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1. Superconductivity on the surface: In this question you will find that above 𝐻𝑐2 there is a range of fields for 

which superconductivity can survive on the surface. Consult “Introduction to superconductivity”, by M. 

Tinkham, page 135. 

a. Start from the Ginzburg-Landau theory of a superconductor and neglect non-quadratic orders near 

the critical point. Write down the corresponding equations of motion, and using an analogy to the 

Schrodinger equation, find the critical field  𝐻𝑐2 , above which superconductivity cannot nucleate in 

the interior of the sample. Write the result in terms of 𝜙0 and 𝜉. Can you explain the result 

qualitatively? 

b. Consider the same physical setting with an edge at 𝑥 = 0 (such that for 𝑥 > 0 there is an insulator). 

Show that the boundary conditions take the form (
∇

𝑖
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𝑛
= 0. Show that one can 

automatically satisfy this boundary condition by considering an auxiliary potential, containing a 

mirror image of the original potential in the insulating region. Does this affect the solution from part 

(a) well inside the superconductor (i.e., for |𝑥| ≫ 𝜉)? 

c. Argue, using the auxiliary potential, that very close to the surface one can find a solution with lower 

energy, making the critical field higher near the surface.  

 

2. Little-Parks effect 

Consider a superconductor which has the geometry of a ring with radius R and width d.  

a. A flux 𝜙 penetrates the center of the ring. Write the Ginzburg-Landau theory for the ring, explain 

what is the condition to be in the quasi 1D limit. 

b. How does 𝑇𝑐 depend on 𝜙? What is the corresponding coherence length 𝜉(𝜙)? Discuss the limit of 

𝑅 > 𝜉 and < 𝜉 . 

c. So far we have implicitly ignored phase fluctuations due to vortices slipping in and out of the ring. 

Qualitatively, when is this a good approximation? 



3. The XY – sine-Gordon duality and the BKT critical behavior 

In this question you are asked to show the equivalence between the XY model and the sine-Gordon model: 

𝑆𝑆𝐺 =
𝑐

2
∫ 𝑑2𝑥  (∇𝜃)2 − 𝑔 ∫ 𝑑2𝑥  cos 𝜃 , 

where 𝜃 is a non-compact real scalar field, and re-derive the RG equations near the BKT transition. 

a. Expand 𝑍𝑆𝐺 = ∫ 𝐷𝜃 𝑒−𝑆𝑆𝐺  in powers of 𝑔 explicitly and show that it has the form 

𝑍𝑆𝐺 = ∑
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Where the 〈〉 brackets denote averaging with the free part  𝑆0 =
𝑐

2
∫ 𝑑2𝑥 (∇𝜃)2. Hint: recall that the free 

part is transnationally invariant such that 〈(∏ 𝑒𝑖𝜃(𝑥𝑎)𝑁
𝑎=1 )(∏ 𝑒−𝑖𝜃(𝑥𝑏)𝑁+𝑀

𝑏=𝑁+1 )〉 is non-zero only for 𝑁 =

𝑀. 

b. Using the properties of the Gaussian average, namely  
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1
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for 𝐴 which is a linear combination of the field 𝜃, and the following identity 
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show that the partition function may be written as follows 

𝑍𝑆𝐺 = ∑
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where 𝜎𝑖  denotes the sign of the vortex and 𝜉 is a short length cutoff. This is exactly the partition 

function of the Coulomb gas obtained in class! 

c. Repeat the derivation of the RG differential equations near the BKT transition, namely 

𝑑𝑦

𝑑𝑙
= 𝑥𝑦 ;  

𝑑𝑥

𝑑𝑙
= 𝑦2 . 

What are 𝑥 and 𝑦 in terms of 𝑐 and 𝑔? ( Here 𝑙 = log
𝑟

𝜉
 )  

d. Use the above equations to determine the screening length  𝜉+ on the disordered side close to the 

transition. Do this by estimating the value of the running parameter 𝑙 at which 𝑥 and 𝑦 reach order 1. 

Explain physically why 𝜉+  is the screening length.  

e. Obtain the superfluid stiffness 𝐽 as a function of 𝑡 = 𝑇 − 𝑇𝑐 and show that it has a universal jump at 𝑇𝑐. 

 


