∫ β

0

dτd3x

[∑
s=↑↓

ψ̄s

(
∂τ −

∇2

2m
− µ

)
ψs + g ψ̄↑ψ̄↓ψ↓ψ↑

]
= (1.25)

Notice that the local interaction may reorganized in the following manner

ψ̄↑(x)ψ̄↓(x)ψ↓(x)ψ↑(x) = −s(x) · s(x) (1.26)

where s(x) = 1
2
ψ̄sσss′ψs′ and thus the action is equivalently given by

S =

∫ β

0

dτd3x

[∑
s=↑↓

ψ̄s

(
∂τ −

∇2

2m
− µ

)
ψs − gs2

]
= (1.27)

Now we will employ the Hubbard-Stratonivich transformation which relies
on the following identity∫

D[m] exp

[
−
∫ β

0

dτ

∫
d3x

(
m2 − 2m · s

)]
(1.28)

=

∫
D[m] exp

[
−
∫ β

0

dτ

∫
d3x|m− s|2

]
︸ ︷︷ ︸

N

exp

[∫ β

0

dτ

∫
d3x s2

]

= N exp

[∫ β

0

dτ

∫
d3x s2

]
Thus, equation (1.24) may be equivalently written as follows

Z =
1

N

∫
D[ψ̄, ψ,m]e−SHS (1.29)

where

SHS =

∫ β

0

dτ

∫
d3x

[∑
s=↑↓

ψ̄s

(
∂τ −

∇2

2m
− µ

)
ψs − 2gm · s+ gm2

]
(1.30)

Notice that the action above resembles a mean-field decoupling of the
interaction term. To see this substitute s = M + δs in the interaction term,
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where M is the mean-field and δs = s −M , and neglect terms of order
O(δs2)

s · s = (M + δs)(M + δs) ≈ 2M · s−M2

However, there is a crucial difference: M is a mean-field with a single value
whereas the field m fluctuates and we integrate over all possible paths of
this field. Actually, equation (1.29) is exact, we made no approximations in
deriving it. As you will see in the exercise the saddle point approximation of
this theory gives the self-consistent mean-field approximation obtained from
a variational method.

Finally, let us discuss how we can use the HS theory (1.29) to obtain an
effective theory for the ”magnetization” field m. The standard way is to
integrate over the Fermions. First let us rewrite the theory as follows

SHS =

∫ β

0

dτ

∫
d3x

∑
ss′

ψ̄s


(
∂τ −

∇2

2m
− µ

)
δss′︸ ︷︷ ︸

G−1

− gm · σss′︸ ︷︷ ︸
X

ψ′s + gm2


(1.31)

Therefore formally the fermionic part of the path integral has the form∫
dψ̄dψ e−ψ̄Aψ (1.32)

where A = G−1 −X[m]. Thus using (1.8) we can perform the integral over
the fermions which gives

Z =
1

N

∫
D[m]|A| e−gm2

=
1

N

∫
D[m] e−gm

2+log |A| =
1

N

∫
D[m] e−gm

2+Tr logA

(1.33)
The trace of the logarithm can be expanded perturbtaivly in small X in the
following manner:

Tr logA = Tr log(G−1 −X) = Tr log G−1 + Tr log(1− GX)

= Tr log G−1 + Tr

[
−GX +

1

2
GXGX + ...

]
Now since X is linear in m each order gives the corresponding order in
the Ginzburg-Landau theory. For example the second order term gives the
quadratic term (at zero temperature)

1

2
Tr[GXGX] =

g2

βΩ

∑
qω

Π(q, ω)mq(ω)m−q(−ω) (1.34)
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where

Π(ω, q) =
1

βΩ

∑
kν

1

−iν + k2

2m
− µ

1

−i(ν + ω) + (k+q)2

2m
− µ

(1.35)

and we have used the fact that G is diagonal in spin space and that the Pauli
matrices are traceless. The parameters of (1.23) are then given by

a = Π(0, 0) (1.36)

and

α =
1

2

(
∂2Π(q, 0)

∂q

)
q=0

(1.37)

Of course β will derive from the higher order term with four powers of X.
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