Concepts of condensed matter physics - Exercise #5

Spring 2021

Due date: 21/07/2021

1. In this question you will find the spectrum of the above BCS theory in the presence of spin-orbit and Zeeman coupling. In **one-dimension**, the Hamiltonian is given by:

$$\hat{H} = \int dx \left[\sum_{s,s'} c_s^{\dagger}(x) \left(-\frac{\partial_x^2}{2m} + iu\sigma_z^{ss'}\partial_x + B\sigma_x^{ss'} - \mu \right) c_{s'}(x) - gc_{\uparrow}^{\dagger}(x)c_{\downarrow}^{\dagger}(x)c_{\downarrow}(x)c_{\uparrow}(x) \right] \right]$$

 a. First, neglecting g, diagonalize the quadratic Hamiltonian by going to momentum space. Draw the spectrum (qualitatively) – how do the spin-orbit and Zeeman terms alter the parabolic spectrum of free electrons (

$$E=\frac{k^2}{2m}-\mu$$
)?

 b. Introducing finite g and performing a mean field approximation, write a quadratic Hamiltonian of the form:

$$H = E_0 + \frac{1}{2} \sum_k \vec{\Psi}_k^{\dagger} h_{BDG}(k) \vec{\Psi}_k,$$

With
$$\vec{\Psi}_{k} = \begin{pmatrix} c_{\uparrow}(k) \\ c_{\downarrow}(k) \\ c_{\downarrow}^{\dagger}(-k) \\ -c_{\uparrow}^{\dagger}(-k) \end{pmatrix}$$
 and $h_{BDG}(k) = \begin{pmatrix} A(k) & D(k) \\ D^{\dagger}(k) & -\sigma_{y}A^{*}(-k)\sigma_{y} \end{pmatrix}$

Find the 2 \times 2 matrices A(k) and D(k).

- c. Diagonalize h_{BDG} and find the spectrum of excitations. Find the selfconsistent gap equation and solve it.
- d. Show that by changing the ratio Δ / B , we reach a point in which the gap to excitations closes. Draw the spectrum at this point.

2. RG analysis for the onset of Superconductivity in the presence of disorder

Consider a thin three-dimensional superconducting material, with dimensions $W \times L \times L$ where $W \ll L$. The interaction term $H_{Inter} = u_b \sum_{k,p} c_{k\downarrow}^{\dagger} c_{-k\uparrow}^{\dagger} c_{-p\uparrow} c_{p\downarrow}$ leads to a pairing instability. Assume that the bare interaction parameter u_b follows

$$u_{b} = \begin{cases} u_{0} & for \quad \omega_{D} < \omega < E_{F} \\ u_{0} - u_{ph} & for \quad \omega < \omega_{D} \end{cases},$$

where ω_D is the phonon Debye frequency, E_F is the Fermi energy and $u_0 > u_{ph} > 0$. The RG flow of the running coupling constant u is described by $\frac{d\Gamma}{dl} = \beta(\Gamma)$, with $\Gamma = \nu u$ where $l = log\left(\frac{\Omega}{\omega}\right)$, ν the density of states and Ω is some ultraviolate cutoff.

- **a.** What is the function $\beta(\Gamma)$? Using its solution find the transition temperature,
 - T_c , of the following clean systems (ν is the density of states of the material):

i.
$$log\left(\frac{E_F}{\omega_D}\right) \approx 5$$
, $\Gamma_0 = \nu u_0 = 0.7$, and $\Gamma_{ph} = \nu u_{ph} = 0.3$.
ii. $log\left(\frac{E_F}{\omega_D}\right) \approx 5$, $\Gamma_0 = \nu u_0 = 0.8$, and $\Gamma_{ph} = \nu u_{ph} = 0.04$.

Now we would like to include the effect of disorder, which become important for frequencies below the Thouless energy given by $E_{Th} = \hbar \frac{D}{W^2} < \omega_D$, where *D* is the diffusion constant.

b. Based on the diffusion equation, $(\partial_t - D\partial_x^2)n = 0$, explain what is the physical origin of the Thouless energy.

It can be shown that, due to the diffusive motion of the electrons, for $\omega < E_{Th}$ the RG equation is modified according to

 $\beta(\Gamma) \rightarrow g + \beta(\Gamma)$ where $g = \pi \frac{e^2}{h} R$ and R is the resistance of the sample.

c. Discussed qualitatively the effect of disorder, via g, on the flow equation.What is the critical value of g that will make the superconducting phase disappear?

Bonus: what happens if $E_{Th} > \omega_D$?

d. Assume that the interaction parameter at the Thouless energy can be expressed as

$$\Gamma(E_{Th}) \equiv \Gamma_{Th} = \frac{-1}{\log\left(\frac{E_{Th}}{T_c^0}\right)},$$

where T_c^0 is the critical temperature in the clean case, and find an analytic expression for T_c as a function of u_{Th} , and g. Assume that at T_c the interaction parameter u, flows to $-\infty$.

You may find the following integral helpful:

$$\int_{-\infty}^{-|\Gamma|} \frac{d\Gamma}{g - \Gamma^2} = \frac{1}{2\sqrt{g}} \log\left(\frac{1 - \frac{\sqrt{g}}{|\Gamma|}}{1 + \frac{\sqrt{g}}{|\Gamma|}}\right), \text{ for } g < \Gamma^2.$$

e. Draw qualitatively T_c as a function of g. You may assume $\Gamma_{Th} = -0.1$.