
Tutorial 3

The Mermin-Wagner theorem

This tutorial focuses on the famous Mermin-Wagner theorem. Basically, what
the Mermin-Wagner theorem says is that 2D systems with a continuous sym-
metry cannot be ordered, i.e., cannot spontaneously break that symmetry. It is
a very universal result that applies, for example, to magnets, solids, super�u-
ids, and any other system characterized by a broken continuous symmetry. It
illustrates the fact that as we go to lower dimensions, �uctuations become more
important, and below D = 2, they destroy any potential ordering.

We start by focusing on a simple model: the classical xy model. In this model
we have a square lattice with a planar spin on each site. The Hamiltonian takes
the form

H = −J
∑
〈i,j〉

si · sj = −J
∑
〈i,j〉

cos(φi − φj).

The system is rotationally invariant (i.e., symmetric under φi → φi + c).
However, the energy is minimal if all the spins point at the same direction, so
the ground state spontaneously breaks the symmetry.

One would naively expect a ferromagnetic phase, with a broken rotational
symmetry, to survive the introduction of �nite temperatures (at least for low
enough temperatures). This expectation is motivated by the naive intuition
that the physics at zero temperature should not be di�erent from the physics
at a nearby in�nitesimal temperature. At high enough temperatures, of course,
there must be a transition to a disordered phase. In 3D, this is indeed the case
- there is a �nite temperature βJ , where β is a dimensionless number of order
1, below which the spins point at the same direction on average (even though
they may be �uctuating locally).

How do we characterize order in this system? We can de�ne a correlation

function c(r− r′) =
〈
ei(φ(r)−φ(r′))

〉
. At zero temperature, where all the spins

point at the same direction this function is 1. In an ordered system, at non-
zero temperatures the φs are homogenous on average and the correlation should
remain non-zero even at large distances. This means we have long range order.
On the other hand, if the system is disordered, distant spins become uncorrelated
and we expect this function to go to 0 after some �nite correlation length.
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To see if our 2D system is ordered, we �rst assume it is and approximate the
Hamiltonian based on this assumption. Then, we use the approximated Hamil-
tonian to calculate the correlation function. If the system is indeed ordered,
self-consistency requires that the correlations stay non-zero. We will see that in
2D this is not the case, as the Mermin Wagner theorem dictates.

In the �rst step, we say that if the system is ordered, the �uctuations between
adjacent spins are small, so we can approximate H ≈ E0 + J

2

∑
〈i,j〉(φi − φj)2.

Now we have a quadratic Hamiltonian, so we can actually calculate the above
correlation function. Before doing that, we make another simpli�cation by not-
ing that if the system is ordered, at low enough temperatures the correlation
length will be much larger than the lattice spacing (which is 1 in our units). In
this case, we cannot �see� the lattice, so we can go to the continuum limit (small
k expansion). In doing so, we rewrite the lattice theory as a �eld theory with
the Hamiltonian

H ≈ J

2

ˆ
d2x(∇φ(r))2.

Note that this step is actually unnecessary, as we already had a quadratic Hamil-
tonian, but it will simplify later computations.

First, let us decouple the Hamiltonian. As usual, this is done by going to
Fourier space, and de�ning

φ(r) =
1

2π

ˆ
d2keik·rφ(k).

Plugging this into the Hamiltonian, we get

H = − J

2 (2π)
2

ˆ
d2r

ˆ
d2k

ˆ
d2k′eik·reik

′·rφ(k)φ(k′)k · k′.

By performing the integration over r, we get a delta-function of the form
δ(k + k′), so we have

H =
J

2

ˆ
d2kφ(k)φ(−k)k2 =

=
1

2

ˆ
d2kε(k) |φ(k)|2 ,

with ε(k) = Jk2. Note that we have used the fact that the original �eld φ(r) is
real, so φ(−k) = (φ(k))∗. In fact, the terms for k and −k are identical, so we
can actually write this as an integral over half the plane:

H =

ˆ
k>

d2k |φ(k)|2 ε(k).

Since we now have many decoupled degrees of freedom, we can immediately
write

〈φ(k)φ(k′)〉 =

´
Dφφ(k)φ(k′)e−βH´

Dφe−βH
=
δ(k + k′)

βε(k)
.
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Now recall that we want to calculate the correlation function c(r− r′) =〈
ei(φ(r)−φ(r′))

〉
. Since we have a Gaussian Hamiltonian, we can immediately

write
c(r− r′) = e−1/2〈(φ(r)−φ(r′))2〉.

To calculate the expectation value
〈
(φ(r)− φ(r′))2

〉
, we write it in terms of the

decoupled Fourier components

〈
(φ(r)− φ(r′))2

〉
=

ˆ
d2k′d2k

(2π)
2

(
eik·r − eik·r

′
)(

eik
′·r − eik

′·r′
)
〈φ(k)φ(k′)〉 =

=
1

(2π)
2

ˆ
d2k′d2k

(
eik·r − eik·r

′
)(

eik
′·r − eik

′·r′
) δ(k + k′)

βε(k)
=

1

(2π)
2

ˆ
d2k

(
eik·r − eik·r

′
)(

e−ik·r − e−ik·r
′
) 1

βε(k)
=

1

2βπ2

ˆ
d2k

(1− cos (δr · k))

ε(k)
.

Notice that in the large δr limit, we can separate the integral into the two re-
gions k > δr−1 and k ? δr−1, each giving a qualitatively di�erent contribution.
In the �rst case we have

ˆ 1/δr

d2k
(1− cos (δr · k))

ε(k)
≈
ˆ 1/δr

d2k
(δr · k)2

2ε(k)
∝ δr2

ˆ
1/δr
0 dkk → const.

As we will see shortly, the other term diverges, so this term will not be the
leading order at large δr.

In the second case, k ? δr−1, the cosine is strongly oscillating, and will again
not provide leading terms, so we neglect it. We end up with the integral

1

βJπ

ˆ
1/δr

dk
1

k
.

Note that this integral has a logarithmic divergence at high momenta. This
divergence is of course an artifact of the e�ective continuum model, and in the
original model the lattice spacing sets a high-momentum cuto� (that is, k is
restricted to the Brillouin zone). We put the cuto� back by hand, and get〈

(φ(r)− φ(r′))2
〉

=
1

βJπ
log (αδr) ,

where α ∝ a−1 is the cuto�. Finally, putting this back in c, we get

c(r− r′) ∝ (αδr)
−η(T )

,

where η = T
2πJ .

This shows that the correlation between distant spins goes to zero and the
system is not ordered at any non-zero temperature. In particular, the physics
at zero-temperature is very di�erent from the physics at an in�nitesimal tem-
perature above it. However, the way the correlation function goes to zero is
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di�erent from the behavior of disordered systems. The power law correlations
show a decay without a length-scale. The correlation length is actually in�nite,
similar to a second order phase transition. The di�erence is that here we are
not at an isolated point in parameter space, but �nd this behavior for a region
of parameters. We call such a phase a quasi-long-range-ordered phase.

One may think that this result is speci�c to the classical xy model, but it is
actually quite universal. Any classical system in 2D with a continuous symmetry
will have a massless �eld by the Goldstone theorem. The �uctuations created
by these Goldstone modes destroy the order in a similar fashion to what we have
seen above - even if the corresponding Hamiltonians are much more complicated.
This has been proven in very general scenarios over the years.

For example, we can study the stability of 2D solids: let's look at the case
of a square lattice, and assign a displacement vector to each lattice point ui.
Approximating the deviations of the potential from equilibrium to be harmonic,
we write the energy in the form

K

2

∑
〈i,j〉

(ui − uj)
2.

Note the similarity of this to the form we wrote for the xy model. We can
therefore immediately say that this Hamiltonian will result in the �uctuation of
the form 〈

(ui − uj)
2
〉
∝ T log |i− j| .

This means that the relative displacement vector between two distant sites is
wildly �uctuating, and the original crystal structure is unstable.

The Mermin-Wagner theorem is not special to 2D classical problems. It
actually applies to various quantum problems as well. We have seen in the
previous tutorial from the path integral formulation that the partition function
of a quantum many body system takes the form

Z =

ˆ
D[ψ, ψ̄]e−

´ β
0
dτddx(ψ̄∂τψ+H[ψ̄,ψ]−µN [ψ̄,ψ]).

Thinking about the Lagrangian density as an e�ective classical Hamiltonian
density, and about the τ (time) direction as another spatial direction, we see
that this partition function describes a classical d+1 dimensional system which is
�nite in one direction (the time direction), and in�nite in the d other directions.
At zero-temperature, the system is in�nite in the τ direction as well, so the
quantum many-body problem is mapped into an in�nite classical D = d + 1
dimensional system. This mapping is called the quantum-classical mapping.

This way, a zero-temperature quantum problem in 1D is mapped into a 2D
classical problem, where the Mermin Wagner theorem applies. This means that
1D quantum problems with a continuous symmetry cannot be ordered. A 2D
quantum problem at zero-temperature is mapped onto a 3D classical problem,
where order can occur. However, at �nite temperatures, the system is a �thick�
2D classical system, where the Mermin-Wagner theorem should apply (if we
look at large enough distances).
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One last note: we have shown that the low temperature phase of the 2D
xy model is quasi-long-range-ordered. It is interesting to ask whether at high
temperatures a phase transition occurs between the quasi-long-range-ordered to
a disordered phase. We usually associate a phase transition with a process of
symmetry breaking, but here neither of the phases breaks any symmetry, so one
naively expects not to �nd a transition. As it turns out, there is a transition,
and it is called the Berezinskii-Kosterlitz-Thouless transition. Historically, it
was the �rst example of a topological phase transition. You will study this
transition extensively later in this course.


