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1. Anderson-Morel gap mechanism - The objective of this question is to resolve one of 

the biggest questions in conventional superconductivity. Namely, how do two 

electrons which repel one another very strongly on the microscopic scale end up 

forming a bound-state at low energies? In class we have included only attractive 

interactions at a thin shell around the Fermi-level. Here we will generalize the 

analysis to include the fact that at high frequencies the interaction is repulsive.  To 

do so we will use the generalized gap equation (read the supplement to this exercise 

sheet. Note that here we consider a frequency dependent local interaction 

𝑔(𝒌, 𝜔) = 𝑔(𝜔)): 

Δ(𝜔) = −  ∫ 𝑑𝑧
𝜇

−𝜇

∫ 𝑑𝜉
Γ(𝜔 − 𝑧)Δ(𝑧)

𝑧2 + 𝜉2 + |Δ(z)|2
 

where 

 

 

 Γ(𝜔) = {
𝜈(𝑈 − 𝑔0)   , |𝜔| < 𝜔𝐷

𝜈 𝑈                , |𝜔| > 𝜔𝐷
  

 

 

is a frequency dependent (dimensionless) interaction (it is dimensionless 

because we have absorbed a density of states 𝜈 when transforming from an 

integration over k to integration over  ). Here, 𝑈 models the repulsive Coulomb 

interaction, and 𝑔0 models the attractive phonon-mediated interaction that 

appears only for 𝜔 < 𝜔𝐷 due to retardation effects (here we have chosen a 

notation where all couplings are positive). 𝜉 is the fermion dispersion with 

constant density of states 𝜈.  

Γ(𝜔)/𝜈 

𝜔 
𝜔𝐷 

𝑈 
𝑈 − 𝑔0 



We will seek a solution for the gap which has the form 

Δ(𝜔) = {
Δ0, 𝜔 ≪ 𝜔𝐷

−Δ1, 𝜔 ≫ 𝜔𝐷
 

where Δ0 > 0 and Δ1 > 0 are to be determined from the gap equation. 

a. Obtain the following equations for Δ0 and Δ1  

Δ0 = (𝑔0 − 𝑈)Δ0 log
𝜔𝐷

Δ0
+ 𝑈Δ1 log

𝜇

𝜔𝐷
 

Δ1 = −𝑈Δ0 log
𝜔𝐷

Δ0
+ 𝑈Δ1 log

𝜇

𝜔𝐷
 

The first (second) equation is obtained by taking  𝜔 ≪ 𝜔𝐷 (𝜔 ≫ 𝜔𝐷).  

b. Solve the equations. Show that  

*

1

0

g

De


   

what is *g ?  Explain your result physically. The realistic regime is where 

𝑈 ≫ 𝑔0. Is there a solution in this regime? Discuss the limits of 

superconductivity. 

c. Now let us obtain the same result (qualitatively) from RG. First, read the 

derivation of the RG equations in pages 115-118 of “Quantum Field 

Theory in Condensed Matter Physics” by Naoto Nagaosa. Use the 

resulting RG equation  

𝑑�̃�

𝑑 log 𝐷 
= 𝜈 �̃�2 

to determine the gap (or equivalently, the critical temperature). First, 

write this equation in a dimensionless form using 𝑔 = 𝑁(0)�̃�. Next, 

Integrate the equation from 𝜇 down to 𝜔𝐷 with a repulsive interaction 

𝑔(𝜇) = 𝑔𝑒. Now add a negative contribution 𝑔𝑝ℎ and then continue the 

integration from 𝜔𝐷 down to the some cutoff 𝑘𝐵𝑇𝑐 where 𝑔(𝑘𝐵𝑇𝑐) is of 

order 1 and the RG equation loses its validity. The scale where the RG 

equations lose their validity can be interpreted as the gap.  

 

2. The XY – sine-Gordon duality and the BKT critical behavior 



In this question you are asked to show the equivalence between the XY model to 

the sine-Gordon model: 

𝑆𝑆𝐺 =
𝑐

2
∫ 𝑑2𝑥  (∇𝜃)2 − 𝑔 ∫ 𝑑2𝑥 cos 𝜃. 

Where 𝜃 is a non-compact real scalar field. 

a. Expand 𝑍𝑆𝐺 = ∫ 𝐷𝜃 𝑒−𝑆𝑆𝐺 in powers of 𝑔 explicitly and show that it has the 

form  

𝑍𝑆𝐺 = ∑
(

𝑔
2)

2𝑛

(𝑛!)2
∏ ∫ 𝑑2𝑥𝑗 〈exp (𝑖 ∑(−1)𝑗𝜃(𝑥𝑗)

2𝑛

𝑗=1

)〉 

2𝑛

𝑗=1

∞

𝑛=0

 

Where the 〈〉 brackets denote averaging with the free part  𝑆0 =
𝑐

2
∫ 𝑑2𝑥  (∇𝜃)2. 

Hint: recall that the free part is transnationally invariant such 

that 〈(∏ 𝑒𝑖𝜃(𝑥𝑎)𝑁
𝑎=1 )(∏ 𝑒−𝑖𝜃(𝑥𝑏)𝑁+𝑀

𝑏=𝑁+1 )〉 is non-zero only for 𝑁 = 𝑀. 

b. Using the properties of the Gaussian average, namely  

〈𝑒𝐴〉 = 𝑒
1
2

〈𝐴2〉 

for 𝐴 which is a linear combination of the field 𝜃, and the following identity 

〈(𝜃(𝑥) − 𝜃(𝑥′))
2

〉 =
𝐶(𝑥 − 𝑥′)

𝑐
=

1

2𝜋𝑐
log |

𝑥 − 𝑥′

𝜉
| , 

show that the partition function may be written as follows 

  

𝑍𝑆𝐺 = ∑
(

𝑔
2)

2𝑛

(𝑛!)2
∏ ∫ 𝑑2𝑥𝑗 exp (

1

2𝑐
∑ 𝜎𝑖𝜎𝑗𝐶(𝑥𝑖 − 𝑥𝑗)

2𝑛

𝑗<𝑖

) 

2𝑛

𝑗=1

 

∞

𝑛=0

 

where 𝜎𝑖 denotes the sign of the vortex and 𝜉 is a short length cutoff. This is 

exactly the partition function of the Coulomb gas obtained in class! 

c. Repeat the derivation of the RG differential equations near the BKT 

transition, namely 

𝑑𝑦

𝑑𝑙
= 𝑥𝑦 ;  

𝑑𝑥

𝑑𝑙
= 𝑦2 

What are 𝑥 and 𝑦 in terms of 𝑐 and 𝑔? ( Here 𝑙 = log
𝑟

𝜉
 )  



d. Use the above equations to determine the screening length  𝜉+ on the 

disordered side close to the transition. Do this by estimating the value of the 

running parameter 𝑙 at which 𝑥 and 𝑦 reach order 1. Explain physically why 

  is the screening length.  

e. Use the scaling argument to explain why the singular part of the full action 

𝑆 =
1

2
∫ 𝑑2𝑥 [−𝛼|𝜓|2 + 𝛽|𝜓|4 + 𝐽 (∇ψ)2] 

behaves like 𝑆 ∼
1

𝜉2 in the disordered side close to the transition. Deduce from 

this behavior that the free energy is (or the action is) perfectly analytic to all 

orders at the transition. 

f. Obtain the superfluid stiffness 𝐽 as a function of 𝑡 = 𝑇 − 𝑇𝑐 and show that it 

has a universal jump at 𝑇𝑐. 

3. Superconductivity on the surface: In this question you will find that above 𝐻𝑐2 there 

is a range of fields for which superconductivity can survive on the surface. Consult 

“Introduction to superconductivity”, by M. Tinkham, page 135. 

a. Start from the Ginzburg-Landau theory of a superconductor and neglect non-

quadratic orders near the critical point. Write down the corresponding 

equations of motion, and using an analogy to the Schrodinger equation, find 

the critical field  𝐻𝑐2 , above which superconductivity cannot nucleate in the 

interior of the sample. Write the result in terms of 𝜙0 and 𝜉. Can you explain 

the result qualitatively? 

b. Consider the same physical setting with an edge at 𝑥 = 0 (such that for 𝑥 >

0 there is an insulator). Show that the boundary conditions take the form 

(
∇

𝑖
−

2𝜋𝐴

𝜙0
) 𝜓|

𝑛
= 0. Show that one can automatically satisfy this boundary 

condition by considering an auxiliary potential, containing a mirror image of 

the original potential in the insulating region. Does this affect the solution 

from part (a) well inside the superconductor (i.e., for |𝑥| ≫ 𝜉)? 

c. Argue, using the auxiliary potential, that very close to the surface one can 

find a solution with lower energy, making the critical field higher near the 

surface.  


