
Concepts of condensed matter physics - Exercise #4 

Spring 2017 
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1. In this question you will re-derive the BCS theory studied in class and use it to 

calculate a few properties of superconductors. Our starting point is the Hamiltonian 

of electrons interacting via an attractive point contact interaction ( 0g ): 
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a. Write the Hamiltonian in momentum space, and then transform it to a 

quadratic form by assuming the order parameter 
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fluctuating (i.e., by performing mean field). Here   is the system’s volume. 

b. Diagonalize the quadratic Hamiltonian and find the spectrum of excitations.  

c. What is the ground state wavefunction? What is the ground state energy? 

Show that taking 0   we recover the known non-interacting ground state 

energy.  

d. Using the ground state wavefunction, write a self-consistent equation (“the 

BSC gap equation”) for . Solve this equation for small values of g .  

e. Extend the gap equation to finite temperatures by promoting the average 

with respect to the ground state to a thermal average.  

f. Find the critical temperature cT  above which superconductivity is destroyed. 

What is the value of    slightly below the transition?  

2. In this question you will find the spectrum of the above BCS theory in the presence 

of spin-orbit and Zeeman coupling. In one-dimension, the Hamiltonian is given by: 
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a. First, neglecting g , diagonalize the quadratic Hamiltonian by going to 

momentum space. Draw the spectrum (qualitatively) – how does the spin-

orbit and Zeeman terms alter the parabolic spectrum of free electrons              
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b. Introducing finite g  and performing a mean field approximation, write a 

quadratic Hamiltonian of the form: 
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 and ℎ𝐵𝐷𝐺(𝑘) = (
𝐴(𝑘) 𝐷(𝑘)

𝐷†(𝑘) −𝐴∗(−𝑘)
). 

Find the 2 × 2 matrices 𝐴(𝑘) and 𝐷(𝑘).  Show that changing                 

𝐷(𝑘) →
1

2
(𝐷(𝑘) − 𝐷𝑇(−𝑘))  doesn’t change the Hamiltonian. Use this fact 

to make 𝐷 antisymmetric.  

c. Diagonalize BDGh  and find the spectrum of excitations.  

d. Show that by changing the ratio / B , we reach a point in which the gap to 

excitations closes.  Draw the spectrum at this point.   

3. Superconductivity on the surface: In this question you will find that above 𝐻𝑐2 there 

is a range of fields for which superconductivity can survive on the surface. Consult 

“Introduction to superconductivity”, by M. Tinkham, page 135. 

a. Start from the Ginzburg-Landau theory of a superconductor and neglect non-

quadratic orders near the critical point. Write down the corresponding 

equations of motion, and using an analogy to the Schrodinger equation, find 

the critical field  𝐻𝑐2 , above which superconductivity cannot nucleate in the 

interior of the sample. Write the result in terms of 𝜙0 and 𝜉. Can you explain 

the result qualitatively? 



b. Consider the same physical setting with an edge at 𝑥 = 0 (such that for 𝑥 >

0 there is an insulator). Show that the boundary conditions take the form 
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= 0. Show that one can automatically satisfy this boundary 

condition by considering an auxiliary potential, containing a mirror image of 

the original potential in the insulating region. Does this affect the solution 

from part (a) well inside the superconductor (i.e., for |𝑥| ≫ 𝜉)? 

c. Argue, using the auxiliary potential, that very close to the surface one can 

find a solution with lower energy, making the critical field higher near the 

surface.  


