Concepts of condensed matter physics

Spring 2021

Exercise #4

Due date: 07/07/2021

- 1. Superconductivity on the surface: In this question you will find that above H_{c2} there is a range of fields for which superconductivity can survive on the surface. Consult "Introduction to superconductivity", by M. Tinkham, page 135.
 - a. Start from the Ginzburg-Landau theory of a superconductor and neglect non-quadratic orders near the critical point. Write down the corresponding equations of motion, and using an analogy to the Schrodinger equation, find the critical field H_{c2} , above which superconductivity cannot nucleate in the interior of the sample. Write the result in terms of ϕ_0 and ξ . Can you explain the result qualitatively?
 - **b.** Consider the same physical setting with an edge at x = 0 (such that for x > 0 there is an insulator). Show that the boundary conditions take the form $\left(\frac{\nabla}{i} - \frac{2\pi A}{\phi_0}\right)\psi\Big|_n = 0$. Show that one can automatically satisfy this boundary condition by considering an auxiliary potential, containing a mirror image of the original potential in the insulating region. Does this affect the solution from part (a) well inside the superconductor (i.e., for $|x| \gg \xi$)?
 - **c.** Argue, using the auxiliary potential, that very close to the surface one can find a solution with lower energy, making the critical field higher near the surface.

2. Little-Parks effect

Consider a superconductor which has the geometry of a ring with radius R and width d.

- **a.** A flux ϕ penetrates the center of the ring. Write the Ginzburg-Landau theory for the ring, explain what is the condition to be in the quasi 1D limit.
- **b.** How does T_c depend on ϕ ? What is the corresponding coherence length $\xi(\phi)$? Discuss the limit of $R > \xi$ and $< \xi$.
- c. So far we have implicitly ignored phase fluctuations due to vortices slipping in and out of the ring.Qualitatively, when is this a good approximation?

3. The XY - sine-Gordon duality and the BKT critical behavior

In this question you are asked to show the equivalence between the XY model and the sine-Gordon model:

$$S_{SG} = \frac{c}{2} \int d^2 x \ (\nabla \theta)^2 - g \int d^2 x \ \cos \theta ,$$

where θ is a non-compact real scalar field, and re-derive the RG equations near the BKT transition.

a. Expand $Z_{SG} = \int D\theta \ e^{-S_{SG}}$ in powers of g explicitly and show that it has the form

$$Z_{SG} = \sum_{n=0}^{\infty} \frac{\left(\frac{g}{2}\right)^{2n}}{(n!)^2} \prod_{j=1}^{2n} \int d^2 x_j \left\langle \exp\left(i\sum_{j=1}^{2n} (-1)^j \theta(x_j)\right) \right\rangle$$

Where the $\langle \rangle$ brackets denote averaging with the free part $S_0 = \frac{c}{2} \int d^2 x \ (\nabla \theta)^2$. Hint: recall that the free part is transnationally invariant such that $\langle (\prod_{a=1}^N e^{i\theta(x_a)})(\prod_{b=N+1}^{N+M} e^{-i\theta(x_b)}) \rangle$ is non-zero only for N = M.

b. Using the properties of the Gaussian average, namely

$$\langle e^A \rangle = e^{\frac{1}{2} \langle A^2 \rangle}$$

for A which is a linear combination of the field θ , and the following identity

$$\langle \left(\theta(x) - \theta(x')\right)^2 \rangle = \frac{C(x - x')}{c} = \frac{1}{2\pi c} \log \left| \frac{x - x'}{\xi} \right|,$$

show that the partition function may be written as follows

$$Z_{SG} = \sum_{n=0}^{\infty} \frac{\left(\frac{g}{2}\right)^{2n}}{(n!)^2} \prod_{j=1}^{2n} \int d^2 x_j \exp\left(\frac{1}{2c} \sum_{j$$

where σ_i denotes the sign of the vortex and ξ is a short length cutoff. This is exactly the partition function of the Coulomb gas obtained in class!

c. Repeat the derivation of the RG differential equations near the BKT transition, namely

$$\frac{dy}{dl} = xy ; \frac{dx}{dl} = y^2 .$$

What are x and y in terms of c and g? (Here $l = \log \frac{r}{\xi}$)

- **d.** Use the above equations to determine the screening length ξ_+ on the disordered side close to the transition. Do this by estimating the value of the running parameter l at which x and y reach order 1. Explain physically why ξ_+ is the screening length.
- **e.** Obtain the superfluid stiffness J as a function of $t = T T_c$ and show that it has a universal jump at T_c .