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1. Debye-Waller factor of low dimensional crystals and the Mermin-Wagner-

Berezinskii  theorem (I strongly encourage you to consult the L and N 

appendices of “Solid State Physics” By Neil Ashcroft and David Mermin). In this 

question we will show that in low dimensional systems the fluctuations of a 

Goldstone mode can diverge and destroy the long range order even if they are 

small on the microscopic scale. We will do this by first assuming that the 

fluctuations are small which will allow us to derive an effective theory. Using this 

theory we will find that the fluctuations are actually very large in conflict with 

the original assumption.  

a. Consider the Hamiltonian of ions in a cubic crystal phase 
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 The      brackets denote summation over nearest neighbors. 

Let us denote the classical ground state positions of the ions by  {  }   

 
. 

Now we expand the potential      up to quadratic order in deviations 

around their classical ground state position, i.e. we take          

where           and   being the inter-ion distance. The Hamiltonian 

then assumes the form 

   ∑
  

  
 

 ∑
 

 
(     )

 

    

 

which is nothing but an array of coupled harmonic oscillators. 

Diagonlaize the Hamiltonian using the ladder operators in quasi-



momentum space,   , such that it takes the simple form   
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)  . Draw the Goldstone mode dispersion.  

b. To understand if the system maintains long-range order (LRO) we 

consider the density-density correlation function, given by 

                              

where      
   [      ]

      
 denotes quantum averaging in a thermal 

ensemble, such that    
     

 

      
. Here the density operator is 

defined as follows 
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If LRO exists throughout the system we expect that this function will 

modulate with crystal precocity infinitely far away. The physics behind 

this notion is rigidity, namely, if we perturb an ion at   then the ion at 

  is correlated with its motion even if         .  

Use the space and time translational invariance of the correlation 

function (i.e.                           )) to show that it’s Fourier 

transform is given by 
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Note that this function is known as the dynamic structure factor. 

c. Before we continue we will need to use the identity  

                        

where   and   are linear functions of   and   . Bonus: prove this 

identity following  the short article by David Mermin, Journal of 

Mathematical Physics, 7, 1038 (1966).   

 Use the Baker-Campbell-Hausdoerff formula to show 

that  
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where   and    are some momentum dependent pre-

factors, such they are c-numbers  

 Insert the unity operator            and use the 

cyclic property of the trace to show that    
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 Iterate this relation an infinite amount of times to show 

that  
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     we have shown that  
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and thus  
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 Now to complete the job compute 
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 to show that it gives the same 

result.  

d. Use the identity above, and, again the invariance of space and time to 

show that you can write the dynamic structure factor         in the 

following manner 
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where   
 

 
       

   is the Debye-Waller factor.  

e. Compute the Debye-Waller factor for a general dimension  . Here you 

may assume that the phonons have a linear dispersion, which is cutoff 

by the Debye frequency   . To obtain the long range modulations we 

take the term in the exponent (within the sum) to be unity such that the 

sum over   can be performed (the idea is that delta functions in q-space 



translate to pure long-range modulations in real space). In such a case 

one would obtain 

                

where   are the reciprocal lattice vectors. This result implies that for 

very low frequencies the delta functions are weighted by      .    

f. Show that in one dimension   diverges for all temperatures. Is zero 

temperature different? in what way?  

g. Show that in two-dimensions   diverges at finite temperatures. 

h. Do you identify any similarity between the one-dimensional case at zero 

temperature and the two-dimensional case at finite temperatures? Can 

you explain this in terms of path integrals? 

i. In class you have seen the example of a ferromagnet where spin is 

conserved, and thus the dispersion is quadratic. How would your results 

change for a quadratic Goldstone mode? 

 

2. Spin-wave dispersion (Please, by all means consult “Interacting Electrons and 

Quantum Magnetism” by A. Auerbach pages 123 - 126). In this question you are 

asked to derive the spin-wave dispersion of the two-dimensional Heisenberg 

model on a square lattice with antiferromagnetic coupling. The Hamiltonian of 

such a model is given by  
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where    .                and           are the spin raising and 

lowering operators and        are the spin-half operators which are arranged on 

a square lattice. The      brackets denote summation over nearest neighbors. 

a. Obtain the mean-field ground state solution. First, separate the lattice 

into two sub-lattices, A and B, such that all the neighbors of an A site are 

B’s and vice versa. Now take    
            where        if     



and         if    .What is the ground state-energy given by this 

solution? 

b. Show that the mean-field solution you have obtained is not an eigen-

state of the Hamiltonian, and thus is not the true ground state. 

c. Now let us refine the solution by accounting for quantum fluctuations. 

First apply a rotation of   about the   axis to all spins on sub-lattice B 

     ̃  (the idea is that we expand the Hamiltonian around the mean-

field solution, where we have assumed that the spins are aligned along 

the   direction and anti-parallel to all their nearest neighbors). Now let 

us assume that all spins are fluctuating  weakly around   ̃ 
    , such 

that we may introduce the Holstein-Primakoff bosons 
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 where       . Apply this transformation 

d. Diagonalize the Bosonic theory using a Bogoliubov transformation. Plot 

the spin-wave dispersion schematically. (note that in the limit of weak 

fluctuations         ). 

e. In class you have derived the spin-dispersion of the ferromagnetic model 

(i.e.    ). Discuss the difference in the long wave-length dependence?  

 


