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Tutorial 2

Path integral formulation and the Hubbard-

Stratonovich transformation

References: Altland & Simons Chapter 4 & 6.

Introduction

In this tutorial we have two objectives: (i) Imaginary time coherent state
path integral formalism - to prove the identity (4). The motivation will be to
show that quantum averages of many-body systems in thermal equilibrium
can be computed using functional integrals over field configurations. (ii)
The Hubbard-Stratonovich transformation - To provide a rigorous formalism
in which the phenomenological Ginzburg-Landau (GL) theory can be related
to an underlying microscopic theory theory.

Coherent state path integrals

When we study single-body problems, the particle can be described by its
position operator q. To get the path integral we then work in an eigen basis
of this operator and calculate the propagator 〈q′t′|q,t〉, for example, which
turns out to be related to integration over the paths q(t).

In field theory we have a field, i.e., a “position” operator at each point
in space φ(x). We anticipate that the path integral will be related to an
integration over the field configurations φ(x, t). To make sense of this, it is
clear that we first need to work in a basis that diagonalizes the field operators.
The states that do this are called coherent states.

To be more specific, a coherent state is an eigenstate of an annihilation
operator a

|ψ〉 = eζψa
† |0〉

where ζ = 1 (ζ = −1) for Bosons (Fermions), such that a |ψ〉 = ψ |ψ〉.
Remember that our field operators are annihilation operators labeled by the
spatial coordinates, so these are clearly the type of states we need in order
to construct the path integral.

If we have many annihilation operators labeled by some index i (which in
our case will be the spatial coordinate), we write a simultaneous eigenstate
as

|ψ〉 = eζψia
†
i |0〉 ,
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such that ai |ψ〉 = ψi |ψ〉.
There are some crucial differences between the states corresponding to

boson fields and those corresponding to fermion fields. Below we list the
important properties of the two cases.

Bosonic coherent states

In the simpler case a describes a bosonic degree of freedom and ψ is simply
a c-number. We will make use of three basic identities: first the overlap
between two coherent states

〈ψ1|ψ2〉 = eψ̄1ψ2 . (1)

The second is the resolution of identity which follows directly from (1)

1 =

ˆ
dψ̄dψe−ψ̄ψ|ψ〉 〈ψ| (2)

Here we use the notation that ψ is a vector with a discrete set of components
ψi corresponding to the underlying Fock space. When studying a field theory
in the continuum limit, this will be ψ(x). In the general case the above

notations mean ψ̄ψ ≡
∑

i ψ̄iψi and dψ̄dψ ≡
∏

i
dψ̄idψi
π

. Finally, the third
identity is the Gaussian integral of the complex variables ψ and ψ̄

ˆ
dψ̄dψe−ψ̄Aψ =

1

|A|

where A is a matrix with a positive definite Hermitian part.

Fermionic coherent states

If the operator a describes a fermionic field things become a bit more com-
plicated. To see this, let us assume again that |ψ〉 is an eigen state such
that ai |ψ〉 = ψi |ψ〉. The only way to make this consistent with the anti-
commutation relations between different a’s is to demand that different ψ′s
anti-commute as well. We therefore need special numbers that anti-commute.
These are known as Grassmann numbers, and they satisfy:

ψiψj = −ψjψi.

The operation of integration and differentiation with these numbers are de-
fined as follows ˆ

dψ = 0;

ˆ
dψψ = 1
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and ∂ψψ = 1.
The overlap between two coherent states and the resolution of identity

remain in the form of (1) and (2). The Gaussian integral on the other hand
is significantly different

ˆ
dψ̄dψe−ψ̄Aψ = |A| (3)

where A can be any matrix.

Derivation of the path integral

In what follows we will prove the central identity

Z = Tre−β(Ĥ−µN̂) =

ˆ
D[ψ, ψ̄]e−

´ β
0 dτ(ψ̄∂τψ+H[ψ̄,ψ]−µN [ψ̄,ψ]). (4)

where H and N are the Hamiltonian and particle number respectively and
ψ, ψ̄ are c-numbers (Grassmann numbers) in the case that the particles have
Bosonic (Fermionic) mutual statistics, assigned to each point of space and
“time” τ . The boundary conditions of this path integral is ψ(0) = ζψ(β)
and ψ̄(0) = ζψ̄(β).

As mentioned above, our motivation will be computing expectation values
of quantum many-body systems in thermal equilibrium. For example, if we
have an operator A[a, a†], its expectation value will be

〈Â〉 =
1

Z

ˆ
D[ψ, ψ̄]A[ψ, ψ̄]e−

´ β
0 dτ(ψ̄∂τψ+H[ψ̄,ψ]−µN [ψ̄,ψ]).

Let start with the definition of the trace

Z = Tre−β(Ĥ−µN̂) =
∑
n

〈n|e−β(Ĥ−µN̂)|n〉 (5)

Notice that each term in this sum is the probability amplitude of finding the
the system at the same Fock state it started in, i.e. |n〉, after a time t = i~β,
which, as you know, can be written as a Feynman path integral. In the first
step we will want to get rid of the summation over n. To do so we insert the
resolution of identity (2) into equation (5)

Z =

ˆ
dψ̄dψe−ψ̄ψ

∑
n

〈n|ψ〉〈ψ|e−β(Ĥ−µN̂)|n〉

We can sum over n using the resolution of identity 1 =
∑

n |n〉〈n| but we

first need to commute 〈n|ψ〉 with 〈ψ|e−β(Ĥ−µN̂)|n〉. In the case of bosonic
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particles this is just a number and it commutes with anything. In the case of
fermions Grassmann numbers are involved and we need to be more careful.
If we expand the matrix elements in terms of the Grassmann variables, we
find an additional sign:

Z =

ˆ
dψ̄dψe−ψ̄ψ〈ζψ|e−β(Ĥ−µN̂)|ψ〉 (6)

Now let us continue to the second step: we divide the imaginary-time evolu-
tion operator into M small steps

e−β(Ĥ−µN̂) =
(
e−δ(Ĥ−µN̂)

)M
where δ = β/M . In the third step we insert M resolutions of identity in the
expectation value in equation (6)

〈ζψ|[e−δ(Ĥ−µN̂)]M |ψ〉 =

ˆ M∏
m=1

dψ̄mdψme−
∑
m ψ̄mψm× (7)

〈ζψ|ψM〉〈ψM |e−δ(Ĥ−µN̂)|ψM−1〉 · · · 〈ψ2|e−δ(Ĥ−µN̂)|ψ1〉〈ψ1|e−δ(Ĥ−µN̂)|ψ〉

Expanding in small δ, we have

〈ψm+1|e−δ(Ĥ−µN̂)|ψm〉 ≈ 〈ψm+1|1− δ
(
Ĥ − µN̂

)
|ψm〉

= 〈ψm+1|ψm〉
(
1− δ

(
H[ψ̄m+1, ψm]− µN [ψ̄m+1, ψm]

))
≈ eψ̄

m+1ψm−δ(H[ψ̄m+1,ψm]−µN [ψ̄m+1,ψm]),

where we have defined H[ψ̄m+1, ψm] = 〈ψm+1|Ĥ|ψm〉
〈ψm+1|ψm〉 .

Now if we insert this expression in (6) we get

Z =

ˆ M∏
m=0

dψ̄mdψme
−δ
∑M
m=0

[(
ψ̄m−ψ̄m+1

δ

)
ψm+H[ψ̄m+1,ψm]−µN [ψ̄m+1,ψm]

]

with ψ0 = ζψM+1 = ψ. Finally, in the fourth step we take M → ∞ and
obtain

Z =

ˆ
D[ψ, ψ̄]e−

´ β
0 dτ(ψ̄∂τψ+H[ψ̄,ψ]−µN [ψ̄,ψ])

where

D[ψ̄, ψ] ≡ lim
M→∞

M∏
m=0

dψ̄mdψm
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The integration is to be carried over fields satisfying ψ(β) = ζψ(0). It is very
important to note that by neglecting the time derivative term we resume to
the classical integration over configurations of the fields ψ and ψ̄. Indeed the
time derivative term takes into account the effects of the non-trivial (anti-)
commutation between ai and a†i which have now been transferred to fields ψi
and ψ̄i which always have trivial (anti-) commutation relations.

To be more specific, we usually discuss an interacting Hamiltonian of the
form

S =

ˆ β

0

dτ

[∑
ij

ψ̄i [(∂τ − µ) δij + hij]ψj +
∑
ijkl

Vijklψ̄i(τ)ψ̄j(τ)ψk(τ)ψl(τ)

]
To compute path integrals we usually transform to the Fourier basis where

the derivative operators are diagonal. This procedure applies also for the
imaginary time

ψ(τ) =
1√
β

∑
ν

ψ(ν)e−iντ

in which case the action takes the form

S =
∑
n,ij

ψ̄in [(−iνn − µ) δij + hij]ψjn+

+
1

β

∑
ijkl,ni

Vijklψ̄in1ψ̄jn2ψkn3ψln4δn1+n2,n3+n4.

To obey the boundary conditions ψ(0) = ζψ(β) we choose the following
frequencies in the wave functions e−iντ

νn =

{
2nπ
β

Bosons
(2n+1)π

β
Fermion

These imaginary-time frequencies are known as Matsubara frequencies. Sum-
ming over them is a whole story to itself. You will see an example in the
exercise. I want to note that in the limit of zero temperature (β → ∞) the
sum becomes a simple integral 1

β

∑
νn
→
´∞
−∞

dν
2π

.

The Hubbard-Stratonovich transformation

In this tutorial we will learn a general method to relate a Ginzburg-Landau
theory to the underlying microscopic theory. For example let us consider the
GL theory of a ferromagnet

FGL =

ˆ
d3x

[
−αm∇2m + am2 + βm4

]
.
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Here, if a < 0 a transition to a ferromagnetic state may occur.
To see how to relate this theory to an underlying microscopic theory let

us consider an interacting model of fermions

Z =

ˆ
D[ψ̄, ψ]e−S

S =

ˆ β

0

dτd3x

[∑
s=↑↓

ψ̄s

(
∂τ −

∇2

2m
− µ

)
ψs + gψ̄↑ψ̄↓ψ↓ψ↑

]
(8)

Notice that the local interactions may be reorganized in the following manner

ψ̄↑(x)ψ̄↓(x)ψ↓(x)ψ↑(x) = −s(x) · s(x)

where s(x) = 1
2
ψ̄sσss′ψs′ and thus the action is equivalently given by

S =

ˆ β

0

dτd3x

[∑
s=↑↓

ψ̄s

(
∂τ −

∇2

2m
− µ

)
ψs − gs · s

]
= (9)

Now we will employ the Hubbard-Stratonovich transformation which re-
lies on the following identity

ˆ
D[m] exp

[
−
ˆ β

0

dτd3x
(
m2 − 2m · s

)]
(10)

=

ˆ
D[m] exp

[
−
ˆ β

0

dτd3x (m− s)2

]
︸ ︷︷ ︸

N

exp

[ˆ β

0

dτd3xs2

]
(11)

= N exp

[ˆ β

0

dτd3xs2

]
, (12)

where N does not depend on the field s. Thus, equation (8) may be equiva-
lently written as follows

Z =
1

N

ˆ
D[ψ̄, ψ,m]e−SHS (13)

where

SHS =

ˆ β

0

dτd3x

[∑
s=↑↓

ψ̄s

(
∂τ −

∇2

2m
− µ

)
ψs − 2gm · s + gm2

]
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Notice that the action above resembles a mean-field decoupling of the
interaction term. To see this substitute s = M + δs in the interaction term,
where M is the mean-field, and neglect terms of order O(δs2)

s · s = (M + δs)(M + δs) ≈ 2M · s−M2

However, there is a crucial difference: M is a mean-field with a single value
whereas the field m fluctuates and we integrate over all possible paths of
this field. Actually, equation (13) is exact, we made no approximations in
deriving it. As you will see in the exercise the saddle point approximation of
this theory gives the self-consistent mean-field approximation obtained from
a variational method. This observation suggests that the field m, introduced
by some formal manipulations, may be interpreted as a local magnetization
field.

Finally, let us discuss how we can use the HS theory (13) to obtain an
effective theory for the magnetization field m. The standard way is to inte-
grate over the Fermions. Since the m-field interacts with the fermions, their
integration will generate terms containing the m field. First let us rewrite
the theory as follows

SHS =

ˆ β

0

dτd3x

∑
s=↑↓

ψ̄s

(∂τ − ∇2

2m
− µ

)
δss′︸ ︷︷ ︸

G−1

− gm·σss′︸ ︷︷ ︸
X

ψs′ + gm2


Formally, the fermionic part of the path integral has the quadratic form

ˆ
dψ̄dψ e−ψ̄Aψ,

where A = G−1 − X[m]. Thus using (3) we can perform the integral over
the fermions which gives

Z =
1

N

ˆ
D[m]|A| e−gm2

=
1

N

ˆ
D[m] e−gm

2+log|A| =
1

N

ˆ
D[m] e−gm

2+Tr logA

The trace of the logarithm can be expanded perturbatively in small X in the
following manner:

Tr logA = Tr log
(
G−1 −X

)
= Tr logG−1 + Tr log (1−GX) =

Tr logG−1 + Tr

[
−GX +

1

2
GXGX + ...

]
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Now since X is linear in m each order gives the corresponding order in the
Ginzburg-Landau theory. The first order vanishes, as can be anticipated on
symmetry grounds. The second order term, if expanded in momentum basis,
gives the quadratic term

1

2
Tr [GXGX] =

g2

βΩ

∑
q,ω

Π (q, ω)mq(ω)m−q(−ω),

where

Π =
1

βΩ

∑
kν

1

−iν + k2

2m
− µ
· 1

−i(ν + ω) + (k+q)2

2m
− µ

,

and we have used the fact that G is diagonal in spin space and that the Pauli
matrices are traceless. We can expand this in small q and get the parameters
of the Ginzburg-Landau theory:

a = g −Π(0, 0),

and

α =
1

2

(
∂2Π(q, 0)

∂q2

)∣∣∣∣
q=0

.

Of course β will be derived from a higher order term with four powers of X.


